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Ring states in swarmalator systems
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Synchronization is a universal phenomenon, occurring in systems as disparate as Japanese tree frogs and
Josephson junctions. Typically, the elements of synchronizing systems adjust the phases of their oscillations,
but not their positions in space. The reverse scenario is found in swarming systems, such as schools of fish or
flocks of birds; now the elements adjust their positions in space, but without (noticeably) changing their internal
states. Systems capable of both swarming and synchronizing, dubbed swarmalators, have recently been proposed,
and analyzed in the continuum limit. Here, we extend this work by studying finite populations of swarmalators,
whose phase similarity affects both their spatial attraction and repulsion. We find ring states, and compute criteria
for their existence and stability. Larger populations can form annular distributions, whose density we calculate
explicitly. These states may be observable in groups of Japanese tree frogs, ferromagnetic colloids, and other
systems with an interplay between swarming and synchronization.
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I. INTRODUCTION

Synchronization is a well studied [1–4] phenomenon span-
ning many disciplines. In biology it is seen in discharging
pacemaker cells [5,6], coherently flashing fireflies [7,8], and
accordantly croaking tree frogs [9–11]. In chemistry it is seen
in the metabolic cycles of yeast cells [12], and in physics, in
arrays of Josephson junctions [13], power grid dynamics [14],
and even the wobbling of the millenium bridge [15].

In synchronizing systems, the dynamic state variables are
the oscillators’ phases, whose influence on each other leads to
macrolevel temporal structures (synchrony). A similar effect
occurs in swarming [16–25], a phenomenon as widespread as
synchronization, as evidenced by flocks of birds [26,27], locust
swarms [28–30], bacterial aggregation [31–33], schools of
fish [34,35], predator-prey interactions [36,37], self-assembly
[38–42], and even the vortices of Bose-Einstein condensates
[43–47]. Like synchronizing oscillators, the interactions be-
tween swarming particles give rise to group-level structures.
But, now the (dynamic) state variables are the individuals’
positions, and the structures formed are spatial.

Viewed this way, swarming and synchronization are strik-
ingly similar. Both are canonical examples of emergent phe-
nomena. Both are dizzyingly pervasive, occurring in far-flung
settings like the menstrual cycle [48] and quantum gases
[47]. Yet in spite of these commonalities, the two fields have
developed largely independently. In swarming the units are
mobile, but do not have internal dynamics. In synchronization
the situation is reversed: the oscillators have internal dynamics,
but do not move through space.

Recently, however, researchers in both fields have started
to study systems with both spatial and internal dynamics.
From the swarming side, von Brecht and Uminsky [42] have
endowed aggregating particles with an internal polarization

vector. In the sync community, researchers have considered
mobile oscillators when modeling robotics and biological
phenomena [49–53]. In these works, however, the coupling
between the space dynamics and the phase dynamics is only
one way: their phase evolution is influenced by their relative
distances, but their relative phases do not affect their move-
ments.

Oscillators whose space dynamics and phase dynamics
are bidirectionally coupled have also been considered. The
pioneering work was done by Tanaka et al. [54–56] when
studying “chemotactic oscillators,” oscillators whose move-
ments and interactions are mediated by a surrounding chem-
ical. They studied a very general model, from which they
derived reduced dynamics using center manifold and phase
reduction techniques. More recent works have been carried
out by Starnini et al. [57], and O’Keeffe et al. [58], who took a
bottom-up approach. They defined minimal, toy models which
enabled greater tractability. The latter called the elements of
their system “swarmalators” to highlight their twin identities as
swarming oscillators, and to distinguish them from the “mobile
oscillators” of the preceding paragraph, whose motion evolves
independently of their phase.

Defined this way, swarmalators are, to our knowledge,
hypothetical entities. By this we mean there are no real world
systems which unequivocally display the required two-way,
space-phase coupling. That said, there are some promising
candidates. For example, tree frogs, crickets, and katydids are
known to synchronize their calling rhythms with others close to
them in space (making the phase dynamics position dependent)
[59,60]. Perhaps, as some believe [61], the relative phases of
their calls also affect their movements, which would complete
the requisite feedback loop between the space dynamics and
the phase dynamics.
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Another contender is biological microswimmers, such as
bacteria, algae, or sperm. Here, the phase variable is associated
with the rhythmic wriggling of the swimmer’s tail. Since
this wriggling both affects, and is affected by, the local
hydrodynamic environment, it seems likely that the behavior of
neighboring sperm would be coupled. Whether this coupling
is truly bidirectional is yet to be determined. That said, there
is evidence that sperm, at least, behave this way. As discussed
in [62], neighboring sperm can synchronize their wriggling,
which in turn is thought to enhance their mutual spatial
attraction.

Myxobacteria also have the right ingredients to be swar-
malators. In this case, the phase variable is an internal, cyclic
degree of freedom, which has been theorized to influence their
motion, and vice versa [63]. The same is true of colloidal Janus
particles, where now the phase corresponds to an oscillation
about the center of mass (which occurs in response to an
external magnetic field). Here again, the physics is such that
the oscillations and movements of the particles are mutually
dependent on each other, as required of swarmalators [64].

In this work, we contribute to the theoretical study of
swarmalators. We study two realistic modifications of the
model defined in [58]. The first is the effect of finite population
sizes (in [58] continuum arguments were used), which we show
lead to stable ring states. The second is a change in length
scale of the space-phase coupling. In [58] this length scale was
chosen to be the same as that of the spatial attraction. However,
in some swarmalator systems, such as magnetic Janus particles
[64] and Japanese tree frogs [11], this space-phase interaction
occurs at the length scale of the spatial repulsion. We here
account for this effect by allowing phase similarity to affect
both spatial attraction and spatial repulsion.

II. MODEL

We consider swarmalators confined to move in two spatial
dimensions

_xk = 1

N

N∑
j=1

[I1(xj − xk )F1(θk − θj )

+ I2(xj − xk )F2(θk − θj )], (1)

θ̇k = ωk + K

N

N∑
j=1

H (θj − θk )G(|xj − xk|) (2)

for k = 1, . . . , N , where N is the population size and xk ∈ R2.
θk ∈ S1 is the phase of the kth swarmalator while its natural
frequency is ωk . The spatial attraction and repulsion between
swarmalators are represented by I1, I2 ∈ R2. (Depending on
the sign of F1, F2, however, this can change, and I1 can be
repulsive and/or I2 can be attractive. We discuss when this
occurs later.) The phase interaction is encoded by H ∈ R,
and the influence of phase similarity on spatial attraction and
repulsion is captured by the functions F1, F2 ∈ R. Finally, the
function G ∈ R represents the influence of spatial proximity
on the phase dynamics.

Consider the following instance of this model:

_xk = 1

N

N∑
j �=i

(xj − xk )(A + J1 cos(θj − θk ))

− (B − J2 cos(θj − θk ))
xj − xk

|xj − xk|2 , (3)

θ̇k = K

N

N∑
j �=i

sin(θj − θk )

|xj − xk|2 . (4)

We choose a linear attraction kernel and power law re-
pulsion, as is common in studies of the aggregation model
[25,65], because it simplifies the analysis. Specifically, in the
absence of space-phase coupling, J1 = J2 = 0, this choice of
I1, I2 causes swarmalators to form disks of uniform density
in space. We note the term xj − xk indicates the kth swar-
malator is attracted to the j th swarmalator only when the term
[A + J1 cos(θj − θk )] is positive. If the latter term is negative,
we have the reverse scenario, where the kth swarmalator is
repelled from the j th swarmalator [similar statements hold
for the terms (xj − xk )/|xj − xk|2 and B − J2 cos(θj − θk )].
Again for simplicity, we both choose the sine function for
H , and consider identical swarmalators ωk = ω. By a change
of reference frame we set ω = 0 without loss of generality.
Finally, by rescaling time and space we set A = B = 1. Note
this implies (J1, J2) → (J̃1, J̃2) = (J1/AB, J2/AB ), but for
notational convenience we drop the tilde notation. This leaves
three parameters (J1, J2,K ).

The parameter K measures the strength of the phase cou-
pling. For K > 0, the phase coupling between swarmalators
tends to minimize their phase difference, while for K < 0, it
tends to maximize it. The parameters J1, J2 > 0 measure the
extent to which phase similarity influences spatial attraction
and repulsion, respectively. For 0 < J1, J2 < 1, the functions
F1 and F2 are strictly positive. Then, the phase similarity
enhances just the magnitude of I1, I2. However, for J1, J2 > 1,
F1, F2 can change sign (depending on the value of θj − θk).
As we discussed earlier, this means the functions I1, I2 become
repulsive and attractive, respectively.

We remark that J2 does not appear in [58], which meant
phase similarity affected spatial attraction, but not spatial
repulsion. We here include it for greater generality, so that
our results may be applied to swarmalators whose space-phase
coupling occurs on the length scale of the spatial repulsion, as
is the case, for example, for magnetic Janus particles [64,66]
and Japanese tree frogs [9,11]. We also remark that in [58]
G(|x|) = 1/|x|, but we choose G(|x|) = 1/|x|2 here because
it simplifies the analysis.

III. RESULTS

A. Ring phase waves

Simulations show that for certain parameter values, a
stationary state is formed where the swarmalators arrange
themselves in a ring centered about the origin, with their
phases perfectly correlated with their spatial angle (i.e., θk =
φk + const, where φk is angle between xk and the positive x

axis). Accordingly, we call this state the ring phase wave and
plot it in Fig. 1(a). We now analyze this state.
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FIG. 1. (a) Scatter plot of a stable ring phase wave state in the
(x, y ) plane. The phase of each swarmalator is represented by a blue
ray, and corresponds to the angle the ray makes with the positivex axis.
As can be seen, in this state the spatial angle φk = tan−1(yk/xk ) of
each swarmalator is correlated with its phase (i.e., φk = θk + const).
Parameter values were J2 = 1, J1 = 0, K = −0.003, and N = 100.
(b) Radius of ring state versus J1. Red dots show simulation results for
J2 = 1 and N = 100. The black curve shows theoretical prediction
(7). To produce the data for the plot, we integrated the equations of
motion (3) and (4) using Euler’s method until the steady state was
reached.

Existence. In the ring phase wave state the position and
phase of the kth swarmalator are

xk = R cos (2πk/N )x̂ + R sin (2πk/N )ŷ, (5)

θk = 2πk/N + C, (6)

where R is the radius of the ring, x̂, ŷ are unit vectors in the
(x, y) directions, N > 1, and the constant C is determined
by the initial conditions. After substituting the Ansätze (5)
and (6) into the equations of motion (3) and (4), and after
algebraic manipulation, we derive the following expression
for the radius:

R =
√

N − 1 + J2

N (2 − J1)
(7)

which is valid for any value of the coupling constant K. For
large N this becomes R ∼ √

1/(2 − J1), independent of J2.
This expression for radius of the ring agrees with simulation as
shown in Fig. 1(b). By requiring the argument of the square root
be positive, we see rings which satisfy the Ansätze (5) and (6)
exist in the parameter region {J1 < 2, J2 > 1 − N} ∪ {J1 > 2,

J2 < 1 − N}.
Stability when K = 0. The above analysis proves the exis-

tence of ring phase wave, but not their stability, which we here
investigate. For simplicity, we start with the case K = 0 so that
swarmalators’ phases are “frozen” at the values defined by (6).
In Appendix B we show that the ring phase wave is stable for
J1 ∈ (J1a, 2) where

J1a :=
{

2 − 8 (N−1+J2 )
(N−2)2(1−J2 )

, N even, N > 4

2 − 8 (N−1+J2 )
(N−1)(N−3)(1−J2 ) , N odd, N > 4.

(8)

For J1 < J1a (and K = 0 remember) the ring becomes unsta-
ble. However, it does not break up entirely. Instead, it “fattens”
slightly, while the phase distribution remains unchanged. This
is depicted in snapshot D in Fig. 2. The destabilizing mode in
this case is the highest frequency wave number �N/2	.

We remark that the case J2 = J1 = 0 has a connection to
vortex dynamics. In a classic paper [67], the stability of ring
configurations of fluid vortices was studied, whose motion is
controlled by the classic Helmholtz equations. It turns out that
the motions of the center of masses of the vortices obey the
aggregation equation. That is, our governing equations (3) and
(4) with J1 = J2 = 0. In other words, the vortices swarm. In
[68] the stability of ring states was studied, and it was found
that six or less vortices in the classical vortex equations are
stable, seven are neutral (borderline stable or unstable), and
eight or more are unstable. This is consistent with our result
(8) since J1a = 0 at N = 7 and J2 = 0.

Stability when K > 0. When K is positive, the swar-
malators’ phases are no longer frozen. Instead, they tend to
synchronize with that of their neighbors. This makes ring
states unstable. A mode-two instability is triggered (which we
have determined by numerically computing the eigenvectors),
which leads to the “elliptization” of a thin annulus, as shown
in snapshot F of Fig. 2. This is followed by either a perfectly
synchronous, static crystal formation (equivalent to the “static
sync” state in [58]) or by a blowup, where the swarmalators
escape to infinity. Which of these two states is realized appears
(i.e., indicated by numerics) to be parameter dependent (as
opposed to depending on initial conditions). Numerics suggest
the critical value is at J1 ≈ 1 (for J2 = 0) although a theoretical
result is lacking.

Stability when K < 0. Negative values of K are more inter-
esting. Now, neighboring swarmalators tend to desynchronize
their phases. Do rings states persist in this case? In Appendix B
we show they do, provided J1 > J1b and K ∈ (KHopf , 0) where

J1b =

⎧⎪⎨
⎪⎩

2
(

1
1− 4

N2

)
− 1

1−J2

8
(N− 4

N ) , N even, N > 4

2
(

1
1− 4

N2−1

)
− 1

1−J2

8
(N− 5

N ) , N odd, N > 4
(9)

and

KHopf =
⎧⎨
⎩

− (J2−1)(−2+J1 )N2+[(−4J2+4)J1+8 J2]N+4J1(J2−1)
N (N−4)(2−J1 )

− (J2−1)(−2+J1 )N2+[(−4J2+4)J1+8 J2]N+(3J2−3)J1+2J2−2
(N2−4 N−1)(2−J1 )

,

(10)

where the top equation is for N even, and the bottom is for N

odd. As before, these both require N > 4.
These instability boundaries are drawn in Fig. 2. Notice that

J1a < J1b, so J1b is the critical parameter value when K <

0. Notice also that there are two ways for rings to become
unstable. The first is by holding K constant, and decreasing J1

below J1b (moving horizontally in Fig. 2). This corresponds
to a saddle-node bifurcation, and the ring again fattens, like
when K = 0. But the similarity (to the scenario when K = 0)
is not exact; here the phase distribution gets distorted (recall it
remained unchanged when K = 0), as shown in snapshot E of
Fig. 2.

Rings also become unstable when J1 is held constant, and
K is decreased past KHopf < 0 (moving vertically in Fig. 2).
As indicated by the subscript, this leads to a Hopf bifurcation.
The ring structure is completely destroyed, and a disordered
gaslike state forms as illustrated in snapshot G of Fig. 2. In
this state, the swarmalators move erratically in space and are
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FIG. 2. Stability diagram for the ring phase wave state in (J1, K ) space with N = 15, J2 = 0. Stable regions are indicated with a green
color. Insets show the solution to Eqs. (3) and (4) corresponding to parameter values as shown (A through G) as scatter plots in the (x, y )
plane. The phase of each swarmalator is represented by a blue ray, and corresponds to the angle the ray makes with the positive x axis. Initial
conditions were taken to be a ring of radius 1, slightly perturbed. The ring is stable for parameter values A,B,C.

desynchronized with each other. In the continuum limit these
movements die out and the “static async” state reported in [58]
is achieved, in which the swarmalators form an asynchronous
disk of uniform density and radius 1.

We pause to summarize our results so far. We have computed
existence and stability criteria for ring states, displayed in
the (J1,K ) plane (with J2 = 0 and N = 15) in Fig. 2, and
discussed the possible bifurcations. We close this section of
ring phase wave states by noting some interesting features of
the expressions for J1a, J2a,KHopf .

The first is their scaling with the population size N . For
any N , it can be shown that J1b > J1a. Therefore, with K < 0
held fixed, and J1 gradually decreased, J2a will be crossed first
and the instability changing the phase distribution (snapshot
E) will be triggered. When J1a is crossed after this, the
instability shown in snapshot D will be triggered. However,
as N → ∞, both J1a ∼ J1b ∼ 2 − 8

1−J2
, which means that the

two instabilities happen nearly simultaneously!
The second interesting feature of the expressions for

J1a, J2a,KHopf is that they can be reversed to find
N (J1, J2,KHopf ), allowing us to treat N as a bifurcation
parameter. This lets us determine the maximum number of
swarmalators in a ring which we define as

Nmax := largest N such that J1 > J1b. (11)

Then, the ring is stable for all N < Nmax as long as K is
sufficiently small, namely, K ∈ (KHopf (Nmax), 0]. When N is
large, we can rearrange Eq. (10) to obtain

Nmax ∼ 8

(2 − J1)(1 − J2)
. (12)

We restate that the above equation is valid only for large N ,
which means either 0 < 2 − J1 � 1 or 0 < 1 − J2 � 1. We
see from (12) that Nmax increases with increasing J1 and J2.
Or, put another way, swarmalators can form larger rings than
regular swarming particles (which have no internal degree of
freedom); the inclusion of the phase variable stabilizes the ring
state.

The last feature of interest is a special parameter value,
J2 = 1, where rings are unusually stable. To see why, we let
J2 → 1− in (8), (9), and (10) and find

J1a, J2a → −∞, (13)

KHopf →
{− 8

(N−4)(2−J1 ) , N even, N > 4, J2 = 1

− 8
(N−4−1/N )(2−J1 ) , N odd, N > 4, J2 = 1.

(14)

Consequently, when J2 = 1, J1 < 1, and K ∈ (KHopf , 0] the
ring phase wave state is stable for any N ! Furthermore, its
radius is finite, and independent of N . This remarkable fact is
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FIG. 3. The annular phase wave state. (a) Scatter plot of annular phase wave state in (x, y ) plane. The phase of each swarmalator is
represented by a blue ray, and corresponds to the angle the ray makes with the positive x axis. Data were collected by solving Eqs. (3) and (4)
using the Euler method with J1 = 0.5, J2 = 1, K = 0, and N = 2×103 swarmalators. Asymptotic predictions for the inner and outer radii, as
given by the roots of (17) and (18), were R1 = 0.7504, R2 = 1.16834, and are indicated by dashed curves. Swarmalators were initially placed
in a ring and their initial phases were tan−1(yk/xk ). (b) Comparison of numerics and asymptotic computations of R1 and R2 for J2 = 0.5 and
with varying J1. (c) J1 = 1.0 and J2 is varied.

demonstrated in Fig. 1(a), where a ring of N = 100 particles
is observed to be stable.

We note that for J2 > 1, simulations show that the particles
exhibit finite-time collisions as N is increased. We therefore
restrict our analysis to the parameter region J2 < 1. Thus, aside
from the special case J2 = 1, the ring is stable for N < Nmax.
For N > Nmax it bifurcates into either the annular phase wave
state or the splintered phase wave state, which we discuss next.

B. Annular phase waves

When N > Nmax and K = 0 the swarmalators form an
annular distribution where their spatial angle is perfectly
correlated with their phase, plotted in Fig. 3(a). This state
was reported in [58], where it was named the “static phase
wave.” To distinguish this state from the ring phase waves of
the previous section, we here refer to it as the “annular phase
wave.”

We explicitly solve for the density of the annular phase
wave in the continuum limit N → ∞. Let ρ(x, θ, t ) denote
the density of swarmalators, where ρ(x, θ, t )dx dθ gives the
fraction of swarmalators with positions between x and x +
dx and phases between θ and dθ at time t . We then use the
following Ansatz:

ρ(r, φ, θ, t ) = 1

2π
g(r )δ(φ − θ ), R1 � r � R2 (15)

where (r, φ) are polar coordinates and g(r ), R1, R2 are un-
known. In Appendix B we solve for g(r ) by substituting (15)
into the continuity equation and deriving an integral equation
for g(r ). We then reduce this integral equation to a second
order ordinary differential equation (ODE), whose solution is

g(r ) = C1r
− 1√

1−J2
−2 + C2r

1√
1−J2

−2 + 6

3 − 4J2
, (16)

where C1, C2 are complicated expressions involving
R1, R2, J1, J2 given by Eqs. (B20) and (B21). Note this
is valid for J2 �= 3

4 . At this parameter value, g(r ) takes a
different functional form, which we display and discuss in
Appendix B.

We also derive implicit equations for the inner and outer
radii R1, R2 in terms of J1, J2:

h1(R1, R2, J1, J2) = 0, (17)

h2(R1, R2, J1, J2) = 0, (18)

where h1, h2 are complicated expressions given by Eqs. (B26)
and (B27). We solved these using Mathematica. The results are
shown in Figs. 3(b) and 3(c), which agree well with numerics.

Notice in Fig. 3 that R1 → R2 as J1 → 2 in panel (b)
and J2 → 1 in panel (c), indicating the morphing of the
annular phase wave into the ring phase wave state. We analyt-
ically confirm J2c = 2 by substituting R1 = R2 into (17). The
result is

(3 − 4J2)(−1 + J2 +
√

1 − J2)R
2√

1−J2

2 = 0. (19)

From this we see −1 + J2 + √
1 − J2 = 0 which gives

J2c = 1. (20)

Note (19) is only valid for J2 �= 3
4 , a property inherited from

the expression for g(r ) (see Appendix B). We confirm the J1c

value similarly; we substituted R1 = R2 − δ into (18) and took
a series expansion for small δ leading to

(J1 − 2)(4J2 + 3)(−J2 +
√

J2 + 1 − 1)

×
(

J2 +
√

(J2 + 1)2 + 1

δ

)
2√

J2+1 = 0 (21)

from which we see

J1c = 2. (22)

We close by distilling our results. We explicitly solved for
the density in the annular phase wave state, and showed it
exists in the parameter region 0 < J1 < 2, 0 < J2 < 1. As
the extremal edges of this region are approached, the annulus
gets thinner and thinner until the ring phase wave is achieved
right at the boundary J1 = 2 or J2 = 1. When J1 = 2, the
radius of the ring approaches ∞, whereas when J1 → 2− it
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FIG. 4. Bifurcation of an annulus into a splintered phase wave with 12 clusters. Panels show snapshots of the systems at the different
(increasing) times. Data were collected by integrating the governing equations (3) and (4) using the Euler method. Swarmalators are illustrated
as points in the (x, y ) plane, who phase is represented by angle the blue ray makes with the positive x axis. Top row: parameter values are
J1 = 1.5, J2 = 0, K = −0.05, N = 100, and reading from left to right, the times of each panel are t = 60, 331.6, 1940, 6940.2, 101 830.
Bottom row: J1 = 1.5, J2 = 0, K = −0.05, N = 100, and times t = 5, 95, 205.2, 9785, 18 415. Note, for smaller values of N , the system
takes longer to equilibrate, and the boundaries between clusters become less well defined.

remains finite. Note that we have only proved the existence
of the annular phase wave here, and make no claims about
its stability. Numerics indicate that it is stable, but a proof is
beyond the scope of this work.

C. Splintered phase wave

In the above section we showed that when K = 0 and N >

Nmax, the ring phase wave bifurcates into the annular phase
wave. For K < 0, they bifurcate into a new state called the
splintered phase wave, previously reported in [58]. Here, the
ring “splinters” into disconnected clusters of distinct phase.
Within each cluster, swarmalators “quiver,” executing small
cycles in both position and phase about their mean values. We
showcase the evolution of this state from the annular phase
wave in Fig. 4.

This nonstationary behavior makes analysis difficult, and
we were unable to construct the state or determine its stability.
We were, however, able to heuristically find an upper bound for
the number of clusters that form. We did this by leveraging our
analysis for the ring states: we naively pictured each cluster as
a single particle, which lets us reimagine the splintered phase
wave state as a ring state. We then use our previous analysis to
estimate Nmax given by (11). For example, for parameter values
used in Fig. 4, Nmax = 15, whereas the number of observed
clusters is 12 or 13. Simulations at other parameter values have
the same behavior.

D. Genericity

So far, our analysis has been for the instance (3), (4) of
the model (1), (2). We here check if the phenomena we found
are generic to the model, rather than specific to the instance
of the model. We do this by exploring the effects of different
functional forms for I1, I2, F,G. We study three such choices,
listed below. In all cases we found the same states enumerated

in Fig. 2. We exhaustively show these states for all three choices
of interaction function in Fig. 7 in Appendix C:

I1, I2,G,H = x
|x|2 ,

x
|x|4 ,

1

|x| , sin θ, (23)

I1, I2,G,H = xe−|x|,
x

|x|2 ,
1

|x| , sin θ, (24)

I1, I2,G,H = x,
x

|x|2 ,
e−|x|

|x|2 , sin θ. (25)

We were also curious if the ring state would persist in the
presence of heterogeneity. To this end, we imbued swarmala-
tors with natural frequencies ωk linearly spaced on [−ω0, ω0]
(recall so far we have considered identical swarmalators ωi =
ω = 0, the zero value achieved by a change of reference).
Simulations show the ring distribution persists, but now the
swarmalators split into counter-rotating groups (which follows
from the fact that 〈θ̇i〉 = 〈ẋi〉 = 0 in our model). That is,
individual swarmalators execute circular motion in both space
and phase, with the overall density of swarmalators remaining
constant. This state is equivalent to the active phase wave
reported in [58], with the inner and outer radii of the annular
being the same. Figure 5 displays the state in the (x, y) plane.
A theoretical understanding of this state is lacking [aside from
the trivial result that the radius of the ring is still given by (7)],
and is left for future work.

IV. DISCUSSION

We studied the stability of ring states in swarmalator
systems with both phase-dependent attraction and phase-
dependent repulsion. We analytically computed criteria for
their existence and stability, which were valid for all population
sizes N . We found that in general (even for K sufficiently
small and negative) ring states are stable for sufficiently small
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FIG. 5. Ring state in the presence of heterogenous natural fre-
quencies ωk = ω0 + (2kω0)/(N − 1) with ω0 = 0.2, N = 50 and
k = 1, 2, 3 . . . . We used the Euler method with step sizedt = 0.1. The
ring distribution remains, but swarmalators are no longer stationary;
they split into counter-rotating (in both space and phase) groups, as
indicated by the black arrows. This shearlike flow was reported in
[58], where it was named the active phase wave state.

populations N < Nmax. For N > Nmax, they bifurcate into
either the annular phase wave or splintered phase wave state.
We constructed the former state in the continuum limit N →
∞, but its stability remains an open problem. We were unable to
construct the latter state, or determine its stability, and so these
are also open problems. We were, however, able to heuristically
derive an upper bound for the number of synchronous clusters
which comprise the state.

Ring states have been previously studied in “regular”
swarming systems, where particles have a position xk but no
internal phase θk . They were first shown to be stable in two
dimensions [41,69], and later in three [39,40]. The general
case of n dimensions was completed in [70], where the authors
showed that the formation of rings depends on the strength
of the near-field repulsion (more precisely, they show the
support of the local minimizer of the interaction potential has
Hausdorff dimension greater than or equal to the strength of the
repulsion at the origin). This means rings can only form when
the repulsion between two particles is bounded (i.e., no hard
shell repulsion). Interestingly, we have demonstrated this is not
true for swarmalators: our repulsion term was hard shelled [see
Eq. (3)], yet we proved rings are stable for certain parameter
values (detailed in Fig. 2).

A similar result is found in anisotropic swarming systems,
where the particles now have an additional state variable
such as an orientation or a heading vector. For example,
von Brecht and Uminsky [42] used an anisotropic version
of the aggregation equation in 3D to explore the effects of
polarization on molecular structures, and found that anisotropy
enhanced the stability of “blackberries,” shell-like structures
found in biochemical contexts. This echoes our finding that
the inclusion of a phase in swarming systems stabilizes ring
states. It seems the addition of a circular state variable (for

swarmalators an internal phase, and for swarming particles
an orientation or heading) stabilizes structures of low co-
dimension (rings or shells). Rigorously justifying this claim
is an interesting open problem; perhaps an extension of the
techniques used in [70] could prove fruitful.

An apposite future goal would be to find or manufacture the
states we studied here in the real world. States similar to the
rings and static phase wave have been realized in ferromagnetic
colloids confined to liquid-liquid interfaces. So called “asters”
consist of annular structures of particles whose magnetic dipole
vectors correlate with their spatial angle [71], as happens in the
ring and static phase wave states studied here. Ringlike states
are also found in groups of Japanese tree frogs, who congregate
along edges of paddy fields [10]. The phase distribution is,
however, different to that found here; instead, neighboring
frogs are perfectly out of phase with each other. Full phase
waves are yet to be discovered.

There are also theoretical avenues for future work within our
proposed model of swarmalators. For instance, we considered
motion in just two spatial dimensions. While there are some
physical systems where this type of motion is realized, such as
certain active colloids [72] or sperm, which are often attracted
to the surface of liquids [73], this was mostly for mathematical
convenience. The more realistic case of motion in three spatial
dimensions would be interesting to explore. For instance, 3D
analogs of the states found in 2D were reported in [58], but
their stability was not analyzed. Moreover, finite populations
sizes were unexplored. Perhaps the analysis in [42] would be
helpful in answering these questions.

Other extensions include adding heterogeneity in the cou-
pling parameters K, J1, J2, and the natural frequencies ωk , or
considering delayed or noisy interactions. Less trivial phase
dynamics could also be interesting. As we stated, the choice
of H (θ ) = sin(θ ) was inspired by the Kuramoto model [74],
but leads to trivial phenomena in the K > 0 plane (total
synchrony). Perhaps using the more realistic Winfree model
[3], which has richer phase dynamics, would lead to more
interesting swarmalator phenomena when K is positive.
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APPENDIX A: STABILITY OF RING PHASE WAVE

Here, we develop the stability theory for ring states of the
swarmalator model defined in the main text, using techniques
similar to those developed in [41,69,75,76]. It is convenient to
use complex notation to describe the ring phase wave state. We
thus identify the real, two-dimensional, vector xk = (x (1)

k , x
(2)
k )

as a point in the complex plane (so that x
(1)
k is real part of the

complex number, and x
(2)
k is the imaginary part). To remind

ourselves that xk is now a complex number, we drop the bold
notation hereafter.
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We first consider a more general model of the form

x ′
k =

∑
j

f (|xk − xj |2)(xk − xj )

+
∑

j

cos(θk − θj )h(|xk − xj |2)(xk − xj ), (A1)

θ ′
k =

∑
j

sin(θk − θj )g(|xk − xj |2). (A2)

The model defined by Eqs. (3) and (4) then corresponds to the
specific choice

f (r ) = 1

r
− 1; h(r ) = −J2

r
− J1, g(r ) = −K

r
. (A3)

The ring phase wave steady state is given by

xk = Rzk, where z := exp (2πi/N ), θk = 2πk/N,

where R is the ring radius. This Ansatz satisfies Eq. (A2) for
any R whereas (A1) is satisfied if and only if

∑
l �=0

f (R2|1 − zl|2)(1 − zl )

+
∑
l �=0

h(R2|1 − zl|2) cos(2πl/N )(1 − zl ) = 0, (A4)

which gives an expression for R. For the specific choice (A3),
using the identities

∑
l �=0

1

1 − zl
= N − 1

2
,
∑
l �=0

zl + z−l

1 − z−l
= −1, (A5)

Eq. (A4) reduces to Eq. (7).

We now consider the perturbations

xk (t ) = Rzk + uk (t ); θk = 2πk/N + vk (t ).

Substituting into the governing equations and linearizing gives

u′
k =

∑
j

[f ′(|xk − xj |2) + cos(θk − θj )h′(|xk − xj |2)](xk − xj )2(uk − uj ) − J sin(θk − θj )h(|xk − xj |2)(xk − xj )(vk − vj )

+
∑

j

[
f (|xk − xj |2) + f ′(|xk − xj |2)|xk − xj |2 + cos(θk − θj )h(|xk − xj |2)

+ cos(θk − θj )h′(|xk − xj |2)|xk − xj |2
]

(uk − uj )

and

v′
k =

∑
j

sin(θk − θj )g′(|xk − xj |2){(xk − xj )(uk − uj ) + (xk − xj )(uk − uj )} +
∑

j

cos(θk − θj )g(|xk − xj |2){vk − vj }.

Following [41,69,75], we use the self-consistent Ansatz

uk (t ) = A(t )zmk+k + B̄(t )z−mk+k,

vk = C(t )zmk + C̄(t )z−mk.

After much algebra, and collecting like terms in zmk and z−mk , we obtain a 3 × 3 linear system for each mode m:⎛
⎜⎝

A′

B ′

C ′

⎞
⎟⎠ =

⎛
⎜⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟⎠
⎛
⎜⎝

A

B

C

⎞
⎟⎠, (A6)

where

M11 =
∑[

f (R2|1 − zl|2) + f ′(R2|1 − zl|2)R2|1 − zl|2
+ cos

(
2πl
N

)
[h(R2|1 − zl|2) + h′(R2|1 − zl|2)R2|1 − zl|2]

]
(1 − z(m+1)l ),

M12 =
∑[

f ′(R2|1 − zl|2) + cos

(
2πl

N

)
h′(R2|1 − zl|2)

]
R2(1 − zl )2(1 − z(m−1)l ),

M13 =
∑

h(R2|1 − zl|2) sin(2πl/N )R(1 − zl )(1 − zml )

and

M21 = M12,

M22 =
∑[

f (R2|1 − zl|2) + f ′(R2|1 − zl|2)R2|1 − zl|2
+ cos

(
2πl
N

)
[h(R2|1 − zl|2) + h′(R2|1 − zl|2)R2|1 − zl|2]

]
(1 − z(m−1)l ),

M23 =
∑

sin

(
2πl

N

)
h(R2|1 − zl|2)R(1 − z−l )(1 − zml )
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and

M31 =
∑

− sin(2πl/N )g′(R2|1 − zl|2){R(1 − z−l )(1 − z(m+1)l )},

M32 =
∑

− sin(2πl/N )g′(R2|1 − zl|2){R(1 − zl )(1 − z(m−1)l )},

M33 =
∑

cos(2πl/N )g(R2|1 − zl|2)(1 − zml ),

where all sums are over l = 1 . . . N − 1. Specializing to (A3), we use the following key identity:

N−1∑
l=1

zml(
1 − zl

)2 =
{

1
12 + 1

24N2 − 1
2 (m − 1 − N/2)2, m ∈ (1, N − 1)

− 1
12 (N − 5)(N − 1), m ≡ 0.

The expressions for M then become

M =

⎡
⎢⎣

−N + J1
N
2

(N−3)(1−J2 )
2R2 0

(N−3)(1−J2 )
2R2

N
2 J1 − N 0

0 0 0

⎤
⎥⎦, m = 0

M =

⎡
⎢⎣

−N
(N−4)(1−J2 )

R2 i N
2

(
2RJ1 + J2

R

)
(N−4)(1−J2 )

R2 0 0

−i(N − 2) K
2R3 0 K

2R2

⎤
⎥⎦, m = 1

M =

⎡
⎢⎣

−N 3(N−5)
2

(1−J2 )
R2 i N

2

(
RJ1 + J2

R

)
3(N−5)

2
(1−J2 )

R2
N
2 J1 − N −i N

2

(
2RJ1 + J2

R

)
−iK (N−3)

R3 iK (N−2)
2R3 − K

2R2 (N − 4)

⎤
⎥⎦, m = 2.

For m ∈ (2, N − 2), we have

M =

⎡
⎢⎣

−N (m−1)(−m+N−1)(−J2+1)
2R2 i N

2

(
RJ1 + J2

R

)
(m−1)(−m+N−1)(−J2+1)

2R2 −N −i N
2

(
RJ1 + J2

R

)
−K i

2R3 (N − m − 1)m K i
2R3 (m − 1)(N − m) − K

2R2 (N (m − 1) − m2)

⎤
⎥⎦.

It turns out that the modes m = 0, 1, 2 are stable in the relevant
regimes so we do not examine them here. We have checked this
analytically for K = 0, but for K �= 0, we were only able to do
this numerically. As we will show, however, the expression for
m ∈ (2, N − 2) leads to closed form expressions for critical
parameters, values that match simulations, so we confine
our attention there hereafter. The above matrix [i.e., for m ∈
(2, N − 2)] has the following form:

M =

⎡
⎢⎣

a b ic

b a −ic

iKd iKe Kf

⎤
⎥⎦, (A7)

where

a = −N, b = (m − 1)(−m + N − 1)(−J2 + 1)

2R2
,

c = N

2

(
RJ1 + J2

R

)
, d = −(N − m − 1)m

2R3
,

e = (m − 1)(N − m)

2R3
, f = m2 − N (m − 1)

2R2
. (A8)

Computing the characteristic polynomial, we find that one of
the eigenvalues is given by

λ0 = a + b (A9)

while the other two are roots of the quadratic

K[f (a − b) + c(d − e)] + λ(b − a − Kf ) + λ2 = 0.

(A10)

We remind the reader that these expressions are for m ∈
(2, N − 2). This requires N > 4. Thus, the following analysis
holds only when this condition is met.

From the expressions of the eigenvalues we deduce the
instabilities that can occur. There are three types: either
(A9) crosses through zero, (A10) crosses through zero, or
(A10) exhibits a Hopf bifurcation. These three possibili-
ties correspond to a + b = 0, K[f (a − b) + c(d − e)] =
0, and b − a − Kf = 0(with K[f (a − b) + c(d − e)] < 0),
respectively.

Further analysis shows that the ring is unstable with respect
to mode m = 2 whenever K > 0, regardless of the values of
J1, J2. Hence, we ignore this boring part of parameter space
and consider only the region K � 0. It turns out that the most
unstable mode corresponds to the highest mode m = �N/2	.
With this choice of m, let J1a be the value of J1 such that
a + b = 0, and let J1b be the value J1 such that f (a − b) +
c(d − e) = 0. Finally, let KHopf be the value of K for which
b − a − Kf = 0. These values are given by (8), (9), and (10)
in the main text, respectively. Further analysis shows that
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J1a < J1b. (Note the swarmalators execute oscillations in both
space and phase after the Hopf bifurcation.)

The stability diagram is illustrated in Fig. 2. Suppose that
K � 0. Then, for J1 below J1a, the ring is unstable with respect
to spatial perturbation. For J1a < J1 < J1b, the ring is unstable
with respect to a mixture of spatial and phase perturbations,
whenK < 0,but is stable whenK = 0.Finally, the ring is fully
stable if J1b < J1 as long as KHopf < K < 0. This stability
region is indicated in green in Fig. 2.

APPENDIX B: DENSITY OF ANNULAR
PHASE WAVE STATE

The density of swarmalators in the annular phase wave state
(best expressed in polar coordinates) is given by

ρ(r, φ, θ ) = 1

2π
g(r )δ(φ − θ ), R1 � r � R2 (B1)

= 0, elsewhere (B2)

where rk, φk is the radial position and spatial angle of the kth
swarmalator, and g(r ), R1, R2 are unknowns to be solved for.
We first solve for g(r ), which in turn lets us solve for R1, R2.

1. Find radial density g(r )

Swarmalators are stationary (in both space and phase) in
the annular phase wave state:

v ≡ 0, (B3)

where we have introduced the “underline” notation v =
(vx, vθ ) (so that v ∈ R3, vx ∈ R2, and vθ ∈ R). By applying
the divergence operator to (B3) we generate another equation

∇ · v ≡ 0. (B4)

Equations (B3) and (B4) let us solve for g(r ), as we will now
show.

Zero divergence condition. We first investigate Eq. (B4). In
polar coordinates the continuum expressions for the velocity v

are

vr =
∫

(s cos(φ′ − φ) − r )

(
1 + J1 cos(θ ′ − θ )

− 1 − J2 cos(θ ′ − θ )

s2 − 2rs cos(θ ′ − θ ) + r2

)
sρ(s, φ′, θ ′)ds dφ′ dθ ′,

(B5)

vφ =
∫

s sin(φ′ − φ)

(
1 + J1 cos(θ ′ − θ )

− 1 − J2 cos(θ ′ − θ )

s2 − 2rs cos(θ ′ − θ ) + r2

)
sρ(s, φ′, θ ′)ds dφ′ dθ ′,

(B6)

vθ = K

∫
sin(θ ′ − θ )

s2 − 2rs cos(φ′ − φ) + r2
sρ(s, φ′, θ ′)ds dφ′ dθ ′,

(B7)

where vφ = rθ̇ . Substituting the Ansatz (B1) for the density ρ

into the velocity fields above leads to vφ = vθ = 0. The radial

component becomes

vr = 1

2π

∫ R2

R1

∫ π

−π

(s cos β − r )g(r )s ds dβ

− 1

2π

∫ R2

R1

∫ π

−π

s cos(β ) − r

s2 − 2rs cos β + r2
g(s)s ds dβ

+ J1

2π

∫ R2

R1

∫ π

−π

(s cos2 β − r cos β )g(s)s ds dβ

+ J2

2π

∫ R2

R1

∫ π

−π

s cos2 β − r cos β

s2 − 2rs cos β + r2
g(s)s ds dβ, (B8)

where β = φ′ − φ. Evaluating the first and third integrals is
elementary, while the second and fourth can be computed using
Poisson’s formula

1

2π

∫ π

−π

cos mθ

s2 − 2r cos θ + r2
dθ =

{(
r
s

)m 1
s2−r2 if r < s,(

s
r

)m 1
r2−s2 if r > s.

(B9)

The result is

vr = − r

∫ R2

R1

g(s)s ds + 1

r

∫ r

0
sg(s)ds + J1

2

∫ R2

R1

s2g(s)ds

+ J2

2

∫ ∞

r

g(s)ds − J2

2r2

∫ r

0
s2g(s)ds. (B10)

In polar coordinates the divergence is

∇ · v = 1

r

∂

∂r
(rvr ) + 1

r

∂

∂φ
(vφ ) + ∂

∂θ
(vθ ). (B11)

Since vφ = vθ = 0 this reduces to

∇ · v = 1

r

∂

∂r
(rvr ). (B12)

Substituting vr as per (B10) into the above expression and
applying the derivative operator gives

∇ · v = 1

r

(
− 2r

∫ R2

R1

g(s)s ds + rg(r )(1 − J2)

+ J1

2

∫ ∞

0
s2g(s)ds + J2

2

∫ ∞

r

g(s)s2ds

− J2

2r2

∫ r

0
s2g(s)ds

)
. (B13)

Setting this to zero, as required by (B4), and rearranging, leads
to the following integral equation for g(r ):

g(r ) = 1

1 − J2

(
2 − J1

2r

∫ R2

R1

s2g(s)ds − J2

r

∫ R2

r

g(s)ds

− J2

r3

∫ r

R1

s2g(s)ds

)
. (B14)

Solve integral equation. We solve the above integral equa-
tion for g(r ) by reducing it to an ODE. Multiplying both sides
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FIG. 6. Radial density g(r ) for J1 = 0.5 for values of J2 in a neighborhood of 0.75. Blue dashed lines show are for J2 �= 3/4 calculated
using expression (B18). The red solid line is for J2 = 3/4 using expression (B22). The density g(r ) varies smoothly as J2 passes through 0.75.
Panel (a) shows values J2 = 0.745, 0.755, which hug the curve at J2 = 0.75. In panel (b) we use a tighter neighborhood with extremal values
0.749, 0.751, which produces a tighter ‘hugging’. These results indicate that there is no change in the behavior of g(r ) at the value J2 = 0.75.

by r3 and taking a derivative with respect to r gives

3r2g(r ) + r3g′(r ) = 1

1 − J2

[
6r2 − J2r

∫ ∞

r

g(s)ds

+ J1r

∫ R2

R1

s2g(s)ds

]
. (B15)

We next divide by r to give

3rg(r ) + r2g′(r ) = 1

1 − J2

[
6r − J2

∫ ∞

r

g(s)ds

+ J1

∫ R2

R1

s2g(s)ds

]
(B16)

since this expression is easier to differentiate, as there then are
only constants in front of the integrals. Taking the derivative

then leads the following simple, second order ODE for g(r ):

r2g′′(r ) + 5rg′(r ) +
(

3 − J2

1 − J2

)
g(r ) − 6

1 − J2
= 0.

(B17)

The solution to this equation is

g(r ) = C1r
− 1√

1−J2
−2 + C2r

1√
1−J2

−2 + 6

3 − 4J2
. (B18)

We find the constants of integration C1, C2 by substituting this
back into the integral equation (B14), which gives

A

r
+ B

r3
= 0, (B19)

where A,B are complex functions of C1, C2, R1, R2, J1, J2

that must be identically 0. Enforcing this constraint leads to
the following complicated expressions for C1, C2:

C1 = − 2R

1√
1−J2

1 R

1√
1−J2

2

[
J1(

√
1−J2−1)R2

2

(
R2

2R

1√
1−J2

1 −R2
1R

1√
1−J2

2

)
+J2

(
3(

√
1−J2−1)R2

2R

1√
1−J2

1 +(
√

1−J2+1)R2
1R

1√
1−J2

2

)]
√

1−J2(4J2−3)
(

(−J1R
2
2+J2+2

√
1−J2−2)R

2√
1−J2

1 +R

2√
1−J2

2 (J1R
2
2−J2+2

√
1−J2+2)

) (B20)

C2 = − 2J2

(
(−J1R

2
2+J2+2

√
1−J2−2)R

1√
1−J2

+2

1 +R

1√
1−J2

+2

2 (J1R
2
2+3J2 )

)
(
√

1−J2−1)
√

1−J2(4J2−3)
(

(−J1R
2
2+J2+2

√
1−J2−2)R

2√
1−J2

1 +R

2√
1−J2

2 (J1R
2
2−J2+2

√
1−J2+2)

) . (B21)

Looking at the third term in Eq. (B18), we see the value J2 = 3
4 is problematic. Why is this value distinguished? The reason

is that the third term in the ODE (B17) for g(r ) becomes zero at this value of J2. In this case, g(r ), C1, and C2 are given by

g(r ) = − C1

4r4
+ C2 + 6 ln r, J2 = 3

4
, (B22)

C1 = 8R4
1R

4
2

((
4J1R

2
2 + 9

)
ln R1 − (

4J1R
2
2 + 9

)
ln R2 + 6

)
−4J1R

6
2 + 4J1R

4
1R

2
2 − 9R4

2 + R4
1

(B23)

C2 = 2
(− 4J1R

6
2 + 4J1R

4
1R

2
2 + 3R4

2

(
4J1R

2
2 + 9

)
ln R2 − 3R4

1

(
4J1R

2
2 + 1

)
ln R1 − 27R4

2 + R4
1

)
−4J1R

6
2 + 4J1R

4
1R

2
2 − 9R4

2 + R4
1

. (B24)

The difference between the expressions (B18) and (B22)
for g(r ) are superficial. By this we mean there is no change in
the physical behavior of the swarmalator system as J2 passes

through 3
4 . We demonstrate this two ways. The first way is

by observing that R1, R2 vary smoothly with respect to J2 as
drawn in Fig. 3; no change in behavior occurs at J2 = 3

4 . The
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FIG. 7. States found with difference choices of the functions (23), (24), and (25). Simulations for all plots were for N = 15 swarmalators,
and the Euler method with a step size of dt = 0.01 and Nt = 5 × 105 number of time steps was used. The top row is for choice (23), the
second for choice (24), and the third for choice (25). The ring state, corresponding to subfigure B in the stability diagram in Fig. 2, is shown in
the first column. Reading from top to bottom, the parameter values were (J1, J2, K ) = (2.7, 0,−0.001), (1, 0, 0, −0.01), (1.5, 0, −0.001).
The fattened ring state, corresponding to subfigure E in Fig. 2, is shown in the second column. Parameter values were (J1, J2, K ) =
(1.5, 0, −0.001), (0.2, 0, 0, −0.01), (0.8, 0, −0.001). The column shows the nonstationary state depicted in subfigure G in Fig. 2. Parameter
values were (J1, J2, K ) = (1.5, 0, −5), (0.2, 0, 0, −2), (0.8, 0, 5). Note, in this last column, the swarmalators move around erratically in both
space and phase.

second way is by plotting g(r ) at the values for values of J2

is the neighborhood of 3
4 in Fig. 6. As can be seen g(r ) varies

smooth as J2 is varied through 3
4 . Hence, the value of J2 = 3

4
has no physical significance.

2. Inner and outer radii

So far we have solved for g(r ) using the zero divergence
condition (B4). The zero velocity condition (B3) must also be

satisfied. We here check the condition vr = 0, and show that
along with mass conservation

∫
ρ(x, θ )dx dθ = 1, it also lets

us determine the inner and outer radii R1, R2.
Zero velocity condition. Substituting the expression (B18)

for g(r ) into Eq. (B10) for vr leads to

vr = h1(R1, R2, J1, J2)

r
, (B25)
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where h1 is given by

h1 = [
2J 2

2

(
2
√

J2 + 1 + 3R2
2 − 6

)+ J2
{
R2

2

[
J1
(
4
√
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)− 15
√
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√
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. (B26)

We require vr = 0 for all r , which implies h1(R1, R2, J1, J2) = 0.
Mass conservation. The density Ansatz (B1) must also be normalized:

∫
ρ(x, θ )dx dθ = 1. This leads to a second equation

h2(R1, R2, J1, J2) = 0 where

h2 = − [
J2
(
2J1R

2
2 + 3

√
J2 + 1 + 3

)− J1(
√

J2 + 1 − 1)R2
2 + 2J 2

2

]
R2

1 R

2√
J2+1

2

+ 4(−J2 +
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1√

J2+1

1
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3J2 − J1R

2
2

)
R

1√
J2+1

+2

2

+ [
J2
(− 2J1R

2
2 + 7

√
J2 + 1 − 13

)+ 3(
√

J2 + 1 − 1)
(
J1R

2
2 + 4

)− 2J 2
2

]
R

2√
J2+1

+2

1 . (B27)

Thus, we have derived the following set of simultaneous equations whose roots determine R1, R2 in terms of the parameters
J1 and J2:

h1(R1, R2, J1, J2) = 0, (B28)

h2(R1, R2, J1, J2) = 0. (B29)

APPENDIX C: GENERICITY

In Fig. 7 we show the states shown in Fig. 2 found when different functional forms [enumerated by (23), (24), (25)] are chosen
for I1, I2, F,G (see Sec. III D). As can be seen, all states are recovered.
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