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We study the energy transfer in a classical dipole chain of N interacting rigid rotating dipoles. The underlying
high-dimensional potential energy landscape is analyzed in particular by determining the equilibrium points and
their stability in the common plane of rotation. Starting from the minimal energy configuration, the response of
the chain to excitation of a single dipole is investigated. Using both the linearized and the exact Hamiltonian
of the dipole chain, we detect an approximate excitation energy threshold between a weakly and a strongly
nonlinear dynamics. In the weakly nonlinear regime, the chain approaches in the course of time the expected
energy equipartition among the dipoles. For excitations of higher energy, strongly localized excitations appear
whose trajectories in time are either periodic or irregular, relating to the well-known discrete or chaotic breathers,
respectively. The phenomenon of spontaneous formation of domains of opposite polarization and phase locking
is found to commonly accompany the time evolution of the chaotic breathers. Finally, the sensitivity of the dipole
chain dynamics to the initial conditions is studied as a function of the initial excitation energy by computing a
fast chaos indicator. The results of this study confirm the aforementioned approximate threshold value for the
initial excitation energy, below which the dynamics of the dipole chain is regular and above which it is chaotic.
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I. INTRODUCTION

The first numerical study of the energy transport in a
one-dimensional (1D) nonlinear oscillator chain, known as
the Fermi-Pasta-Ulam (FPU) model [1–3] has been performed
already in 1955. The results of this numerical experiment
were found to contradict the reasonable assumption that in
the presence of a nonlinear coupling between the oscillators
the system would thermalize, i.e., an initial excitation of a
single mode of the system would become equally distributed
between all the modes of the chain. In particular, the numerical
results showed a persistent recurrence of the energy to the
initially excited mode, preventing the system from reaching
equipartition up to long times. It has been soon realized that
the origin of such a behavior were the nonlinear interaction
terms, a fact that established the study of the energy exchange
in discrete nonlinear lattices of oscillators as an active field of
research in few- and many-body dynamics; see, for instance,
Refs. [2,4–10]. Most attention has been paid to 1D oscillator
chains with a cubic or quartic nonlinear coupling, the so-called
FPU-α and FPU-β models, respectively, [2]. Already studies of
the energy transfer in these simple FPU models have provided
interesting results, such as the existence of thresholds for
stochasticity and therefore for equipartition [10–12], as well as
the discovery of phenomena of energy localization in discrete
[13–15] or chaotic breathers [15–17].

Beyond the theoretical FPU-like models, the mechanism
of energy exchange is an important subject of investiga-
tion in microscopic systems such as molecules, interacting
via Coulomb, dipole-dipole or van der Waals interactions.
These fundamental interactions appear in different research

disciplines including physics, chemistry, biology and material
sciences, with applications covering such diverse topics as the
photosynthesis of plants and bacteria [18–22], the emission of
light of organic materials [23–25], molecular crystals [26–28],
or artificial molecular rotors [29]. Moreover the advances in
current technology have allowed the trapping and confinement
of cold molecules in optical lattices where the positions of
the molecules are fixed and their mutual interactions (e.g.,
dipole-dipole) usually masked by thermal fluctuation, be-
come prominent [30,31]. Along these lines polar diatomic
molecules trapped in optical lattices, exhibit due to their strong
dipole-dipole interaction a particularly interesting quantum
many-body behavior leading to novel structures and collective
dynamics [32–34].

Within the framework of classical mechanics, confined
polar diatomic molecules can be considered as lattices of
rigid dipoles. Following this approach, Ratner and coworkers
[35–37] have studied the energy transfer in chains of inter-
acting rotating rigid dipoles in various planar configurations.
Already the simplest two-dipole chain, recently revisited in
Ref. [38], was found to display a rich dynamical behavior with
a complicated phase space. Increasing the number of dipoles
the energy transfer was shown to yield the formation of solitons
or the emergence of chaoticity [39].

The objective of this paper is to provide further insights
in the energy transfer mechanisms of a 1D chain of rotating
classical dipoles. In such a chain the dipoles are assumed to
be fixed in space, interacting through nearest neighbor (NN)
interactions and rotating in a common plane. The interaction
potential of even this simplified rigid-rotor model is found
to be quite complex, supporting various equilibrium points
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including a minimum, a maximum and different saddle points.
Considering the system in its ground state (GS) configuration
(minimum) with a single dipole excited initially possessing a
certain amount of kinetic energy we study the transport of the
excess energy. We find that for increasing excess energy the
degree of chaoticity of the energy transfer increases, passing
through a weakly nonlinear and a highly nonlinear regime.
Although in the former regime after some time the energy is
almost equally partitioned among the dipoles of the chain, for
high enough excitation energies the energy diffusion is pro-
hibited, giving place to different energy localization patterns
dictated by a strong nonlinearity. Among those patterns we
can distinguish cases in which two domain walls, separating
domains of dipoles with different polarization, are formed
spontaneously and move irregularly in time. It turns out that
the emergence of such patterns can be linked to the lowest
energy saddle point of the interaction potential of the dipole
chain. Moreover, for a large excitation energy, the dipole chain
displays a strong sensitivity to the initial conditions, signifying
its chaotic nature. We quantify the chaoticity of the system for
different values of the excitation energy using a fast Lyapunov
indicator.

The structure of the current paper is as follows. In Sec. II
we present the Hamiltonian and the equations of motions
of the dipole chain and discuss their equilibria. Linearizing
these equations of motion around the GS, we arrive at the
corresponding linear system whose properties are analyzed
in Sec. III. The results for the energy transfer of a localized
excitation are presented in Sec. IV and Sec. V. In particular,
Sec. IV deals with the propagation of a low-energy excitation
in the so-called weakly nonlinear regime, whereas Sec. V
discusses the case of higher energy excitations in which the
nonlinearity of the system is enhanced, leading to its chaotic
behavior which is quantified by the Orthogonal Fast Lyapunov
Indicator. Finally we provide our conclusions in Sec. VI.

II. THE HAMILTONIAN AND THE EQUILIBRIUM POINTS

We consider a linear chain of N identical rigid dipoles of
electric dipole moment di = d ui , which are fixed in space,
separated by a constant distance al , and located along the
X axis of the laboratory fixed frame (LFF) XYZ. The unit
vectors ui = (uXi

, uYi
, uZi

) determine the orientation of each
dipole subjected to the holonomic constraint |di |2 = d2

Xi
+

d2
Yi

+ d2
Zi

= d2. The potential energy Vij between each pair
(i, j ) of rotors due to the mutual dipole-dipole interaction
(DDI) is given by [32]

Vij = 1

4πε0

(di · dj ) r2
ij − 3 (di · ri,j ) (dj · ri,j )

r5
ij

(1)

with ri = (Xi, Yi = 0, Zi = 0), ri,j = ri − rj and rij = |ri,j |.
Here we assume periodic boundary conditions (PBCs) in the

linear chain and we take into account only interactions between
nearest neighbors (NNs), the total interaction potentialV of the
system reads

V =
N∑

i=1

1

4πε0a
5
l

[
(di · di+1) a2

l −3 (di · ri,i+1) (di+1·ri,i+1)
]
.

(2)

It is convenient to express the total interaction potential V in
terms of the Euler angles (0 � θi � π, 0 � φi < 2π ) of each
rotor, such that (2) takes the form

V (θi, φi ) = α

N∑
i=1

[cos θi cos θi+1 + sin θi sin θi+1

× (sin φi sin φi+1 − 2 cos φi cos φi+1)], (3)

where α = d2/4πε0a
3
l is the strength of the DDI. Note that

the well-known stable head-tail configurations of the dipoles
appear at θi = ±π/2 and φi = 0, π . The rotational dynamics
of the dipole chain is described by the Hamiltonian

H =
N∑

i=1

1

2I

[
p2

θi
+ p2

φi

sin2 θi

]
+ V (θi, φi ), (4)

where I is the moment of inertia of each dipole. The Hamil-
tonian (4) defines a dynamical system with 2N degrees of
freedom {(θi, pθi

), (φi, pφi
)}Ni=1 where pθi

, pφi
denote the con-

jugate momenta of θi, φi , respectively. From the corresponding
Hamiltonian equations of motion, it is easy to see that the
manifolds N and M of codimension N given by

N = {(θi, pθi
) | φi = π/2, 3π/2 and pφi

= 0}, (5)

M = {(θi, pθi
) | φi = 0, π and pφi

= 0} (6)

are invariant under the dynamics, such that the number of
degrees of freedom of the system is reduced to N . On the
manifoldN , the rotational motion of each dipole is restricted to
the corresponding YZ plane, and the Hamiltonian (4) becomes

HN =
N∑

i=1

p2
θi

2I
+ α

N∑
i=1

cos(θi − θi+1), (7)

where the N polar angles θi vary in the interval [−π, π ). The
Hamiltonian (7) describes the dynamics of an array of dipoles
in the so-called altitudinal arrangement [37]. Moreover, the
Hamiltonian (7) is equivalent to the 1D Hamiltonian describing
the dynamics of XY spin chains [40–43], the latter constituting
a canonical approach to the well-known XY Heisenberg
Hamiltonian [44,45]. It is worth noticing that Hamiltonian (7)
is structurally unstable in the sense that trajectories starting in
the vicinity of the manifold N tend to move away from it [38].

On the manifold M, the Hamiltonian (4) reads

HM =
N∑

i=1

p2
θi

2I
+ α

N∑
i=1

[cos θi cos θi+1 − 2 sin θi sin θi+1],

(8)

and the motion of the dipoles takes place in the common polar
XZ plane of constant azimuthal inclination φi = 0, π where
the N angles θi vary in the interval [−π, π ). Following the
same argumentation as for the Hamiltonian (7), the system
described by (8) can be viewed as an alternative spin model.
Contrary to the case of the manifold N , the Hamiltonian (8) is
structurally stable, since for weak enough perturbations away
from the manifold M and around the head-tail configuration,
the dynamics takes place in the neighborhood of this configura-
tion which is the absolute minimum of the potential V (θi, φi ).
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From now on, we focus on the planar dynamics arising from
the Hamiltonian (8).

As mentioned above the stable head-tail configurations of
the dipoles in the manifold M appear for θi = ±π/2. For the
sake of simplicity, we choose to move these equilibrium con-
figurations to the origin θi = 0 and to θi = π , respectively. To
this end, we introduce the following canonical transformation
between the previous (θi, pθi

) and the new (xi, pi ) coordinates

xi = θi − π/2, pi = pθi
. (9)

Employing this transformation, the Hamiltonian (8) obtains
the form

H =
N∑

i=1

p2
i

2I
+ α

N∑
i=1

[sin xi sin xi+1 − 2 cos xi cos xi+1],

(10)
where pi = I dxi/dt . Taking into account that our dipole chain
model of Eq. (10) amounts essentially to the rigid rotor model
used for the study of the dynamics of N interacting polar
diatomic molecules [35–37], we find it convenient to express
the energy, i.e., the Hamiltonian (10), in units of the molecular
rotational constant B = h̄2/2I . To this end we define a new
dimensionless time t ′ = t/tB with tB = h̄/

√
2B whose use

leads us to the following (dimensionless) Hamiltonian

E′ = H

B
=

N∑
i=1

p′2
i

2
+ χ

N∑
i=1

× [sin xi sin xi+1 − 2 cos xi cos xi+1], (11)

where p′
i = dxi/dt ′ and χ = α/B is a dimensionless param-

eter controlling the dipole interaction. Besides the reduced
energy E′ = H/B, the dynamics of the system described by
(11) depends also on the dipole parameter χ . However, this
dependence can be removed by further rescaling the time,
introducing t ′′ = √

χ t ′. In terms of time t ′′, the Hamiltonian
(11) reads

E ≡ H = H

Bχ
=

N∑
i=1

p′′2
i

2
+

N∑
i=1

× [sin xi sin xi+1 − 2 cos xi cos xi+1], (12)

where p′′
i = dxi/dt ′′, such that the dynamics only depends on

the rescaled energy E = H/Bχ . The following study employs
the Hamiltonian (12), and we omit the primes in order to
simplify the notation.

We begin our exploration of the system’s dynamics by
addressing first its static properties regarding its equilibria, i.e.,
the roots of the N -dimensional gradient (critical points) of the
potential

V =
N∑

i=1

[sin xi sin xi+1 − 2 cos xi cos xi+1], (13)

given by the system of equations (∀i = 1, 2, . . . , N ):

∂V

∂xi

= [cos xi sin xi+1 + 2 sin xi cos xi+1 + cos xi sin xi−1

+ 2 sin xi cos xi−1] = 0. (14)

FIG. 1. Schematic representation of the six families of equi-
librium points (i)–(vi) discussed in the main text in terms of the
angle xi .

A. Equilibrium points

From the inspection of Eqs. (14), we find the following
critical points summarized in Fig. 1:

(i) The head-tail configuration of the dipoles {xi = 0,∀i}
or {xi = π,∀i} [Fig. 1(i)]. This critical point is a minimum of
the potential (13) (see the Appendix) with energy Em = −2N.

For the sake of simplicity, in the following we shift all the
energies of the system by 2N , such that this minimum energy
becomes zero, i.e., Em = 0.

(ii) The tail-tail and head-head configurations with alter-
nating angles 0 and π , {xi = π [1 ± (−1)i]/2,∀i} [Fig. 1(ii)].
These critical points are degenerate maxima of the potential
(13) (see the Appendix) with energy EM = 4N (shifted by
2N ).

(iii) Configurations of alternating 2b blocks of an arbitrary
number of dipoles ni (i = 1, 2, . . . , 2b) where within each
block i all ni dipoles are either oriented as xk = π or xk = 0.
The potential energy of this configuration is Em plus the
potential energy excess of all pairs of dipoles left and right
to the interfaces of two neighboring blocks with oppositely
aligned dipoles. For our PBCs this adds up to the total energy
Es1 = 8b (shifted by 2N ). An example of such a configuration
is shown in Fig. 1(iii) where, taking into account the PBCs,
there are six blocks of dipoles with alternating polarization
resulting in a total energy Es1 = 24.
These critical points are argued to be saddle points of rank =
2b in the Appendix. In particular, for the maximum number
of possible blocks, 2b = N , we recover the configuration
of maximum potential energy, EM = 4N , which is indeed a
critical point of rank = N . It is worth noting that all these
saddle points are highly degenerate with respect to the length
of the blocks and both their energy and their rank (number
of negative eigenvalues of the Hessian), depend only on the
number of blocks 2b and not on the number of dipoles ni

within each block.
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(iv) The two configurations with {xi = π/2,∀i} or {xi =
−π/2,∀i} [Fig. 1(iv)] which are saddle points (see the Ap-
pendix) with energy Es2 = 3N (shifted by 2N ).

(v) The configurations with alternating π/2 and −π/2,
{xi = ±(−1)iπ/2,∀i} [Fig. 1(v)] which represent saddle
points (see the Appendix) with energy Es3 = N (shifted by
2N ).

(vi) Configurations of alternating 2b blocks of an arbitrary
number of dipoles ni (i = 1, 2, . . . , 2b) where within each
block i all ni dipoles are either oriented as xk = π/2 or xk =
−π/2. Following the same discussion as in the equilibrium
configuration (iii), the potential energy of this configuration
is Es2 = 3N [case (iv)] minus the potential energy excess
of all pairs of dipoles left and right to the interfaces of two
neighboring blocks with opposite up and down aligned dipoles,
such that the total energy is Es4 = 3N − 4b (shifted by 2N ).
An example of this configuration is shown in Fig. 1(vi) where,
taking into account the PBC, there are six blocks of dipoles
with alternating up and down orientation resulting in a total
energy Es4 = 18.

The above six families of critical points (Fig. 1) allow one
to get a glimpse of the high complexity of the landscape of the
N -dimensional potential energy surface V [see Eq. 13]. The
discussed energy hierarchy of these families should be reflected
in the dynamics of the dipole chain. Indeed, and taking into
account that for energy values below Es1 = 8 the phase space
trajectories of the system remain trapped into the potential well
around the minimum Em = 0, we expect linear dynamics for
small excitations around Em = 0 and predominantly regular
behavior for total excitation energies E below the energy of
the lowest saddle point, i.e., for E < min (Es1) = 8. However,
for E > 8, and due to the larger accessible phase space
regions which involve also different equilibria, we expect to
encounter a more complex nonlinear behavior. It is worth
noting that for values of b close to one, the energy Es1 = 8b

of the corresponding saddle points is much smaller than the
maximum energy EM = 4N of the potential V . Hence, one
should expect a complex nonlinear behavior even for small
excitation energies E � min (Es1) = 8.

In the following, we present results for the dynamics of
the dipole chain for different excitation energies, spanning
the three aforementioned regions with qualitatively different
dynamical behavior, i.e., the linear (E � 8), the regular (E �
8), and the irregular (E � 8) regime.

III. THE LINEAR BEHAVIOR

The equations of motion of the Hamiltonian (12) can be
written as

ẍi = −(cos xi sin xi+1 + 2 sin xi cos xi+1 + cos xi sin xi−1

+ 2 sin xi cos xi−1). (15)

For low-energy excitations, e.g., small oscillations around
the head-tail equilibrium configuration {xi = 0,∀i} or {xi =
π,∀i} of minimum energy Em, the linear approximation of the
equations of motion (15) yields

ẍn = −(xn−1 + 4xn + xn+1), n = 1, . . . , N. (16)

0 0.5 1 1.5 2
1

1.5

2

2.5

3

ω  

q  π / 

k
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0
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FIG. 2. Dispersion relation ωk (red solid curve) and group veloc-
ity vq (blue dashed curve) as a function of q/π with q = 2πk/N

being the wave number.

As it is well known, the system of linear differential equations
(16) can be solved in terms of N normal modes (Qk, Pk ) [46],

Qk (t ) = 1√
N

N∑
n=1

xn(t ) exp

(
i
2πkn

N

)
, k = 1, . . . , N,

Pk (t ) = 1√
N

N∑
n=1

pn(t ) exp

(
i
2πkn

N

)
, k = 1, . . . , N,

(17)

where pn(t ) = ẋn(t ).
In the normal mode variables (Qk, Pk ), the Hamiltonian H0

associated to the linear system (16) reads

H0 =
N∑

k=1

Ek = E0, Ek = 1

2

(|Pk|2 + ω2
k |Qk|2

)
,

k = 1, . . . , N, (18)

where ωk and Ek are the frequency and the (harmonic) energy
of each normal mode, respectively. The sum of the energies
of all normal modes {Ek} yields the total harmonic energy E0,
corresponding to the Hamiltonian H0 of the linearized system
(16). The frequency ωk relates to the wave number k through
the dispersion relation

ωk =
√

4 + 2 cos q, q = 2πk

N
(19)

derived from Eqs. (16) and (17). The above expression
[Eq. (19)] has already been deduced in e.g., the study of
molecular chains [35] and has the form depicted in Fig. 2
(red solid line). As expected, the frequency ωk is 2π -periodic
with q, and it enjoys a reflection symmetry with respect
to q = 0 and π . As we can observe in Fig. 2 (red solid
line), the linear spectrum is optic-like with the frequency ωk

possessing an upper bound (maximum) ωk = √
6 for q → 0

(long-wavelength limit) and a lower bound (minimum) ωk =√
2 for q = π (short-wavelength limit).
From the dispersion relation (19), the group velocity vq of

the normal modes can be derived

vq = dωk

dq
= − sin q

ωk

. (20)
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As shown in Fig. 2 (blue dashed line), vq vanishes when ωk

reaches its maximum or minimum value, indicating that the
normal modes with the longest and the shortest wavelengths are
nonpropagating modes. In contrast, for q/π = arccos(−2 +√

3)/π ≈ 0.59 and q/π = 1 + arccos(2 − √
3)/π ≈ 1.41 the

group velocity reaches its maximum amplitude |vq | ≈ 0.52,
rendering the corresponding normal modes the fastest propa-
gating ones in the system.

In the current study we are interested in the time propagation
of single dipole excitations through the dipole chain for
different values of the excitation energy. More specifically,
starting from the head-tail configuration [Fig. 1 (i)] of minimal
energy Em = 0, we excite at t = 0 a single dipole, supplying
it with an excess energy �K . In all our calculations we use a
chain of 200 dipoles with PBC, a fact that allows us to excite
a specific dipole (here the 100th) without loss of generality.
The initial conditions (xi (0), pi (0)) of our system at t = 0 are
given therefore by

xi (0) = pi (0) = 0, for i 	= 100,

�K = p100(0)2

2
+ 4[1 − cos x100(0)]. (21)

Using these initial conditions, we investigate the time
propagation of the excitation by integrating numerically the
equations of motion (15) for the dipole chain. In order to
achieve a high accuracy, we integrate Eqs. (15) using an explicit
Dormant-Prince Runge-Kutta algorithm of eighth order with
step size control and dense output [47]. The results of these
integrations are subsequently compared to those extracted by
a symplectic and symmetric Gauss method of six stages [48].
Up to the same prescribed error tolerances, in all cases the
numerical results obtained with both methods are the same.

During the integration we record at each time step, be-
sides the phase space variables xi (t ) and pi (t ) of each
dipole, also the harmonic energy contribution Ek (t ) =
1
2 [|Pk (t )|2 + ω2

k |Qk (t )|2] of each Fourier mode (Qk (t ), Pk (t ))
resulting from the Fourier transform [Eq. (17)] of the nu-
merically extracted {xi (t ), pi (t )}. We emphasize here that all
these quantities are recorded for the exact equations of motion
[Eq. (15)] of our system and not for their linearized form
[Eq. (16)] discussed above.

As we have briefly mentioned in the previous section, for
very low values of the excitation energy �K � 8 (much lower
than the energy of the first saddle point) we expect a linear
behavior of the dipole chain, with Eq. (16) describing appropri-
ately the small oscillations of the dipoles around the head-tail
equilibrium configuration. In this linear regime, the harmonic
energy Ek (t ) stored in each Fourier mode (Qk (t ), Pk (t ))
remains almost constant in time, since the Fourier modes are
the approximate (uncoupled) normal modes of the system, and
therefore the total excitation energy �K is roughly equal to the
total harmonic energy E0(t ) = ∑N

k=1 Ek (t ) distributed among
the N Fourier modes of the system [see Eq. (18)].

For larger excitation energies�K the behavior of the system
is expected to be in general nonlinear, involving a transfer of
energy between the different Fourier modes (Qk (t ), Pk (t )) due
to their coupling. The higher the degree of such a nonlinear
mode-coupling, the higher we expect to be the deviation

 1

 10

 102

 103

 104

 105

 2  4  6  8  10  12

C
1(Δ

K
)

Energy excess ΔK

FIG. 3. Dependence of C1(�K ) [see Eq. (22)] on the excitation
energy �K for a single initially excited dipole [Eq. (21)]. Each point
of the curve corresponds to the average over an ensemble of 40
simulations with the same initial excess energy but for different initial
conditions. Note that a logarithmic scale scale is used for C1(�K ).

of �K (the total energy of our system, involving all the
couplings between the modes) from the total harmonic energy
contribution E0(t ) resulting from the modes (Qk (t ), Pk (t ))
which are assumed to be uncoupled. Therefore, we can use
this deviation between �K and E0(t ) as an indicator of the
degree of nonlinearity in the system.

In particular, we define the function C1(�K )

C1(�K ) = 〈E0〉
�K

, 〈E0〉 = 1

tf

∫ tf

0
E0(t ) dt, (22)

where 〈E0〉 is the time average of the total harmonic energy
E0(t ) of the Fourier modes {Qk (t ), Pk (t )} up to a (large) final
time tf . According to our above discussion C1(�K ) = 1 for
a linear system, where the Fourier modes, coinciding with its
normal modes, are uncoupled. The closer the function C1(�K )
is to 1, the closer the exact dynamics of the system is expected
to be to linear.

We present in Fig. 3 the behavior of C1(�K ) for excess
energies �K ∈ [2, 12]. Apart from the time average in the
definition of C1(�K ) [Eq. (22)], we have also performed
for each point of Fig. 3 an average over 40 different sets of
initial conditions [different choices of x100(0) and p100(0), all
corresponding to the same excess energy �K; see Eqs. (21)].
The value of the final time tf considered here reads tf = 5000,
which is sufficiently large compared to the intrinsic timescales
of the system. Indeed, since the lowest frequency of the linear
spectrum and the maximal group velocity are respectively
ωk ≈ 1.5 and vq ≈ 5 (see Fig. 2) the final time tf = 5000
roughly corresponds to 1200 harmonic oscillation periods, and
it is almost 25 times longer than the typical time a localized
excitation in the system needs to travel from the central to the
outer part of the chain.

We observe (Fig. 3) that for �K < 8 the dynamics of
the system is only weakly nonlinear, since the average of
the total harmonic energy contribution 〈E0〉 of the Fourier
modes is a good approximation to the total energy �K of
the system [C1(�K ) ≈ 1]. In this region we expect that the
linear normal modes couple only weakly, leading to minor
energy transfer between different modes, but keeping the
corresponding harmonic total energy E0(t ) approximately
constant, equal to �K .

In contrast, for excess energies �K > 8 the value of
C1(�K ) increases rapidly, with the average total harmonic
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FIG. 4. Spatial (site) distribution of the local energies Ek (t ) for different time instants. The number of dipoles in the chain is N = 200 and
the initial kinetic energy excess provided to the central dipole at site 100 is �K = 4.

energy 〈E0〉 of the Fourier modes obtaining much larger values
than the total excitation energy �K , a fact that indicates a
highly nonlinear behavior. Although the value �K = 8 cannot
be considered as a precise threshold between the regimes of
a weakly and a highly nonlinear behavior, this value can be
perceived as an upper bound, above which the system reacts
to localized energy excitations in a highly nonlinear way. It is
worth noting that this upper bound (�K ≈ 8) coincides with
the energy Es1 = 8 of the lowest saddle point consisting of two
blocks of dipoles with opposite polarization. After overcoming
the energetic barrier of the first saddle point, the available
phase space of the system increases dramatically, offering
possibilities for various dynamical behaviors. Interestingly,
we see that the total harmonic energy contribution E0 of the

Fourier modes is always larger than the total energy E ≡
�K of the system. In other words, the contribution of the
coupling between the Fourier modes to the energy, representing
the nonlinear interaction, is negative, e.g., it is attractive.
Interestingly, the fourth-order expansion of the total potential
V [Eq. (13)] around the equilibrium position {xi = 0,∀i}
yields

V ≈
N∑

i=1

(
x2

i + x2
i+1 + xixi+1

)

−
N∑

i=1

[(
x2

i + x2
i+1

)
(xi + xi+1)2

12
+ x2

i x2
i+1

3

]
, (23)
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where the negative energy contribution of the nonlinear terms
to the total potential energy is clearly observed.

IV. THE WEAKLY NONLINEAR REGIME

In this section we present in detail the response of the dipole
chain to single local perturbations in the weakly nonlinear
regime of small excitation energies (�K < 8). Following a
similar scheme as in Sec. III, given a chain of 200 dipoles with
PBC in the head-tail configuration of minimal energy Em = 0,
we locally excite at t = 0 the 100th dipole of the chain by
supplying it with an excess of kinetic energy �K . Thus, the
initial conditions (xi (0), pi (0)) of our system at t = 0 read

xi (0) = pi (0) = 0, for i 	= 100,

x100(0) = 0, p100(0) =
√

2�K. (24)

In order to study the propagation of this initially localized
excitation along the dipole chain we calculate numerically the
time evolution of the local energies Ek (t ):

Ek (t )

= pk (t )2

2
+ 1

2
[sin xk (t ) sin xk+1(t ) − 2 cos xk (t ) cos xk+1(t )

+ sin xk (t ) sin xk−1(t ) − 2 cos xk (t ) cos xk−1(t )], (25)

which indicate the amount of energy stored in each dipole in
relation to its NNs.

The local energy profiles for �K = 4 at different time
instants shown in Fig. 4 provide a glimpse of the different
steps of the excitation propagation. Shortly after the excitation,
most of the excess energy is transferred to the NNs of the
initially excited dipole (100th), which become the main energy
carriers initiating the energy spreading along the chain. Indeed,
at short times t = 10, 50 and 100 [see Figs. 4(a)–4(c)], the
excitation transfer is clearly induced by two (symmetric)
energy fronts that propagate along the chain. At t ≈ 200, the
energy excitation reaches the ends of the chain [see Fig. 4(d)]
having transferred an amount of energy to every dipole in
the chain, causing their oscillations. This yields a propagation
velocity vp ≈ 0.5, close to the maximum value of the group
velocity |vq | ≈ 0.52 found for the linear case [see Eq. (20)].

Due to the PBC of the system for t � 200 the excitation
continues its propagation from the outer dipoles (at sites 1,
200) to the inner ones (located at sites around 100), i.e., the
direction of propagation is reversed such that for t ≈ 400 the
excitation reaches again the central dipoles of the chain [see
Figs. 4(e)–4(g) corresponding to t = 250, 300, and 400]. As
the chain is progressively excited, the sharp intensity peaks
of the propagation fronts observed at short times [Fig. 4(a)]
decays significantly [Fig. 4(e)], indicating that the system tends
to thermalize, reaching for long times energy equipartition [see
Fig. 4(h) for t = 1000].

According to the above discussion, a global picture of the
time evolution of the local energy Ek (t ) is given in terms of a
color map in Fig. 5(a). After the 100th dipole is excited with
an excess energy �K = 4, the excitation energy is gradually
distributed along the chain by means of the two aforementioned
symmetric energy fronts. As the system approaches the energy
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FIG. 5. (a) Time evolution of the local energy Ek (t ) of the dipoles
(depicted by color). The number of dipoles in the chain is N = 200
and the initial kinetic energy excess provided to the central dipole
at site 100 is �K = 4. (b) Time evolution of the participation
ratio �(t ) [Eq. (26)], depicted by the solid red line, for N = 200
and �K = 4. The black dotted and the blue dashed lines indicate
the very short initial superballistic energy spreading �(t ) ∝ t2 and
the intermediate nearly ballistic energy propagation �(t ) ∝ tα with
α = 0.95, respectively. Note that a double logarithmic scale is used.

equipartition state, the energy fronts are distorted and their
intensity decreases.

To quantify the localization of the energy along the chain,
we use the participation ratio [49]

�(t ) = �K2∑N
k=1 Ek (t )2

− 1, (26)

with Ek being the local energies given by Eq. (25). When
the excitation is maximally localized, i.e., the total excitation
energy �K of the system is carried by a single dipole, the
value of �(t ) is zero, while if there is complete equipartition
(Ek ≈ �K/N∀k) �(t ) = N − 1. The time evolution of �(t )
is shown in Fig. 5(b). Starting from a fully localized excitation
(�(0) = 0), we observe in Fig. 5(b) a short transient (t �
0.5) where the participation ratio grows as �(t ) ∝ t2. This
quadratic increase of �(t ) indicates a superballistic spreading
of the excitation in the first period of the time evolution, a
transport behavior encountered also in other setups, e.g., in
the case of quantum excitations coupled to spatially extended
many-body systems [49]. In the time interval 0.5 � t � 5, the
superballistic behavior is gradually lost such that, in the interval
5 � t � 200, the energy transfer exhibits a nearly ballistic
trend which is characterized by an almost linear behavior, i.e.,
�(t ) ∝ tα with α = 0.95. For t � 200, after the excitation
has reached the boundaries of the dipole chain, Fig. 5(b)
shows a plateau �(t ) ≈ 125, indicating that the system has
reached a regime where the excitation energy is almost equally
partitioned among all the dipoles.
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FIG. 6. Time evolution of the local energy Ek (t ) of the dipoles
(depicted by color). The number of dipoles in the chain is N = 200,
and the initial kinetic energy excess given to the central dipole 100 is
�K = 12.

V. THE HIGHLY NONLINEAR REGIME

Following the same scheme as in Sec. IV, we excite at t = 0
the 100th dipole from the head-tail ground state of a 200-dipole
chain, supplying it with a kinetic energy excess �K > 8.

A typical propagation scheme in this highly nonlinear
regime is the one obtained for an excess energy �K = 12.
For this value the time evolution of the spatial distribution

of the local energies Ek (t ), k = 1, 2, . . . , 200 is depicted in
Fig. 6. We observe a robust excitation around the 100th dipole,
indicating that the system does not reach energy equipartition
up to long times. Indeed, the initially excited dipole 100 shares
predominantly energy with a few of its neighbors so that a
significant part of the excess energy remains localized around
it.

This fact is emphasized in Fig. 7 where the local energy
profiles for t = 40, 50, 100, 500, 1000, and 2000 are depicted.
At short times [see Fig. 7(a) for t = 40], the excitation is
mostly trapped in the initially excited central dipole. For
t = 50, an emerging propagation front is observed in Fig. 7(b),
whose energy, after some time [see Fig. 7(c)] is gradually
distributed among all the other dipoles of the chain. However,
no further significant energy spreading is observed for t � 500
in Figs. 7(d)–7(f), such that the excitation energy of the few
central dipoles (close to the initially excited one) remains
always much larger than that of the other dipoles, creating
overall a highly localized profile which persists in time [see
Figs. 7(e) and 7(f)].

As in the previous section, the time evolution of the
participation ratio �(t ) [Eq. (26)], depicted in Fig. 8(a),
provides a more detailed description of how the initial excess
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FIG. 7. Spatial (site) distribution of the local energies Ek (t ) for different time instants. The number of dipoles in the chain is N = 200, and
the initial kinetic energy excess given to the central dipole at site 100 is �K = 12.
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FIG. 8. (a) Time evolution of the participation ratio �(t )
[Eq. (26)], depicted by the solid red line, for N = 200 and �K = 12.
The blue dotted line indicates the very short initial superballistic
energy spreading �(t ) ∝ t2. Note that the results are presented in
a log-log plot. (b) Time evolution of the local energy Ek (t ) of the
dipoles, depicted by color. Note that a logarithmic scale is used in the
horizontal axis of the color map, accounting for the time t .

energy �K = 12 propagates along the chain. Similarly to
the case of smaller excitation energies [Fig. 5(b)], the energy
spreading presents a very short superballistic transient (t �
0.5) characterized by a quadratic increase �(t ) ∝ t2. After
this transient, during the interval 0.5 � t � 50 the participation
ratio enters an oscillatory state around �(t ) ≈ 0.5. This state
corresponds to the intense localized mode around the central
dipole observed in Fig. 6 and in Fig. 7(a) where almost only the
central dipole 100 is excited. As we observe in Fig. 8(a), this
steady state abruptly breaks at t ≈ 50, causing the participation
function to jump to a higher oscillatory steady state around
�(t ) ≈ 10. This new steady state is the outcome of the energy
spreading events discussed along with Figs. 7(c)–7(f). Up
to some extent, the abrupt jump of �(t ) at t ≈ 50 can be
inferred from the difference between the profiles of the spatial
distribution of the local energies Ek (t ) for t = 40 and t = 50
[Figs. 7(a) and 7(b)]. More specifically, such a jump indicates
that at a certain time around t ≈ 50, a small amount of energy
starts to diffuse along the chain. This trend can be clearly
observed when the color map of Fig. 6, depicting the time
evolution of the spatial distribution of the local energies Ek (t ),
is presented in a logarithmic time scale [Fig. 8(b)]. Such a
representation shows [Fig. 8(b)] that up to t � 50 most of the
excitation is trapped in the central dipole, whereas for t � 50
a small amount of energy starts spreading along the dipole
chain, with its major part remaining, nevertheless, localized in
the vicinity of the central dipole.

This high degree of the energy localization observed in
Figs. 6 and 7 suggests the existence of a strong nonlinearity
since, for the linear case the dispersion of the excitation energy
along the complete chain dominates the dynamics, leading
to an approximately equipartition regime in terms of local
energies Ek . Even more, it turns out that the localization
of the excitation energy in Figs. 6 and 7 can be linked

300 320 340 360 380 400
−2

−1

0

1

2
x100(t)
x99(t) 

t
FIG. 9. Time evolution of the angles x99(t ) and x100(t ) of the

dipoles 99 and 100 in the interval 300 � t � 400. Excess energy is
�K = 12.

to discrete breather solutions of the nonlinear equations of
motion of our system [Eq. (15)]. Briefly speaking, a discrete
breather is a spatially localized exact periodic solution of
the nonlinear equations of motion of a given discrete lattice
(for more details, we refer the reader to Refs. [14,15]). The
nonresonant condition between the frequency � of a breather
solution and the dispersion relation ωk prevents the existence
of breathers with a frequency in the linear spectrum, such
that the breather frequency � should always lie outside the
linear spectrum ωk . Such breather solutions have been shown
to exist, among others, in many models featuring magnetic
interactions similar to the ones considered here, including
ferromagnetic Heisenberg spin chains [44,45] and systems of
coupled magnetic pendulums [50].

In our system, for �K = 12, we have seen (Fig. 7) that a
major part of the excitation energy �K stored initially on the
100th dipole remains localized in the few dipoles surrounding
it up to long times. Moreover, when the time evolution of the
angles x99(t ) and x100(t ) of the dipoles 99 and 100 respectively
are examined (see Fig. 9), we find that their motion is in both
cases fairly periodic (oscillatory) with a period of τ ≈ 6.7.
The periodicity of these oscillations is justified by Fig. 10,
where the Fourier spectra of x99(t ) and x100(t ) are depicted.
Indeed, we observe that these spectra exhibit a strong peak
at a frequency f ≈ 0.15 (with its symmetric counterpart at
f ≈ 0.85), reflecting the fact that the corresponding signals
can be approximated as oscillations with a single frequency
� = 2πf ≈ 2π × 0.15 ≈ 0.94, corresponding to a period of
τ ≈ 6.67. Since this oscillation frequency,� ≈ 0.94, is outside
(more precisely below) the linear spectrum depicted in Fig. 2
(red line), we have strong evidence that the localized excitation
of the dipole chain observed in Figs. 6 and 7 during its time
evolution corresponds to a discrete breather.

Besides the typical discrete breather pattern of energy lo-
calization shown in Fig. 6, the dipole chain exhibits additional
propagation schemes, depending on the value of the initial
excitation energy �K , all of them involving a high degree of
energy localization. The time evolutions for the local energies
Ek (t ) for four cases �K = 10.776, 11.128, 10.2, and 11.12,
corresponding to different propagation patterns, are shown in
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FIG. 10. Fourier spectra of x99(t ) and x100(t ) of the dipoles 99 and 100. The excess energy �K = 12 is provided to the 100th dipole.

Figs. 11(a)–11(d). The main difference between these is the
behavior of the principal energy carriers, i.e., the dynamics of
those sites that carry the largest amount of excitation energy.
For �K = 10.776 and 11.128 [Figs. 11(a) and 11(b)], the
energy of the system is highly localized in two energy carriers
that follow trajectories of a regular periodic character. In
contrast, for �K = 10.2 and 11.12 [Figs. 11(c) and 11(d)]
the principal energy carriers follow rather complex trajectories
which, given their strong localization and complexity, could
be linked to the so-called chaotic breathers [16]. Contrary to
the concept of a discrete breather as a localized excitation
which is a solution of the nonlinear equations of motion of
the lattice, a chaotic breather is an excitation of chaotic nature
that may appear as a response to initial local excitations of
the lattice, a situation that, as it will be argued below, bears
strong similarities to the one described here regarding the
propagation of a localized excitation in our dipole chain in
the highly nonlinear regime (�K � 8).

Apart from the different patterns of energy propagation
observed in Fig. 11 for the different values of �K , it turns

out that also the configurations {xk} evolve differently in time.
We illustrate this fact in Fig. 12 where the time evolution of
cos[xk (t )] is shown for the same excitation energies, �K =
10.776, 11.128, 10.2, and 11.12, as those considered in Fig. 11.
For �K = 10.776 and 11.128 [see Figs. 12(a) and 12(b)] we
observe the expected behavior: except for the energy-carrying
rotors (ECRs), which exhibit fast long-amplitude oscillations
(fast changing xk) while propagating along the chain leading
to the corresponding traces in Figs. 12(a) and 12(b), all the
remaining dipoles are mainly polarized in the same direction
{xk = 0} [cos(xk ) = 1] as in the ground state configuration.

In contrast, for �K = 10.2 and 11.12 [Figs. 12(c) and
12(d)] the situation is dramatically different. Instead of a single
polarized region (cos(xk ) = 1), like the yellow background
in Figs. 12(a) and 12(b), two regions of opposite polariza-
tion [cos(xk ) = 1 and cos(xl ) = −1] emerge during the time
evolution. These regimes of locked phases ({xk = 0} and
{xl = π}, respectively) corresponding to domains of opposite
polarization appear spontaneously and they are dynamically
separated by two propagating domain walls provided by the
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FIG. 11. Time evolution of the local energy Ek (t ) of the dipoles (depicted by color) for four values of the excess energy: (a) �K = 10.776,
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two fast rotating ECRs [compare Figs. 12(c) and 12(d) with
Figs. 11(c) and 11(d)]. In particular, in the course of the dy-
namics, the dipoles lying between the two ECRs spontaneously
flip, forming a domain of opposite polarization [cos(xl ) = −1,
black region in Figs. 12(c) and 12(d)] compared to that of the
ground state [yellow region in Figs. 12(c) and 12(d)].

Although the origin of this spontaneous phase locking is
not entirely clear, it can be related to the existence of the
lower saddle point equilibria of energy Es1 = 8 < �K [b = 1,
Sec. II A (iii)]. This assumption relies on the resemblance of the
topology between the phase locked states and the highly degen-
erate saddle point equilibrium configurations consisting of two
blocks: one with a given number n of dipoles with xl = π and
another with the remainingN − ndipoles polarized alongxk =
0. As mentioned in Sec. II, all such saddle points, consisting
of two domains of opposite polarization are highly degenerate,
since their total potential energy Es1 = 8 depends only on the
number of domain walls (here two) and not on the number of
dipoles on each domain (n and N − n, respectively). With an
excitation energy �K = 12 > Es1 a spontaneous dynamical
transition from the fully polarized ground state to the first
saddle point is energetically possible and therefore can occur
for certain initial conditions [Figs. 12(c) and 12(d)]. During the
time evolution of such a state the domain walls, identified with
the ECRs, shift [Figs. 12(c) and 12(d)], following the complex
trajectories shown in Figs. 11(c) and 11(d), a process that due
to the aforementioned degeneracy of the first saddle point does
not cost any energy.

It is worth noticing that phase locked states with more than
two domains (more than two domain walls) never appear in our
simulations considering an excitation energy �K ∈ [4, 12],
since already the energy of the second saddle point, Es1 = 16,
consisting of four domains (four domain walls), is inaccessible.
It should be observed, however, for �K > 16.

A closer look at Fig. 11 and Fig. 12, particularly a compari-
son between Fig. 11(b) and Fig. 11(d) [also between Fig. 12(b)
and Fig. 12(d)], leads to the conclusion that even a tiny change
of the excitation energy �K (here only by 0.07%) can lead to
a completely different propagation and configuration pattern.
We have checked that this is the case also when a infinitesimal
perturbation is added to the initial values of the phase space
variables (xi (0), pi (0)). This strong sensitivity to the initial
conditions is the hallmark of the chaotic nature of our system
in the region of excitation energies �K > 8.

As a measure of this sensitivity to the initial conditions
in the dipole chain (i.e., its degree of chaoticity), we use the
method of the Orthogonal Fast Lyapunov Indicators (OFLIs).
In a nutshell, given an m-dimensional flow defined by

dr
dt

= f (r, t ), (27)

we examine the time evolution of the variational vector δr(t )
given by the (first) variational equations

dδr
dt

= ∂f (r, t )

∂r
δr. (28)

For given initial conditions r(0) and δr(0), the numerical
integration of the systems of differential equations (27) and
(28) up to a given final time tf allows the definition of the
OFLI as follows [51–53]:

OFLI(r(0), δr(0), tf ) = sup
0�t�tf

log ||δr(t )⊥||, (29)

where ⊥ indicates the orthogonal component to the flow of the
variational vector δr. The main advantage of the OFLI is that it
provides computationally cheap information about the degree
of regularity or chaoticity of a given orbit. In particular, δr(t )⊥
increases linearly with time for regular resonant orbits and
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exponentially for chaotic ones [51–53], attaining therefore for
long times tf much larger values for chaotic orbits than the ones
for regular orbits. For near-integrable Hamiltonian systems, a
rigorous proof of this behavior can be found in Ref. [53]. We
note that with the formulation (29), there is a dependence of
the value of the OFLI on the initial conditions of the variational
vector δr(0). In order to get rid of this dependence we follow
the steps found in Refs. [54,55], incorporating also the second
order variational equations in the computation of the indicator.
For our dipole chain, we have calculated, as a function of the
energy excess �K , the OFLI for trajectories as those examined
so far, featuring initially a single dipole excitation with initial
conditions r(0) = {xk (0) = 0∀k, p100(0) = √

2�K,pk (0) =
0∀k 	= 100}. In our calculations, we stop the computation of
the OFLI either when it reaches the cutoff value 9, marking a
chaotic trajectory, or when the computation time exceeds our
final time tf = 5000, selected empirically according to many
numerical simulations.

As an example, we present in Fig. 13(a) the time evolution
of the OFLI for two qualitatively different orbits, belonging
to the weakly (initial kinetic energy excess �K = 4) and to
the highly (initial kinetic energy excess �K = 12) nonlinear
regimes, respectively. We observe in Fig. 13(a) that the OFLI
for the �K = 4 trajectory increases very slowly, attaining
only small values (less than two up to very long times). In
contrast the OFLI for the �K = 12 trajectory shows a fast
increase reaching already at an early stage the cutoff value
nine signifying its chaoticity. Note that at our usually selected
final simulation time tf = 5000 the distinction between the two
trajectories is clear, allowing for their classification as regular
(�K = 4) and chaotic (�K = 12), respectively.

Our results for the behavior of the OFLI as a function of
the excess energy �K are shown in Fig. 13(b). In the regime
�K � 6, the value of the OFLI is below three, indicating
the regular behavior of the system in accordance to Fig. 3
and the above discussion. For 6 � �K � 8, the value of the
OFLI increases for increasing energy, such that for �K � 8.5
it becomes larger than the cutoff value 9 characterizing the
chaotic orbits. Moreover, the extracted chaoticity of the dipole
chain for excitations with energy �K � 8 provides further
evidence for the link of the traveling energy localization
patterns shown in Figs. 11(c) and 11(d) and the striking phase
locking states associated to them [Figs. 12(c) and 12(d)] to
chaotic breathers [16], mentioned above.

As a final remark, it is worth noticing that, in general, the
effectiveness of the fast Lyapunov indicators in providing a
first indication of the degree of chaoticity of an orbit with a
relatively low computational cost has been successfully proven
in dynamical systems with few degrees of freedom. Indeed, a
global vision of the phase space structure of several Hamilto-
nian systems with two or three degrees of freedom was obtained
by the computation of two-dimensional OFLI maps [54–56].
However, a detailed investigation of the phase space and the
chaotic dynamics of multidimensional systems as our dipole
chain requires the use of more sophisticated tools based on
the computation of Lyapunov exponents [57–59] as deviation
vector distributions [60] and Lyapunov weighted dynamics
[61,62]. Although very interesting, these investigations go
beyond the goal of the present study and will be addressed
in a future work.
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FIG. 13. (a) Time evolution of the OFLI for �K = 4 (blue line)
and �K = 12 (red line). The vertical and horizontal black dashed
lines indicate the cutoff value of the OFLI computation and the
selected final time tf = 5000 in our simulations, respectively. (b) The
OFLI for a dipole chain with a single excited dipole as a function of
the excitation energy �K . Note that there is a cutoff value of the OFLI
for the value 9.

VI. CONCLUSIONS

We have explored the energy transfer mechanisms in a
classical dipole chain, modeled as an array of N rigid dipoles
with their positions fixed in space, interacting with their NNs
and restricted to rotate in a common plane. This leads to
a Hamiltonian system of N degrees of freedom describing
the rotational dynamics of the dipole chain. The equilibrium
points of the equations of motion have been identified and
analyzed. It turns out that these can be classified in several
families according to their stability, pointing to the high
complexity of the potential energy surface of the chain of
dipoles. A linearization of the equations of motion around the
GS configuration has lead to the harmonic approximation of the
dipole chain Hamiltonian in terms of normal modes, a fact that
has allowed us to extract information about the linear spectrum
of the system.
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The main focus of this work has been the study of the
energy transfer of a localized excitation in the dipole chain for
a varying excitation energy. Two regimes with qualitatively
different features have been identified. In the first regime of
low-energy excitations the system exhibits a weakly nonlinear
behavior with the initially localized excitation spreading in the
dipole chain, leading for large times to energy equipartition
among the dipoles. The second regime of higher energy
excitations is characterized by a strong nonlinearity causing
energy localization in the form of discrete or chaotic breathers.
In some cases the formed chaotic breathers attain the character
of domain walls, separating domains of dipoles with different
polarization. This spontaneous phase locking of the dipole
chain can be linked to the properties of the interaction potential
and in particular to its lowest energy saddle point.

It turns out that in the highly nonlinear regime the dipole
chain is very sensitive to the initial conditions, indicating its
chaotic nature. To quantify the degree of chaoticity in the
system for different values of the excitation energy we have
calculated the Orthogonal Fast Lyapunov Indicator, which
confirms the above discussed picture. For excitation energies
below a certain approximate threshold the dynamics is regular
whereas above it is highly nonlinear and chaotic. Interestingly
enough this threshold energy has a value close to the energy
difference between the first saddle and the minimum of the
interaction potential.

Suitable experimental realizations of our model could be
provided by polar diatomic molecules trapped in a 1D optical
lattice [32], colloidal polar particles in optical tweezers [63],
or by rotating polar molecules in helium nanodroplets [64].
Further theoretical studies could be devoted to the investigation
of the effect of an external homogeneous or inhomogeneous
electric field on the dynamics and the energy transfer of a
dipole chain as the one studied here. Finally the exploration
of the dynamics of the dipole chain in the full 2N -dimensional
case would also be of interest owing to its even more complex
potential landscape.
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APPENDIX: THE CHARACTER OF THE CRITICAL
POINTS

The nature of the critical points can be judged by the
eigenvalues of their Hessian matrix. Due to the NN interactions
considered in this study, the Hessian is almost tridiagonal, with
an exception regarding the last element of the first row and first
element of the last row which are different from zero due to
the imposed PBC. In the following we discuss the character of
the six families of critical points of the dipole chain based on
their Hessian eigenvalues.

1. The minimum Em and the maximum EM

The N × N Hessian matrix of the critical point {xi = 0,∀i}
or {xi = π,∀i} takes the form

Hmin =

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 0 · · · 0 1
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 4 1
1 0 0 0 · · · 1 4

⎞
⎟⎟⎟⎟⎟⎠. (A1)

If N is large, the last element of the first row and the first
element of the last row have a negligible contribution to the
eigenspectrum of Hmin. Thus, in terms of its eigenspectrum
the Hessian can be approximated by the tridiagonal matrix

Hmin ≈

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 4 1
0 0 0 0 · · · 1 4

⎞
⎟⎟⎟⎟⎟⎠. (A2)

The N eigenvalues of the matrices (A1) and (A2) are real
because Hmin is symmetric. Moreover, the eigenvalues λk of
the tridiagonal matrix (A2) are given by [65]

λk = 4 + 2 cos
k π

(N + 1)
.

These eigenvalues are positive indicating that also the eigen-
values of the exact matrix (A1) would be positive and in turn
that the corresponding critical point is a minimum.

Returning to the original Hessian matrix (A1), the analytic
computation of its characteristic equation gives the following
polynomial of degree N

Ceven ≡ λN − aN−1λ
N−1 + aN−2λ

N−2 − · · · − a1λ + a0 = 0,

N ≡ even,

Codd ≡ λN − aN−1λ
N−1 + aN−2λ

N−2 − · · · + a1λ − a0 = 0,

N ≡ odd,

where ai > 0. This means that there are N sign changes in
the sequence of the coefficients (1, aN−1, aN−2, . . . , a1, a0).
The rule of Descartes [66] says that if p is the number of
positive roots of a given polynomial and s is the number of sign
changes in the coefficient sequence of this polynomial, then
s = p + 2k, with k a positive integer. By virtue of this theorem,
from the N changes of sign in the coefficients ai , we conclude
that the Hessian (A1) has at most N positive eigenvalues. We
can apply the Descartes rule also to extract information about
the maximum number of negative roots. Indeed, after replacing
λ → −λ, the coefficients of the odd degree monomials in λ

in the characteristic polynomials Ceven,odd become negative,
resulting in no sign changes in the coefficient sequence.
This implies that there are no negative eigenvalues and as a
consequence all the N eigenvalues of the exact Hessian (A1)
are positive.

For the critical point corresponding to the alternating
configuration {xi = π [1 ± (−1)i]/2,∀i}, the Hessian matrix
takes the form

Hmax = −Hmin.
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with approximate eigenvalues

λk = −
[

4 + 2 cos
k π

(N + 1)

]
,

which are all negative,indicating that this critical point is
a maximum. The analytic computation of the characteristic
equation yields

Cmax = λN + aN−1λ
N−1 + aN−2λ

N−2 + · · · + a1λ + a0 = 0,

where ai < 0. Therefore, there are no sign changes in the
sequence of the coefficients (1, aN−1, aN−2, . . . , a1, a0). In
this case, the Descartes rule of signs assures that there are
no positive roots of the characteristic polynomial. If we
replace λ → −λ in Cmax, the coefficients of the odd degree
monomials in λ become negative, a fact that results in N sign
changes in the coefficient sequence. Thus the N eigenvalues
of Hmax are negative and the corresponding critical point is a
maximum.

2. The saddle points Es1

For the configurations made of b blocks of nj dipoles with
xk = π while the remaining dipoles possess xi = 0, up to our
knowledge, there exists no close expression for the eigenval-
ues of the corresponding almost tridiagonal Hessian matrix.
However, from the numerical computation of the characteristic
equation for different values of N and for different number of
blocks b, we have strong indications that these critical points
are saddle points of rank 2b since, by applying the rule of
Descartes, we find that the number of positive and negative
eigenvalues are N − 2b and 2b, respectively.

3. The saddle points Es2

For the two configurations {xi = π/2,∀i} or {xi =
−π/2,∀i}, the Hessian matrix takes the form

Hs3 =

⎛
⎜⎜⎜⎜⎜⎝

−2 −2 0 0 · · · 0 −2
−2 −2 −2 0 · · · 0 0
0 −2 −2 −2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −2 −2

−2 0 0 0 · · · −2 −2

⎞
⎟⎟⎟⎟⎟⎠. (A3)

Following Ref. [65], the approximate eigenvalues for large N

are given by the expression

λk = −2 + 4 cos
k π

(N + 1)
. (A4)

From Eq. (A4), we obtain that this critical point is a saddle
point with 2(N + 1)/3 hyperbolic directions.

4. The saddle points Es3

For the configuration with alternating anglesπ/2 and−π/2,
{xi = ±(−1)iπ/2,∀i}, the Hessian matrix takes the form

Hs3 =

⎛
⎜⎜⎜⎜⎜⎝

2 2 0 0 · · · 0 2
2 2 2 0 · · · 0 0
0 2 2 2 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 2 2
2 0 0 0 · · · 2 2

⎞
⎟⎟⎟⎟⎟⎠. (A5)

Following Ref. [65], the approximate eigenvalues for large N

are given by the expression

λk = 2 + 4 cos
k π

(N + 1)
. (A6)

From Eq. (A6), we see that this critical point is a saddle point
with (N + 1)/3 hyperbolic directions.

5. The critical points Es4

For the critical points made of all the possible configu-
rations with xi = ±π/2, up to our knowledge, there exists
no close expression for the approximate eigenvalues of the
corresponding almost tridiagonal Hessian matrix. Moreover,
from the numerical computation of the characteristic equation
for different configurations, we cannot conclude anything
about the nature of these critical points, because, depending
on the equilibrium configuration, some of the eigenvalues are
zero.
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