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The demographic (shot) noise in population dynamics scales with the square root of the population size. This
process is very important, as it yields an absorbing state at zero field, but simulating it, especially on spatial
domains, is a nontrivial task. Here, we analyze two similar methods that were suggested for simulating the
corresponding Langevin equation, one by Pechenik and Levine and the other by Dornic, Chaté, and Muñoz
(DCM). These methods are based on operator-splitting techniques and the essential difference between them lies
in which terms are bundled together in the splitting process. Both these methods are first order in the time step so
one may expect that their performance will be similar. We find, surprisingly, that when simulating the stochastic
Ginzburg-Landau equation with two deterministic metastable states, the DCM method exhibits two anomalous
behaviors. First, the stochastic stall point moves away from its deterministic counterpart, the Maxwell point,
when decreasing the noise. Second, the errors induced by the finite time step are larger by a significant factor
(i.e., >10×) in the DCM method. We show that both these behaviors are the result of a finite-time-step induced
shift in the deterministic Maxwell point in the DCM method, due to the particular operator splitting employed.
In light of these results, care must be exercised when computing quantities like phase-transition boundaries (as
opposed to universal quantities such as critical exponents) in such stochastic spatial systems.
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I. INTRODUCTION

Systems with demographic noise play an important role
in many different problems, including birth-death processes,
ecology, population genetics, reaction-diffusion processes, in-
fection models, etc. [1]. Demographic noise is a very important
factor in the dynamics of these systems since the noise vanishes
at zero abundance, rendering the inactive state an absorbing
state. Technically, demographic stochasticity is a special kind
of multiplicative noise, proportional to the square root of
the fluctuating field. Thus, at small amplitudes, the noise is
typically dominant. As a result, simulating the dynamics of a
system with demographic stochasticity requires special care; it
is crucial, for instance, that the noise not cause the amplitude to
become negative [2], which would occur with a naive treatment
of the noise.

These problems are especially severe in spatial systems,
where many local populations are connected by diffusion of
individuals. There have been numerous schemes proposed to
efficiently simulate a spatially extended system. One approach
is to simulate an individual-based model using a Gillespie-
type algorithm [3], where the rate for each event is taken
into account and the next event is picked from the complete
set of possibilities. If the demographic noise arose, as is
typical, from the original model having discrete individuals,
then this is an exact treatment of the problem. However, for
large spatial systems this procedure is prohibitively expensive,
especially at large population levels. Having to pick the next
event from the very large number of different processes that
can occur, each with its own unique rate, slows down the
calculation enormously [4]. Alternatively, one may still use
an individual-based model but discretize the process in time,
along the lines of how one simulates a deterministic partial

differential equation. In this scheme [5], the events on different
sites occur in parallel (the number of births, for example, at
a given site, is given by a Poisson or binomial deviate, with
the mean determined by the birth rate times the time step)
and so this is much more efficient than Gillespie, especially
at large density (small noise). This is still not ideally efficient,
in that a different random deviate must be generated at every
site for every different process. Furthermore, being essentially
a Euler-type scheme, there are strong restrictions on how large
the time step can be.

Aside from the individual-based approach, one can in-
stead use a continuum approach, either Fokker-Planck or
Langevin [6]. If the model under study is also a continuum
equation, such as the stochastic Fisher equation [7], then
an individual-based model approach discussed above is only
an approximation. Otherwise, the continuum equation is a
certain large-population limit of the original model. In this
continuum approach, the strength of the demographic noise is
given by a single parameter, the amplitude of the square-root
noise. Here, one has to face squarely the difficulties inherent
in the square-root type multiplicative noise. One noteworthy
approach was that of Pechenik and Levine (PL) [8], who
introduced an operator-splitting method, based on an analytic
solution of the pure birth-death process. In a single time step of
the PL simulations, the birth-death process is simulated exactly,
followed by a deterministic update implementing the diffusion
and reaction terms. This method has the possibility of being
stable for all time step sizes. Using this method, PL were able to
simulate the Fisher process at very small noise levels, thereby
confirming the analytical predictions of Brunet and Derrida [7]
for this limit.

Subsequently, Dornic, Chaté, and Muñoz [9] (DCM) pro-
posed a different split-operator scheme. They introduced a
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much simpler method of generating the stochastic update,
which allowed them to incorporate more terms of the Langevin
equation in the exact stochastic update. These included the
linear growth term as well as a first order in time approximation
of the diffusive nearest-neighbor coupling. As is the PL
scheme, the DCM scheme is overall first order in time, and
thus one would expect the accuracy of the two methods to be
comparable.

The reason for revisiting the two methods has its origin
in an anomaly in the results presented in a recent study of
Martin et al. [10] of the phase diagram of the stochastic
Ginzburg-Landau (GL) equation generated using the DCM
scheme. Deterministically, this system supports two stable
fixed points, one at zero field and the other at some finite
value. On spatial domains, one of these states invades the other,
unless the external parameters (like, e.g., the stress affecting
the population) are tuned to the stall (Maxwell) point. The
numerical results of Martin et al. ([10], Fig. 2) indicated that
in the stochastic system the active state invades the absorbing
state even on the high-stress side of the deterministic Maxwell
point, i.e., in the regime where (in the deterministic system)
the inactive state is dominant. If true, this would be a very
surprising feature since the demographic noise destabilizes
the active state, but cannot touch the inactive state where its
amplitude (which is proportional to the square root of the
concentration) vanishes. Moreover, Martin et al. presented a
renormalization group analytic calculation showing that, at
each length scale, the effect of an increase in the noise is a
reduction of the positive feedback; hence, it must increase the
basin of attraction of the inactive phase.

In an attempt to understand this point better, we system-
atically decreased the time step �t of the simulation, using
the same DCM algorithm. We discovered that the location
of the stochastic stall point converges linearly to a certain
value on the correct (i.e., low-stress) side of the deterministic
Maxwell point, namely, the stress parameter at the stochastic
stall point is in the range where in the deterministic system
the active phase invades. Thus, as �t → 0, the noise indeed
renders the active phase less active. We then attempted to
reproduce this effect using the PL scheme, and found that both
methods converge linearly to the same critical stress, but here
the stress parameter at the stochastic stall point is always on the
low-stress side of the deterministic Maxwell point. Moreover,
the convergence of the PL algorithm is faster, i.e., the size
of the finite-�t correction was over 10 times smaller. These
surprising results call for a more systematic study of the size
and sign of the finite-�t corrections in the two methods. As
pointed out by Lee, Kwon, and Park [11], the particular choice
of how to split the operators may lead to a nontrivial shift of
the effective values of the bare parameters for finite �t . Here,
we show that for the DCM operator-splitting scheme on spatial
domains, this shift causes large finite-�t corrections, moving
the phase boundaries even in the absence of noise. The root of
the problem, it turns out, is a mixing between the linear growth
and diffusion terms, when the the local and the nonlocal parts of
the diffusion operator are split in such a way that only one acts
together with the growth. We thus conclude that in an efficient
splitting scheme, one should not split the diffusion operator.

The plan of the paper, then, is as follows. We first review
the PL and DCM algorithms, highlighting their similarities and

differences. In Sec. III, we present our results for the model of
Martin et al., comparing the DCM and PL schemes for different
�t . We show the anomalous DCM behavior persists even in
the deterministic limit. This allows an analytic calculation of
the leading finite-�t corrections in the deterministic limits of
DCM and PL, presented in Sec. IV. We then summarize our
conclusions and the implications for other numerical studies
involving spatial demographic noise.

II. TWO METHODS: PL AND DCM

In this section, we review the details of the two methods,
in order to fix notation and nomenclature. The PL scheme
consists of breaking up the Langevin equation into two pieces,
a stochastic balanced birth-death process yielding the demo-
graphic noise and a deterministic piece containing the rest of
the dynamics. An elementary time step consists of a stochastic
update of duration �t , followed by a deterministic update of
the same duration. The stochastic update constitutes an exact
solution of the local equation

∂φ

∂t
(x,t) = σ

√
φ(x,t)η; 〈η(x,t)〉 = 0;

〈η(x,t)η(x ′,t ′)〉 = δ(x − x ′)δ(t − t ′). (1)

The locality of the stochastic dynamics for φ means that every
discrete site can be updated independently. The Probability
Density Function (PDF) of the updated φ̃ at a given site, given
its initial value φ, is given by

P (φ̃) = δ(φ̃)e−2φ/(σ 2�t) + 2e−2(φ+φ̃)/(σ 2�t)

σ 2�t

√
φ

φ̃
I1

(
4
√

φφ̃

σ 2�t

)
,

(2)

where I1 is a Bessel function. PL implemented this update via
a look-up table and interpolation for the inverse cumulative
distribution function for various initial values of φ.

As opposed to this algorithm for the stochastic update
employed by PL, DCM aptly noted that it can be more conve-
niently accomplished via first generating a Poisson deviate Qi

with mean λφ, where

λ = 2

σ 2�t
, (3)

and then generating a gamma deviate R with shape parameter
Q and scale unity. The new φ̃ is then R/λi . This new φ̃ was
shown to obey precisely the PDF (2). This is the first aspect
of the DCM work and, being an exact reformulation, has no
effect on the results. As this trick is both more efficient and
simpler to implement, and as it does not change the results
at all, we incorporate it into the PL method in the following
without further comment.

Following this stochastic updating of φ(x), the rest of the
PL dynamics (diffusion, linear, and nonlinear interactions) is
simulated deterministically for φ(x) for duration �t and then
the stochastic step is taken again. There are many possible
schemes to implement the deterministic update, with the
minimalistic requirement being that it be first order accurate in
time. An additional desideratum is that it be stable for all �t , so
as to not to constrain the size of the time step. In their original
work, PL used an Euler scheme for the deterministic update.
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In practice, to ensure stability, we implement a diffusion
step using an alternating-direction implicit (ADI) [12] update,
followed by a Runge-Kutta update of the reaction terms. We
verified that similar results are obtained by other deterministic
update schemes as long as �t is small enough to guarantee
stability.

We now turn to a description of the DCM method. In the
context of their method of performing the stochastic update
discussed above, DCM additionally noted that this method
could be generalized to include arbitrary constant source and
linear growth terms. They chose to take advantage of this to
incorporate the linear growth term present in the Langevin
equation, as well as an approximate first order in time approx-
imation of the diffusion term. DCM decomposed the second-
difference diffusion operator D(φi+1 − 2φi + φi−1)/2(�x)2,
into two pieces, one a local decay term −2Dφi/(�x)2 and
the second a source term D(φi+1 + φi−1)/2(�x)2 which is
approximated to be constant during the interval (t0,t0 + �t).
Denoting the linear growth rate of φ by α, this gives rise to a
different Langevin equation for the “noise step”:

∂φ

∂t
(x,t) =

[
α − 2D

(�x)2

]
φ(x,t) + S(x) + σ

√
φ(x,t)η;

S(x) = D

(�x)2
[φ(x + �x,t0) + φ(x − �x,t0)]. (4)

This (approximate) local Langevin equation is also exactly
solvable, and again involves generating a Poisson variate Q at
each site with mean λφ exp(ν�t),where now

λ = 2ν

σ 2[exp(ν�t) − 1]
; ν = α − 2D/(�x)2, (5)

followed by a gamma deviate, R, with shape parameter Q +
2S/σ 2. The new φ̃ is then again Rλ. The remaining nonlinear
dynamics is then implemented deterministically for an interval
�t , similar to the deterministic update in PL.

III. STOCHASTIC GINZBURG-LANDAU EQUATION

As discussed in the Introduction, the origins of this study
lay in some anomalies in the results presented in the paper
of Martin et al., obtained simulating a model via the DCM
prescription. The model studied by Martin et al. is described
by the two-dimensional Langevin equation

∂φ

∂t
= D∇2φ + αφ + βφ2 − γφ3 + σ

√
φη, (6)

where, as usual, η is a unit-strength zero-mean white noise.
Let us first review the features of the deterministic dynamics,
σ = 0. α controls the degree of stress in this model, with the
stress increasing as α is lowered. If α is positive (low stress),
the state φ = 0 is unstable and there is only one stable state at
φ̄ = (β +

√
β2 + 4αγ )/(2γ ). When α < 0 (high stress), the

zero state is stable, but the active state invades as long as α

is above the Maxwell (stall) point, αMP = −2β2/9γ . If α <

αMP, the inactive phase invades the active one. Finally, below
αT = −β2/4γ , the active phase loses its stability and the only
stable solution is at φ = 0. αT is thus the tipping point below
which the deterministic active state collapses (i.e., the local
deterministic dynamics does not support an active state).
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FIG. 1. The location αs of the stochastic stall point for the
active-inactive phase boundary for the two-dimensional GL model
as a function of �t , with D = 1, β = 2, γ = 1, σ 2 = 1. Also shown
(dotted line) is the value of the deterministic Maxwell point, which
is crossed by the DCM results as �t is varied. The system size is
27 × 27. The diffusion step of the PL method was done using ADI.

Martin et al. simulated this system using the DCM al-
gorithm with �t = 0.1 [13] for the parameters D = 1, β =
2, γ = 1, σ 2 = 1, for various values of α. Tracking the motion
of the phase boundary in a system initially divided lengthwise
between the active and inactive phases, they found a transition
between active phase invasion and inactive phase invasion at
a value of αs = −0.9640. We denote this transition point as
the stochastic stall point αs . As noted above, this is below the
deterministic Maxwell point for these parameters of αMP =
−0.889. To examine the sensitivity of the measured αs to the
time step �t , we repeated the DCM simulations for a variety
of time steps, the results of which are presented in Fig. 1. We
reproduced the result of Martin et al. for �t = 0.1, and found
that as �t is decreased, αs increases, crossing the Maxwell
point, and linearly converging to a value of αs = −0.775. Thus,
the DCM calculation of αs using �t = 0.1 is off by 28%.

It was then natural to inquire whether the PL simulations
show the same anomalies. The results of this calculation for the
Martin parameters, labeled PL, are shown in Fig. 1 alongside
the DCM results. The results converge linearly as �t → 0 to
the same limiting value as the DCM simulations. That said, we
see that the PL value of αs is above αMP for all �t’s examined.
Thus, the finite �t error was of the opposite sign of the DCM
error, and was a factor of 11 smaller in magnitude.

Since the two methods, while built on the same general
principles, have such widely different errors, we proceeded
to inquire as to the underlying mechanism behind this effect,
and how general the phenomenon is. A key insight into this
problem is obtained by examining the dependence on the
noise strength σ . When we lower σ (at fixed �t = 0.1) in
the PL framework, the value of αs decreases, approaching
αMP = −0.889 from above. This is as expected, in that the
noise should favor the inactive state. Lowering σ within the
DCM scheme also lowers αs , but in this case, it is moving
yet further from αMP, as seen in Fig. 2. Lowering σ further
towards zero, αs is seen to continue to decrease, approaching
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FIG. 2. The location of the stochastic stall point αs for the DCM
scheme as a function of �t for σ 2 = 1, 3/4, and 0, the latter being
αDCM

MP (�t). D = 1, β = 2, γ = 1. The finite σ 2 results are seen to be
approaching the deterministic result for the corresponding �t . Also
shown is the analytical approximation from Eq. (10), as well as the
true Maxwell point, αMP, for reference.

some limiting value below αMP as σ → 0. This leads us to
conclude that even in the deterministic model, when done
with the DCM operator breakup, there is a �t dependent shift
in the value of the deterministic Maxwell point, so that we
have that αDCM

MP = αDCM
MP (�t). We have verified this directly by

simulating the deterministic version of the DCM algorithm,
first treating the quadratic and cubic reaction terms together via
Runge-Kutta, and then doing a combined update of the linear
term and the approximate diffusion term. This latter update is

φi = S

ν
(eν�t − 1) + φ0

i e
ν�t , (7)

where S = D/(�x)2 ∑
j∈nn φ0

j and ν = α − 2Dd/(�x)2,
where d is the spatial dimensionality. The results of this
calculation are presented in Fig. 2. We see that indeed the
deterministic MP in the DCM scheme has acquired a �t

dependent shift toward more negative values. Thus, it is not
that αs is on the high-stress side of αDCM

MP , it is simply that,
as we have seen, for the DCM algorithm, αDCM

MP (�t) itself has
moved to due to the finite value of �t , an effect not present in
PL.

IV. DETERMINISTIC MAXWELL POINT IN DCM

We have seen that the finite �t shift in the stochastic stall
velocity, αs , is, in DCM, essentially the same in sign and
magnitude as the shift in the deterministic Maxwell point
αDCM

MP (�t). This suggests that this shift has nothing to do with
the noise, and its origin comes from the operator-splitting
procedure itself.

Lee et al. [11] have presented a scheme that allows one to
compare two splittings of the local linear (growth and diffusion
outflow) terms, including the effect of noise. Their scheme
provides the renormalized values of the reaction-diffusion
constants and noise amplitude of one splitting procedure in
terms of those of the other one and the time step �t . Since we
are interested in the shift in the deterministic Maxwell point

from its exact value induced by the DCM splitting, it is simpler
to obtain it directly by considering performing a DCM update
on a spatially uniform state φ0.

Obviously, diffusion should play no role in this case.
However, implementing the combined diffusion and linear
reaction step, Eq. (7) here yields

φ1 = φ0

[
2Dν

ν(�x)2
(eν�t − 1) + eν�t

]
(8)

which is clearly D dependent and not equal to the exact result
eα�tφ0. Expanding for small �t , we get

φ1 = φ0

[
1 + α�t + (α2 − 2dDα)

(�t)2

2

]
. (9)

In principle, we need to consider also the implementation of
the separate update of the nonlinear reaction terms as well.
However, as we shall see, this latter update does not introduce
a further shift of the Maxwell point, and we postpone it for the
moment. Just considering the linear or diffusion update, we
see that for α < 0, the updated value φ1 is larger than it should
be by an amount dDα�t2φ0. A convenient way to think of
this, along the lines of Lee et al., is that there is an effective
αeff (�t) ≈ α(1 − dD�t). This can be shown to agree exactly
with the shift of α between the PL and DCM splittings, using
an extension of the Lee et al. results (due to the incorporation of
the nonlocal diffusional source term in the deterministic update
in PL, which is not considered in their work), as the shift is
completely absent in the PL splitting, the diffusion there having
no effect on a constant state. This effective shift in α induces a
shift in the Maxwell point, so that the DCM Maxwell point is at
αeff = −2β2/(9γ ), or αDCM

MP ≈ −2β2/9c/(1 − Dd�t). Since
we are working at D = 1, d = 2, and �t = 0.1, this amounts
to a 20% increase in the magnitude of αMP, consistent with our
numerics.

Moreover, we can extend this concept of αeff to all values
of �t , which gives that αDCM

MP (�t) is given implicitly by

e−2β2�t/9γ =
[

2Dd

ν(�x)2
(eν�t − 1) + eν�t

]
;

ν = αDCM
MP (�t) − 2Dd/(�x)2. (10)

This is indicated as well in Fig. 2, showing excellent agreement.
It should be noted that the tipping point is also similarly shifted
in the DCM scheme, so that it remains safely on the high-stress
side of the Maxwell point, as it physically reasonable.

To check that the treatment of the nonlinear terms does not
induce a further shift, we note that using a second-order update
of the nonlinear terms N (φ) = βφ2 − γφ3 yields a final value
of φ of

φ2 = φ1 + �tN (φ1) + (�t)2

2
N (φ1)N ′(φ1)

≈ φ1 + �tN (φ1) + (�t)2

2
N (φ0)N ′(φ0)

≈ φ0 + �t[αφ0 + N (φ0)] + (�t)2

2
[(α2 − 2dDα)φ0

+N ′(φ0)(2αφ0) + N (φ)N ′(φ0)]. (11)
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This is to be compared to the exact second-order result

φ2 = φ0 + �t[αφ0 + N (φ0)] + (�t)2

2
[αφ0 + N (φ0)][α + N ′(φ0)]

≈ φ0 + �t[αφ0 + N (φ0)] + (�t)2

2
[α2φ0 + αφ0N ′(φ0) + αN (φ0) + N (φ0)N ′(φ0)]. (12)

We see that in addition to the extra term −dDαφ0(�t)2 noted
above, there is an additional term arising from the splitting off
of the linear reaction term from the nonlinear ones, equal to
(�t)2α/2[φ0N ′(φ0) − N (φ0)]. The additional terms in φ2 can
be considered to this order as arising from additional reaction
terms in the differential equation

�R = (�t)
{
−dDαφ + α

2
[φN ′(φ) − N (φ)]

}
. (13)

These additional reaction terms cause a shift in φeq, the
equilibrium value of φ, even for D = 0. For example, at the
(true) Maxwell point α = αMP = −2β2/(9γ ), the D = 0 shift
amounts to a shift in φeq of 2β3(�t)/(27γ 2). To calculate the
shift in the Maxwell point itself, we note that the added reaction
terms �R give rise to an additional effective potential �V ,
where �R = −�V ′, of

�V = �t

2
[dDαφ2 − αφN (φ) − 2αVN (φ)]. (14)

Here, VN is the effective potential due to the nonlinear reaction
terms. The Maxwell point is the value of α at which the
effective potential V (φeq) = 0. The shift in φeq does not
contribute to a shift in the value of the effective potential to
leading order since the derivative of V at an equilibrium point
vanishes. At the unshifted equilibrium φ0

eq,

αφ0
eq = −N

(
φ0

eq

)
,

α
(
φ0

eq

)2

2
= VN . (15)

Substituting these in Eq. (14) leads to the cancellation of the
change in V (φeq) due to the nonlinear reaction terms, so the
entire shift in the Maxwell point is indeed due to the particular
mixing of the linear growth and diffusion terms in the DCM
scheme.

It should be noted that, if instead of treating the nonlinear
reaction terms separately in the DCM scheme, they were
incorporated as constant source terms, akin to the treatment
of the off-site diffusion terms, there would be no shift in the
Maxwell point at all. In this case, there is only one update
step which handles all the terms, and so the total update for a
constant φ0 would be

φ1 = 1

ν

[
2D

(�x)2
φ0 + N (φ0)

]
(eν�t − 1) + eν�tφ0

≈ φ0 + (�t)[αφ0 + N (φ0)] + ν(�t)2

2
[αφ0 + N (φ0)].

(16)

The additional reaction term in this case is

�R = (�t)

2

{
− 2D

(�x)2
[αφ + N (φ)]

− αφN ′(φ) − N (φ)N ′(φ)

}
. (17)

Here, there is no shift in φeq since �R is proportional to the
original reaction term αφ + N (φ). The shift in the effective
potential reads as

�V = (�t)

2

{
2D

(�x)2

[
αφ2

2
+ VN (φ)

]

+ α[φN (φ) + VN (φ)] + N 2(φ)

2

}
. (18)

Using Eqs. (15), we see that �V (φ0
eq) = 0, and so here there

is no first-order shift to the Maxwell point, either, as in the
PL approach. We have verified this point by direct numerical
simulation as well (not shown).

It is intriguing to ask what effect presenting the DCM
stochastic results in terms of αeff instead of α has. This is
presented in Fig. 1 as the curve DCM corrected. We see that
the remaining finite-�t effects are roughly the same size as
those of the PL method, and so the use of αeff serves as a
simple ex post facto method of correcting the DCM algorithm.

Thus, we have seen that the joining together of the approxi-
mate diffusion operator and the linear term in the DCM scheme
leads to the introduction of an αeff . Any scheme, in particular
the PL scheme, where the diffusion has no effect on a uniform
state would not suffer from this problem.

V. DISCUSSION

We have seen that the DCM method captures the correct
universal behavior and is exact in the �t → 0 limit. The
apparent anomalies observed are due to the unexpected finite-
�t shift in the location of the deterministic Maxwell point, and
so of the stochastic stall point as well. This is why in the Martin
et al. simulation the stochastic stall point appeared to move
away from the deterministic Maxwell point with decreasing
noise, which is physically unacceptable,

To verify this specific point in the two-dimensional (2D)
scenario considered in Martin et al., we have measured the
location of the stochastic stall point as a function of �t for
the set of parameters singled out by Martin et al., where
the stochastic transition was on the high-stress side of the
deterministic Maxwell (stall) point. As seen in Fig. 1, and
consistent with what we have seen above, the DCM transition
point has a strong dependence of �t and indeed crosses over
to the correct side of the deterministic Maxwell point in the
�t → 0 limit. The PL transition point has a very much weaker
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dependence on �t and only slightly overestimates the effect
of stochasticity. We are currently engaged in a detailed study
of the phase diagram of the two-dimensional system using the
more quantitatively (and qualitatively) reliable PL method.

We note in passing that there is no similar shift in the
deterministic phase transition point of the stochastic Fisher
equation (β < 0, γ = 0) since this occurs at α = 0, and the
shift in α is multiplicative and so vanishes at α = 0. We
also note that when measuring the finite �t corrections
for the stochastic Fisher equation, we failed to obtain the
better than 1% accuracy observed by DCM for the α of the
stochastic transition with their reported �t = 0.25; instead,
we obtained this accuracy only for a much smaller time
step �t = 0.025.

On its face, incorporating the diffusion into the stochastic
term could be expected to improve the accuracy since one
expects that the more terms one can handle analytically the
better. However, the particular breakup employed in the DCM
approach leads to a mixing of the linear decay with the diffusion
and weakens the decay, thus favoring the active state. The PL
method and a modified DCM method where the diffusion terms
are incorporated in the deterministic update do not suffer this
defect.
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