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In the paper the phase diagram of J1-J2 frustrated antiferromagnet with spin S = 1 and single-ion anisotropy
is studied on the planar quadratic lattice in the cluster approximation. The Bogolyubov inequality is adopted for
the Gibbs energy calculation for the case of 2 × 2 and 4 × 4 clusters. On this basis, the ranges of existence of the
antiferromagnetic, superantiferromagnetic, and paramagnetic phases are investigated for the antiferromagnetic
nearest-neighbor (J1 < 0) and next-nearest-neighbor (J2 < 0) interactions. In particular, the occurrence of
tricritical and triple points is discussed and a comparison between the results for 2 × 2 and 4 × 4 clusters is
made. The results are also compared with the classical MFA method, adopted here for the model in question, as
well as with selected literature results for particular choices of interaction parameters.
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I. INTRODUCTION

In magnetic systems the spin frustration arises frequently
due to the presence of competing exchange interactions.
The exemplary theoretical system is the Ising spin S =
1/2 model on the square lattice with the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions (so called
J1-J2 model) [1–3]. In this model the NN interactions, J1,
are either ferromagnetic or antiferromagnetic, whereas the
NNN interactions, J2, are of the antiferromagnetic character.
The physical realization of the Ising system have been the
K2CoF4 and Rb2CoF4 compounds [4,5], which are the quasi-
two-dimensional anisotropic antiferromagnets with spin S =
1/2. Another example is the FeCl2 compound [6], which is
the quasi-two-dimensional anisotropic ferromagnet with spin
S = 1.

In theoretical studies of the J1-J2 models many efforts have
been focused on calculations of the phase diagrams, including
the existence of ferromagnetic (F), antiferromagnetic (AF),
superantiferromagnetic (SAF), and paramagnetic (P) phases
[1–3,7–12]. In the above-mentioned papers, the order of phase
transitions and possible occurrence of the tricritical points have
been widely discussed using various methods. Apart from the
Ising model with spin S = 1/2, the investigations include also
the Heisenberg model with spin S = 1/2 [13], the spin S = 1
Blume-Capel model with transverse crystal field [14], as well
as the Blume-Capel model with random field [15].

As far as the spin S = 1 systems are concerned, the
frustrated J1-J2 model including both NN and NNN bilinear
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interactions, together with the single-ion anisotropy term, has
been studied in Ref. [8]. In one particular case, when J2 = 0,
the model in question simplifies and becomes equivalent to
the Blume-Capel model with NN interactions and single-ion
anisotropy [16,17]. It should be mentioned that to solve the sim-
plified model many approximative methods have been applied,
for instance the molecular field approximation (MFA) [18],
effective field theory (EFT) [19], cluster variational method
in pair approximation (CVMPA) [18], or Monte Carlo (MC)
technique [20–28] (including a combined MC-MFA approach
[29]) as well as high temperature series expansion (HTSE)
approach [30] or transfer matrix technique [31] and other
techniques [32]. However, for the case when NNN interactions
are present, the literature results are far less common, to
mention the works in EFT approximation [8] or in MFA
approximation [33].

The spin S = 1 model, in which the NNN interactions are
competing with NN interactions, and the single-ion anisotropy
plays a significant role, is most interesting because it leads
to multicausal spin frustrations. At the same time it brings
additional difficulties concerning theoretical treatment and, as
a consequence, some methods cannot be adopted for its studies.
For instance, adaptation of the CVMPA method for frustrated
systems occurred to be rather difficult even for spin S = 1/2
[34] and therefore that method would be even more challenging
for spin S = 1. This concerns especially the range of strong
frustration, at low temperatures. However, one should mention
that in some limited cases, for instance when the long-range
RKKY interactions are present and the temperatures are high
enough (being around the phase transition temperature), the
CVMPA method may lead to the acceptable results [35].

As regards the EFT method, its main deficiency lies in
the fact that this approach does not yield directly the Gibbs
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energy, and therefore such a method is not useful for studies of
the first-order phase transitions. For this reason, in Ref. [8]
the EFT approach was restricted only to investigations of
continuous phase transitions, including the existence of the
tricritical point. A novel idea of obtaining an analytical form
of the Gibbs energy for spin S = 1 has been presented in
Ref. [36]. However, in our opinion that approach was based
on the simplified ansatz which might be somehow disputable.
It should also be mentioned that a self-consistent method of
obtaining the Gibbs energy within EFT has been proposed in
Ref. [37]. Unfortunately, that approach was developed only
for spin S = 1/2 and has not been extended yet for higher spin
values.

In the state of the art, the possible analytical approach
to frustrated spin S = 1 systems should be different from
the methods mentioned above. The desired method would be
universal regarding the treatment of various spin magnitudes
S, and also would be controllable by means of systematic
approximations. One of the possible approach, especially
convenient from the point of view of thermodynamic cal-
culations (yielding the magnetic Gibbs energy), is based on
the Gibbs-Bogolyubov inequality. Derivation of this gen-
eral method has been presented is several classical papers
[38–41] and its applications have been reviewed for example
in Ref. [42]. The essence of the method lies in finding an upper
bound for the actual Gibbs energy for the studied system by
selecting a parameter-dependent trial Hamiltonian and solving
it exactly. The parameter or parameters are determined by
variational minimization of the the bound (right-hand side of
the inequality) for the Gibbs energy. The selection of various
trial Hamiltonians allows the systematic construction of a
well-controlled wide class of approximations. By convention,
the method has been used for the development of the single-
particle classical MFA, where the ordinary self-consistent
equation for magnetization is shown to minimize the Gibbs
energy bound (for details see, for example, Refs. [43] and [44]).
Recently, the extension of the method, for the case when the
system can be divided into multi-spin identical clusters, has
been demonstrated in Refs. [3,45,46].

In this approach, the cluster shape should reflect the sym-
metry of the lattice, and the number of spins is limited only by
the computational capability, since the statistical sum inside
the cluster is calculated numerically. The clusters with more
rounded shape enable to increase the number of spin-spin
bonds which are contained inside the clusters and are exactly
taken into account. At the same time, for such clusters, the role
of molecular fields acting on the cluster edges is minimised,
which increases the accuracy of the method.

In the present paper we select this approach for studies of
the frustrated J1-J2 model with spin S = 1 on the planar square
lattice. Thus, we intend to fill the gap left in the investigations
as a result of deficiencies of other analytical methods. To
take into account the spin frustration, both the NN (J1) and
NNN (J2) exchange interactions are assumed to be of the
antiferromagnetic character, and the single-ion anisotropy term
(D) is simultaneously included.

Our aim is to investigate the phase diagram of the model
in the D-J2 space in the full range of temperatures T � 0.
In particular, the existence of the tricritical points (TCPs),
separating the continuous (second order) and discontinuous

(first order) phase transition boundary, will be studied. In the
systematic approach the results will be obtained and compared
for the cases of 1-site clusters (classical MFA), 4-site (2 × 2)
clusters, and 16-site (4 × 4) clusters. For some special cases of
the Hamiltonian parameters, like J2 = 0 (Blume-Capel model
with NN interactions) or D → ∞ (Ising model with NN and
NNN interactions), the results will be compared with those
existing in the literature and obtained using different methods.

II. THEORETICAL MODEL

The spin S = 1 Hamiltonian is assumed in the form of

H = − J1

∑

〈i,j〉
Sz

i S
z
j − J2

∑

〈〈i,j〉〉
Sz

i S
z
j

− D
∑

i

(
Sz

i

)2 − h
∑

i

Sz
i , (1)

where J1 < 0 and J2 < 0 are the NN and NNN antiferromag-
netic exchange interactions, respectively. D is the single-ion
anisotropy parameter and h stands for the external magnetic
field. Sz

i denotes the z component of the spin in ith lattice site,
and Sz

i = ±1, 0.
The Gibbs free energy G for the Hamiltonian H is found

from the Gibbs-Bogolyubov inequality [38–41],

G � G0 + 〈H − H0〉0, (2)

assuming that G reaches its upper limit. G0 is the Gibbs free
energy for the trial Hamiltonian H0 and the thermal averaging
〈H − H0〉0 is performed with the trial density matrix, namely,

〈H − H0〉0 = Tr (H − H0)e−βH0

Tr e−βH0
. (3)

In general, G0 can be written in the form

G0 = −kBT ln(Tr e−βH0 ), (4)

where β = 1/kBT .
We assume that the total number of spins (lattice sites) in

the system is denoted by N . If the system can be divided into
n-atomic (n > 1) identical and mutually exclusive clusters c,
the total trial Hamiltonian can be proposed as a sum of the
cluster trial Hamiltonians Hc

0,

H0 =
N/n∑

c

Hc
0. (5)

Then, the Gibbs energy per lattice site is given by

G

N
= −1

n
kBT ln

(
Trc e−βHc

0
) + 1

N
〈H − H0〉0, (6)

where Trc denotes the trace taken over the cluster c. In this
paper we assume two sizes of the clusters reflecting the
magnetic symmetry of the AF and SAF phases: 2 × 2 clusters
with n = 4, and 4 × 4 clusters with n = 16. Illustrations of
these clusters are presented in Fig. 1, both for AF and SAF
phase, in the two-sublattice model. Solid and dashed lines
correspond to NN (J1) and NNN (J2) interactions, respectively.
These interactions, being of intracluster type, are identical
with the interactions forming the original Hamiltonian H. The
edge spins, interacting with the molecular fields, are numbered
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FIG. 1. Schematic illustration of 2 × 2 [(a) and (b)] as well as
4 × 4 [(c) and (d)] clusters. Two sublattices are marked by filled and
empty symbols. AF phase is presented in figures (a) and (c), whereas
SAF phase is presented in panels (b) and (d). The positions of edge
spins are numbered in accordance with the corresponding formulas
from Appendices B and C.

by i position (i = 1, 2, 3, . . .) in accordance with the spins
notations Si in corresponding formulas (see Appendices A–C).

The cluster trial Hamiltonian can be decoupled as

Hc
0 = H̄0 + H′

0. (7)

H̄0 describes all NN and NNN interactions of the spins inside
the cluster. These interactions (marked graphically by solid and
dashed lines in Fig. 1) are taken into account exactly, what can
be done even for large n if the corresponding traces in Eqs. (3)
and (6) are performed numerically. Besides, H′

0 describes
interaction of the edge spins with the molecular fields acting on
these sites from the cluster neighborhood. The molecular field
parameters are introduced as an approximation, which is nec-
essary for factorization of the trial partition function Tr e−βH0 .
They can be determined from the minimisation condition of the
total Gibbs energy G with respect to these parameters. It should
be noted that the molecular fields depend on the spin location
at the cluster edge, as well as on the sublattice index a or b, as
the (super)antiferromagnetic system is divided in such a way.
The derivation of the appropriate formulas for the variational
parameters is, in general, analogous to the case of ordinary
MFA (for details see, for example, Refs. [43] and [44]).

In Appendices A–C we collected the corresponding for-
mulas for H′

0, the molecular fields parameters in equilibrium,
the perturbative terms 1

N
〈H − H0〉0 in Eq. (6), as well as

for the local magnetizations at the cluster edges, which are
determined self-consistently. All those formulas are presented
for 2 × 2 and 4 × 4 clusters, both for AF and SAF phases. For
completeness, the relationships in the classical MFA, based on
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FIG. 2. The ground-state phase diagram, illustrating distribution
of AF, SAF, and P phases in the D/|J1|-J2/|J1| space, at T = 0. The
spin states are schematically depicted. A new mixed phase existing
on P/SAF boundary is also shown.

the 1-site clusters for AF and SAF phases, are also included
there.

From the formulas presented in the Appendices A–C, the
Gibbs free energies of AF and SAF phases can be calculated
numerically both for the classical MFA, as well as for the
cluster method with 2 × 2 and 4 × 4 clusters, on the basis of the
general Eq. (6). In turn, the Gibbs potential of the paramagnetic
phase is obtained from the same formulas only by setting
the molecular field parameters equal to zero. After the Gibbs
free energies are determined, all the thermodynamic properties
can be calculated self-consistently. In particular, for the phase
diagrams determination, the Gibbs energies per lattice site,
G/N , (i.e., the chemical potentials) of coexisting phases in
equilibrium should be equated, for the same temperature T

and external field h.
The numerical calculations of the phase diagrams, based

on the presented formalism, will be shown and discussed in
Sec. III for the spontaneously ordered phases, i.e., when the
external magnetic field is absent (h = 0).

III. NUMERICAL RESULTS AND DISCUSSION

The numerical results are presented starting from the
ground-state phase diagram (Fig. 2) in the D/|J1|-J2/|J1|
space. The areas corresponding to the antiferomagnetic, super-
antiferromagnetic, and paramagnetic (spin-zero nonmagnetic)
phases are denoted by AF, SAF, and P, respectively. The spin
states in these phases are depicted schematically. It can be noted
that the diagram for T = 0 is analogous to that presented in
Ref. [8]. However, the ferromagnetic phase obtained in Ref. [8]
is replaced here by the antiferromagnetic one. Moreover, we
found a new mixed phase existing solely on the P/SAF line
(and schematically depicted in Fig. 2), which has not been
reported previously. In this new phase the spin-zero state is
fixed at every second spin. In such a case, the NN interactions
do not contribute to the magnetic energy, while the NNN
interactions cancel out with the single-ion anisotropy terms,
if D/|J1| = 2J2/|J1|. Therefore, the energy of this phase is
zero in the ground state, the same as for the paramagnetic
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FIG. 3. The phase diagram showing the Néel temperatures of AF
phase, kBTN/|J1|, vs. single-ion anisotropy, D/|J1|, for J2 = 0, i.e.,
for NN interactions only (without frustrations). Results of different
approximations are presented. The solid lines illustrate the continuous
(second order) phase transitions, whereas the dashed lines are for the
discontinuous (first order) ones. The TCPs are denoted by the bold
dots.

(spin-zero nonmagnetic) phase. The mixed state is stable only
in the ground state (for T = 0). It is worth noticing that the
SAF state presented in Fig. 2 is the same as the “stripped”
state according to Fig. 1 of Ref. [3]. We also would like to
stress the point that the ground state phase diagram presented
in Fig. 2 is exact, not depending on the cluster size or any
approximation. The symmetry of the ground states is connected
with the symmetry of the underlying square lattice. It has also
been found that the phase transitions between all the ground
states are discontinuous (of the first order).

The order parameters for each ground state are the sublattice
magnetizations, which are characteristic of a given cluster. For
instance, for 4 × 4 cluster the edge magnetizations for AF
phase are given by the set of 4 Eqs. (C5), whereas for SAF phase
the set of six Eqs. (C10) is appropriate. Having solved these two
sets of equations we find the Gibbs energies [Eq. (6)] associated
with them. Then, the stable phase is chosen, corresponding to
that solution for which the Gibbs energy reaches the lowest
value. The criterion based on the Gibbs potential minimization
allows the determination of the stability regions for AF, SAF,
and P phases, not only in the ground state (where it gives exact
result), but also in the finite-temperature phase diagrams.

In Fig. 3 the finite-temperature phase diagram is presented
in D/|J1|-kBT/|J1| coordinates for the absence of NNN
interaction (J2 = 0). In this case the J1-J2 model reduces to
the pure Blume-Capel model which, for the ferromagnetic
case, has been intensively studied in literature. In particular,
for D = 0 the Curie temperatures, kBTC/|J1|, have been found
by different methods, giving the following results: 2.667 (MFA
[18]), 2.322 [47], 2.220 (present, 4 × 4 cluster), 2.188 (EFT
[19]), and 2.066 (CVMPA [18]) or 1.952 [48]. According
to our knowledge, the best results for D = 0 were obtained
either by LTSE method (namely, kBTC/|J1| = 1.6936 [49]),
HTSE-LTSE method: 1.69378 [30] or using MC approach:
1.690 [23], 1.681 [21], 1.695 [50]. Also, the HTSE-LTSE
results for D/|J1| = −0.5 equal to 1.5664, for D/|J1| = −1.0

TABLE I. Coordinates of TCP for the pure Blume-Capel model,
with NN interactions only, obtained by different methods.

Method D/|J1| kBT ∗
N/|J1|

MFA [18] −1.848 1.333
Present (4 × 4 cluster) −1.878 1.020
EFT [19] −1.880 1.01
CVMPA [18] −1.900 0.913
EFT [48] −1.912 0.846
MFT-MC [29] −1.941 0.725
MC [21] −1.965 0.609
MC [22] −1.974 0.56
Transfer matrix [27] −1.9660 0.6080
MC [31] −1.96582 0.60858

equal to 1.3986, for D/|J1| = −1.5 equal to 1.1467 and for
D/|J1| = −1.9 equal to 0.766 (all after Ref. [30]) can be
mentioned.

However, for J2 = 0 and D/|J1| < 0 the model exhibits
existence of the tricritical point (TCP) where the second-
order phase transition lines (denoted by continuous lines in
Fig. 3), separating antiferromagnetic and paramagnetic phases,
become the first-order phase transitions (represented by the
dashed lines). The TCPs positions are marked by the bold
dots in Fig. 3. The coordinates of tricritical points for the
antiferromagnetic model, with the assumption that the Néel
temperature TN for J1 < 0 equates with the Curie temperature
TC for J1 > 0, are collected in Table I for various methods.

From the comparison of numerical results presented in
Fig. 3 and Table I one could conclude that the present
approximation based on 4 × 4 cluster for J2 = 0, i.e., without
frustration, is more accurate than the classical MFA method
(and better than approximation based on 2 × 2 cluster) but
is less accurate than cluster variational method in pair ap-
proximation (CVMPA). The accuracy obtained here for 4 × 4
cluster in the case of J2 = 0, as regards kBTN/|J1| for D = 0
and the position of TCP, is comparable with accuracy of the
effective field theory (EFT). It is also worth noticing that for
T → 0 all the curves give convergent results and they end
at D/|J1| = −2, in agreement with the ground-state phase
diagram for J2/|J1| = 0 (Fig. 2).

According to the discussion in Introduction, the methods
like CVPMA and EFT are not suitable to be fully applied
to studies of the frustrated model, i.e., when J2/|J1| < 0,
in the whole range of Hamiltonian parameters and arbitrary
temperature. Therefore, in further investigations of the J1-J2

model with spin S = 1 and single-ion anisotropy, we decided to
use the cluster approach, which formalism has been described
in the Sec. II. In numerical calculations we start from the
smallest possible cluster, i.e., consisting of a single atom, which
corresponds to the classical MFA method. As far as we know,
the MFA method has not been exploited yet with the present
model, therefore such studies are justified and purposeful as a
first step. The results of MFA calculations for J1 < 0, J2 � 0,
and D � 0 are collected in Figs. 4–6.

In Fig. 4 the MFA phase diagram is shown illustrating the
dimensionless Néel temperature kBTN/|J1| of AF phase versus
anisotropy parameter D/|J1|. Various J2/|J1| ratios from the
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FIG. 4. The phase diagram in MFA showing the Néel tempera-
tures of AF phase, kBTN/|J1|, vs. single-ion anisotropy, D/|J1|, for
different NNN interactions J2/|J1|. Solid and dashed lines correspond
to second- and first-order phase transitions, respectively. TCPs posi-
tions are marked by the bold dots.

range of 0 � J2/|J1| � −0.5 are chosen. As before, the solid
lines present the continuous (second order) phase transitions,
while the dashed lines correspond to the discontinuous (first
order) ones. The evolution of TCPs (marked by the bold dots)
is seen when the ratio J2/|J1| changes. It can be concluded
that the TCP position moves linearly with J2/|J1| change and
the temperature kBT ∗

N/|J1| decreases when J2/|J1| is shifted
from 0 to −0.5. At the same time, for T → 0 the range of AF
phase in D-direction decreases linearly with diminishing of
J2/|J1| ratio, in agreement with the ground-state phase diagram
(Fig. 2).

Figure 5 presents a continuation of the phase diagram from
Fig. 4 for the range of J2/|J1| < −0.5. In this case the AF
phase is replaced by the SAF one. The evolution of TCPs for
SAF phase proceeds in inverse direction, i.e., for decreasing

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2  0
 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

k B
T N

 / 
| J

1 |

D / | J1 |

J2 / | J1 | = −1.0
−0.9

−0.8
−0.7

−0.6

SAF

P MFA

FIG. 5. The phase diagram in MFA showing the Néel temper-
atures of SAF phase, kBTN/|J1|, vs. single-ion anisotropy, D/|J1|,
for different NNN interactions J2/|J1|. Solid and dashed lines corre-
spond to second- and first-order phase transitions, respectively. TCPs
positions are marked by the bold dots.
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FIG. 6. The phase diagram in MFA showing the Néel tempera-
tures of AF and SAF phases, kBTN/|J1|, vs. NNN interaction param-
eter, J2/|J1|, for different single-ion anisotropies, D/|J1|. Solid and
dashed lines correspond to second- and first-order phase transitions,
respectively. TCPs positions are marked by the bold dots. At J2/|J1| =
−0.5, for the curves with D/|J1| = 0 and D/|J1| = −0.5, the triple
points exist for T > 0, connecting the AF, SAF, and P phases in
equilibrium.

J2/|J1| ratio the TCP temperature kBT ∗
N/|J1| increases linearly.

As a result, the range of SAF phase expands in D-direction
simultaneously with evolution of TCPs, which is expected from
the ground-state phase diagram (Fig. 2).

It is also interesting to present the MFA phase diagram in
kBT/|J1|-J2/|J1| coordinates, when the D/|J1| parameters are
constant. Such diagram is illustrated in Fig. 6. It can be noted
that the curves are symmetric with respect to J2/|J1| = −0.5,
which separates the ranges of AF and SAF phases. For the
D/|J1| = 0 and D/|J1| = −0.5 curves, the phase transitions
are only of the second order and the three phases: AF, SAF, and
P meet at the triple point, which is located at J2/|J1| = −0.5.
It is interesting that for D/|J1| = 0, the diagram is linear
and the temperature of the triple point at J2/|J1| = −0.5
amounts exactly to kBTN/|J1| = 1 1

3 , which is half of the value
kBTN/|J1| = 2 2

3 obtained for J2/|J1| = 0 and J2/|J1| = −1.
For D/|J1| = −1, the TCPs occur symmetrically for the AF
and SAF phases and the triple point is moved to T = 0. For
D/|J1| < −1, the temperatures of TCP points tend to increase
symmetrically with respect to J2/|J1| = −0.5, whereas the AF
and SAF phases become separated, leaving the space between
them for the paramagnetic phase. Again, this behavior is in
accordance with the ground-state phase diagram (Fig. 2).

Having calculated the classical MFA phase diagram, as a
next step we demonstrate the improvement which can result
from considering larger clusters. The results are illustrated
in Figs. 7–9, which are prepared in the same coordinates
as Figs. 4–6, respectively. For instance, in Fig. 7 the Néel
temperature of AF phase, kBTN/|J1|, is plotted as a function
of the single-ion anisotropy, D/|J1|, for three values of the
NNN exchange interaction parameters: J2/|J1| = 0, −0.25,
and −0.5. Thin lines correspond to the smaller clusters (2 × 2),
whereas the thick lines are for the larger clusters (4 × 4). As
before, solid lines denote the continuous phase transitions,
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FIG. 7. The phase diagram showing the Néel temperatures of AF
phase, kBTN/|J1|, vs. single-ion anisotropy, D/|J1|, for different NNN
interactions J2/|J1|. Thick lines correspond to the approximation
based on 4 × 4 clusters, whereas thin lines are for 2 × 2 clusters.
Solid and dashed lines correspond to second- and first-order phase
transitions, respectively. TCPs positions are marked by the bold dots.

while the dashed lines are for first-order ones. The positions
of TCPs are marked by the bold dots. By comparison of Fig. 7
with Fig. 4 one can conclude that the cluster phase diagram
is qualitatively similar to that in MFA. However, comparing
it quantitatively, an increase of the cluster size results in
reducing the Néel temperatures and lowering of the position
of TCPs. We note that the changes in TCP temperatures are
much more evident than the changes in D/|J1| coordinates
for these points. However, in the low-temperature range, the
differences between curves obtained for different clusters
become negligible, and for T → 0 both curves tend to the same
point resulting also from the ground-state phase diagram.
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FIG. 8. The phase diagram showing the Néel temperatures of SAF
phase, kBTN/|J1|, vs. single-ion anisotropy, D/|J1|, for different NNN
interactions J2/|J1|. Thick lines correspond to the approximation
based on 4 × 4 clusters, whereas thin lines are for 2 × 2 clusters.
Solid and dashed lines correspond to second- and first-order phase
transitions, respectively. TCPs positions are marked by the bold dots.
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FIG. 9. The phase diagram showing the Néel temperatures of AF
and SAF phases, kBTN/|J1|, vs. NNN interaction parameter, J2/|J1|,
for different single-ion anisotropies, D/|J1|. Thick lines correspond
to the approximation based on 4 × 4 clusters, whereas thin lines are
for 2 × 2 clusters. Solid and dashed lines correspond to second- and
first-order phase transitions, respectively. TCPs positions are marked
by the bold dots. The triple points existing for T > 0, for the curves
labeled by D/|J1| = 0, are shifted toward J2/|J1| < −0.5.

By the same token, Fig. 8 can be compared with Fig. 5. In
Fig. 8 the Néel temperatures, corresponding to SAF phase, are
plotted versus anisotropy D/|J1|, for the three values of NNN
exchange interactions: J2/|J1| = −0.6, −0.8, and −1.0. The
convention regarding thickness and style of the lines remains
the same as in previous figures. In this case an interesting
feature is found for the curve with J2/|J1| = −0.6 and 2 × 2
cluster: namely, the existence of two tricritical points. On this
basis, it could be concluded that for this curve the second-order
transitions are confined to the region between two TCPs.
However, on the curve prepared for 4 × 4 clusters, and the same
value of J2/|J1| = −0.6, this phenomenon is not confirmed,
since only one TCP exists there. Noting that the diagram for
4 × 4 clusters is qualitatively similar to the MFA diagram,
we suppose that the existence of two TCPs on the curve
with J2/|J1| = −0.6 is rather an artefact of approximation
connected with this specific 2 × 2 cluster size. The origin
of the first-order transitions appearing on the upper part of
the line with J2/|J1| = −0.6 for 2 × 2 cluster will be further
commented on the basis of the next figure (Fig. 9).

In Fig. 9 the Néel temperatures, corresponding both to AF
and SAF phases, are plotted versus NNN exchange integral
J2/|J1| for the three values of single-ion anisotropy: D/|J1| =
0, −1.0, and −1.5. This diagram, prepared for 2 × 2 and
4 × 4 clusters, can be compared to Fig. 6 prepared for MFA.
The convention regarding thickness and style of the lines
remains unchanged. First of all, it should be noted that the
ideal symmetry of the curves presented in Fig. 6 is broken
when larger clusters are taken into account. This is most clearly
seen in the vicinity of J2/|J1| = −0.5, where, for instance, the
vertical dashed lines, for D/|J1| = 0 and low temperatures,
bend toward lower values of J2/|J1| when T increases. As a
result, the positions of triple points are shifted towardJ2/|J1| <

−0.5. This feature is interesting from the point of view of
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thermal behavior of the system, since in the close vicinity of
J2/|J1| = −0.5 (and J2/|J1| < −0.5) the SAF phase, existing
for low temperatures, is replaced by the AF phase when the
temperature increases (and then the continuous phase transition
to P phase takes place). The temperature transition from SAF
to AF phase is then of the first order. Thus, Fig. 9 shows that
the range of existence of AF phase can exceed the value of
J2/|J1| = −0.5, provided that the anisotropy D is small and
the temperature approaches the phase transition temperature.

Comparing the curves for 2 × 2 and 4 × 4 clusters in Fig. 9
we see that the most pronounced changes occur forD/|J1| = 0.
In this case, for 4 × 4 cluster, the TCP position occurs at
J2/|J1| ≈ −0.513 and is the same as the triple point. However,
for 2 × 2 cluster, the TCP position is shifted toward the value of
J2/|J1| ≈ −0.609, which is much lower than the triple point. It
can be noted that for the point with coordinate J2/|J1| = −0.6
on the abscissa, and D/|J1| = 0, the phase transition is of
the first order. This is in accordance with Fig. 8, where the
curve with the same parameters exhibited discontinuous phase
transitions in the high-temperature regime, and the second TCP
occurred as a consequence. It can also be noticed that for
stronger anisotropy, D/|J1| � −1, the phase diagram in Fig. 9
is qualitatively similar to Fig. 6. However, as mentioned above,
the symmetry observed previously with respect to J2/|J1| =
−0.5 is not conserved in this case, and the values of Néel
temperatures are much lower. It is also worth noticing that for
D/|J1| = 0, the phase transitions from AF to P phase are con-
tinuous in the range from J2/|J1| = 0 down to the triple point.
This result is common both for classical MFA (Fig. 6) and the
cluster approximation (Fig. 9). In this context Ref. [8] should be
mentioned, where the ferromagnetic Blume-Capel model with
NN J1 > 0 and NNN J2 < 0 interactions has been considered
in EFT approximation. In that paper the TCP has been found for
the ferromagnetic phase for D/J1 = 0 in the range of −0.5 <

J2/J1 < 0. Taking into account that by changing the sign
of NN interactions from J1 > 0 to J1 < 0 the ferromagnetic
phase should be replaced by the antiferromagnetic one, lack of
TCP in the present method illustrates the discrepancy between
the results of EFT and the cluster approximation. In such a
situation, to clarify the problem, the MC simulations might be
helpful.

To have an additional test of the present method we consider
the case when D/|J1| → ∞. In this limiting case the zero spin
states are eliminated, and only Sz = ±1 states remain, which
makes the present model equivalent to the Ising model with
spin S = 1/2. The spin S = 1/2 Ising model on the square
lattice with the ferromagnetic NN and aniferromagnetic NNN
interactions has been studied in Ref. [3]. Among several meth-
ods used there the cluster method has been exploited for 2 × 2
and 4 × 4 clusters, and the phase diagram has been obtained
(see Fig. 4 in Ref. [3]). For comparison, our phase diagram is
presented in Fig. 10 for the value of D/|J1| = 100, i.e., when
the single-ion anisotropy is strong enough to approximate the
present S = 1 model by the Ising one. In Fig. 10, apart from the
curves for 2 × 2 and 4 × 4 clusters, the classical MFA result
is also presented for comparison. Again, the MFA diagram is
symmetric with respect to J2/|J1| = −0.5, moreover, the triple
point temperature amounts to kBTN/|J1| = 2, which is exactly
half of the value obtained for J2/|J1| = 0 and J2/|J1| = −1.
No sign of the first-order phase transitions is seen in the
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 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

k B
T N

 / 
| J

1 |

J2 / | J1 |

D / | J1 | =100

SAF AF

P

2x2

4x4

MFA

FIG. 10. The phase diagram showing the Néel temperatures of
AF and SAF phases, kBTN/|J1|, vs. NNN interaction parameter,
J2/|J1|, for strong, and positive, single-ion anisotropy, D/|J1| = 100.
Thick lines correspond to the approximation based on MFA and
4 × 4 cluster, whereas thin lines are for 2 × 2 cluster. Solid and
dashed lines correspond to second- and first-order phase transitions,
respectively. TCPs positions are marked by the bold dots. In case of
the approximations based on 4 × 4 and 2 × 2 clusters, the triple points
are shifted toward J2/|J1| < −0.5.

MFA diagram. In turn, for the cluster diagrams the symmetry
is broken and the TCPs are found at J2/|J1| = −0.659 for
the smaller cluster (2 × 2) and at J2/|J1| = −0.662 for the
larger one (4 × 4). Both phase diagrams are very similar to
those in Ref. [3], as far as the SAF phase is concerned.
For instance, the analogous TCP has been found in Ref. [3]
for J2/J1 ≈ 0.66, which corresponds quite accurately to our
TCP coordinate (taking into consideration the opposite sign
convention in the Hamiltonian). It has been stated in Ref. [3]
that such value is very close to the result J2/J1 ≈ 0.67 obtained
in MC simulations. However, for this value of J2/J1, the model
presented in Ref. [3] belongs to the same universality class as
the four-state Potts model. Moreover, for J2/J1 � 0.67 the
Hamiltonian can be mapped onto Ashkin-Teller model, for
which the phase transitions are of the second order. Therefore,
the Potts point at J2/J1 ≈ 0.67 seems to be well established
as TCP for the model in question, and our testing calculations
reproduce well the numerical result of Ref. [3].

It can also be noted that in Ref. [3], an additional TCP has
been found, existing for ferromagnetic phase, however, only
when 4 × 4 cluster was considered. It has been said there that
the existence of this TCP is controversial since it has not been
confirmed by MC simulations up to now. It should be stated
that the existence of analogous TCP in AF phase also cannot
be confirmed from our phase diagram (Fig. 10), since in both
approximations (corresponding to 2 × 2 and 4 × 4 clusters)
only the continuous phase transitions were observed over the
whole AF/P phase line. It is possible that the discrepancy
between our result and Ref. [3] in this point is due to the details
of the numerical procedure adopted. Anyway, the possibility
of existence of the TCP in AF phase is still worth of further
study, for instance, by employing the MC method.
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FIG. 11. The sublattice magnetizations ma and mb vs. dimension-
less temperature kBT/|J1| for 2 × 2 cluster with single-ion anisotropy
D/|J1| = 100. The curves are plotted for J2/|J1| = −0.49, −0.6, and
−0.7.

To illustrate better the phase diagram from Fig. 10, in
Fig. 11 we plot the sublattice magnetizations ma and mb

versus dimensionless temperature kBT/|J1| for 2 × 2 clus-
ter. The curves are plotted for J2/|J1| = −0.49, −0.6, and
−0.7. The case of J2/|J1| = −0.49 corresponds to AF phase
in Fig. 10, where the continuous phase transition takes
place at kBTN/|J1| = 1.291. However, for J2/|J1| = −0.6 and
−0.7 the sublattice magnetizations of SAF phase are shown.
Then, the discontinuous and continuous phase transition
temperatures amount to kBTN/|J1| = 1.641 and 2.179, re-
spectively. The parameters were selected so that the phase
transitions shown correspond to both sides of TCP for SAF
phase, as seen in Fig. 10.

IV. FINAL REMARKS AND CONCLUSIONS

In the paper the phase diagram of J1-J2 frustrated anti-
ferromagnet with spin S = 1 and single-ion anisotropy has
been studied in the cluster approximation. For this purpose, the
Bogolyubov inequality for the Gibbs energy has been adopted
for 2 × 2 and 4 × 4 clusters. The results have been compared
with those of the classical MFA method, as well as with some
outcomes of various methods reported in the literature for the
particular cases of interaction parameters.

The phase diagram has been comprehensively studied in
the domain J1 < 0 and J2 < 0, in the presence of single-ion
anisotropy D (where, due to spin frustration, the AF, SAF,
and P phases play a dominant role). Moreover, in the ground
state phase diagram, the existence of a new mixed phase along
the SAF/P line was found. In the finite-temperature phase
diagrams, the existence of tricritical and triple points have been
thoroughly examined. In particular, it has been demonstrated
that for 2 × 2 and 4 × 4 clusters, the position of the triple point,
connecting AF, SAF, and P phases, is slightly shifted toward
J2/|J1| < −0.5. This contrasts with the MFA phase diagram,
which was symmetric with respect to J2/|J1| = −0.5.

It can be concluded that the present method is suitable
for the studies of frustrated systems, especially when taking
into account the deficiencies of such approaches like EFT and

CVMPA. The main advantage of the present method is that
the Gibbs energy is obtained directly, which enables reliable
search for the first-order phase transition boundary in the phase
diagrams. Moreover, when the large clusters are considered, a
great part of spin-spin interactions in the system is included
exactly, which increases the accuracy of calculations. However,
the cluster size is limited in this method by the computational
capability, since the computing time increases exponentially
with the number of spins. For instance, in our case of spin
S = 1 and 4 × 4 cluster, the calculation of statistical sum
involves 316 states. When the iterative procedure is adopted
for solving equations for the molecular field parameters, such
statistical sum must be recalculated many times to obtain the
self-consistent solutions. The iterative procedure is necessary,
because the cluster Hamiltonian Hc

0 contains not only the spin
variables but also the magnetizations (i.e., the mean values) of
the edge spins. These magnetizations are contained in the part
H′

0 ofHc
0 [see Eq. (7)] and must be recalculated repeatedly with

all the spin variables contained in the cluster. This fact makes
the consideration of larger clusters challenging, provided that
the shape of these clusters has to reproduce the symmetry of
the magnetic phases.

It is seen from Sec. III that some differences between the
results for 2 × 2 and 4 × 4 clusters, as well as with selected
literature data, can occur. In particular, some controversy
remains about the presence or absence of TCP for AF phase
when D = 0, which has been discussed in the context of EFT
approximation [8]. The existence of additional TCP for AF
phase, when the Ising limit (D/|J1| → ∞) is considered, is
also disputable in the context of Ref. [3]. To clarify these
controversial points, application of other independent methods
would be very welcome. For instance, we believe that our
results may serve as a sound motivation for extensive MC or
series-expansion-based studies of the system in question.

It should also be concluded that after obtaining the Gibbs
energy, not only the phase diagrams but also all the thermo-
dynamic properties can be calculated. For instance, this in-
cludes thermal dependencies of the magnetization, correlation
functions, the magnetic susceptibility, entropy, and specific
heat. During such calculations the temperature behavior of
the Gibbs energy and its derivatives is fully correct from
the physical point of view. In particular, the Gibbs energy
is always a concave function, decreasing with temperature.
As the result, the entropy (which can be calculated as S =
−(∂G/∂T )h) is a positive function increasing with tempera-
ture. In particular, for T = 0 the entropy amounts to S = 0
for each phase, since the Gibbs energy becomes a constant
function versus temperature when T → 0. However, for T →
∞ entropy reaches the paramagnetic limit of S/N = kB ln 3,
since the Gibbs energy is linear there. Increasing entropy as
a function of the temperature guarantees that the magnetic
specific heat is positive everywhere, which means the thermal
stability of the system. The specific heat can be calculated as
Ch = T (∂S/∂T )h = −T (∂2G/∂T 2)h and is characterized by
a peak at the phase transition temperature. Since the phase
transition temperature depends on the frustration parameter
J2, one can expect that frustration markedly influences all
the thermodynamic properties mentioned above, and the most
visible changes should occur at the phase transition. Taking
this into account, we would like to stress the point that the
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thermodynamic description of the model with frustration is
constructed completely and self-consistently, basing on the
physically correct behavior of the Gibbs energy. However, the
presentation of all the additional thermodynamic properties
would exceed the frame of the present paper.

The application of the method to other systems with various
underlying crystalline lattices and magnetic phases is possible.
Also the magnets with inhomogeneous structure, for instance,
diluted spin systems and systems with possible spin glass
behavior [51], can be studied. As a future application of
the method for spin S = 1 system, also the investigations
of the frustrated Blume-Emery-Griffiths model, containing
biquadratic interaction and single-ion anisotropy terms in
addition to the NN and NNN bilinear interactions, might be
of interest.

APPENDIX A: CLASSICAL MFA

The Gibbs free energies in the classical single-atom cluster
approximation are given by the following formulas for AF and
SAF phases:

1

N
GAF = 2J1mamb + J2

(
m2

a + m2
b

) − 1

2
kBT (ln Za + ln Zb )

(A1)

and
1

N
GSAF = J1mamb + 1

2
J1

(
m2

a + m2
b

) + 2J2mamb

− 1

2
kBT (ln Za + ln Zb ), (A2)

respectively. The single-atom cluster statistical sums Zα , for
sublattice α = a, b, are then given by

Zα = 2eβD cosh[β(λα + h)] + 1, (A3)

where β = 1
kBT

, and the sublattice magnetizations mα = 〈Sz
α〉0

are of the form

mα = 2

Zα

eβD sinh [β(λα + h)]. (A4)

The molecular fields λα which minimize the Gibbs energies
are presented as:

For AF phase,

λa = 4J1mb + 4J2ma,
(A5)

λb = 4J1ma + 4J2mb,

and for SAF phase,

λa = 2J1(ma + mb ) + 4J2mb,
(A6)

λb = 2J1(ma + mb ) + 4J2ma.

It can be shown that with the molecular fields presented
above, the self-consistent equations for the magnetizations mα

Eq. (A4) are equivalent to the necessary minimum conditions
for the Gibbs energies,

∂GAF/SAF

∂mα

= 0, (A7)

where α = a, b, and GAF/SAF are given by Eqs. (A1) or (A4),
respectively.

APPENDIX B: 2 × 2 CLUSTER

AF phase [see Fig. 1(a)]:
Hamiltonian of the cluster boundary is of the form

H′
0 = −(S1 + S4)λa − (S2 + S3)λb, (B1)

where the molecular field parameters which minimize the
Gibbs energy are given by

λa = 2J1mb + 3J2ma,
(B2)

λb = 2J1ma + 3J2mb.

The perturbative term in the Gibbs energy is presented as

1

N
〈H − H0〉0 = J1mamb + 3

4
J2

(
m2

a + m2
b

)
. (B3)

The boundary magnetizations are calculated self-consistently
with the cluster trial Hamiltonian Hc

0 from the necessary
minimum conditions for the Gibbs energy, namely,

∂G

∂mα

= 0, (B4)

where α = a, b, and G is given by Eq. (6). From Eqs. (B4) we
obtain

ma = 1
2 〈S1 + S4〉0, mb = 1

2 〈S2 + S3〉0. (B5)

SAF phase [see Fig. 1(b)]:
Hamiltonian of the cluster boundary is of the form

H′
0 = −(S1 + S2)λa − (S3 + S4)λb, (B6)

where the molecular field parameters which minimize the
Gibbs energy are given by

λa = J1(ma + mb ) + 3J2mb,
(B7)

λb = J1(ma + mb ) + 3J2ma.

The perturbative term in the Gibbs energy is presented as

1

N
〈H − H0〉0 = J1

4
(ma + mb )2 + 3

2
J2mamb. (B8)

The boundary magnetizations are calculated self-consistently
with the cluster trial Hamiltonian Hc

0 from the necessary
minimum conditions for the Gibbs energy, namely,

∂G

∂mα

= 0, (B9)

where α = a, b, and G is given by Eq. (6). From Eqs. (B9) we
obtain

ma = 1
2 〈S1 + S2〉0, mb = 1

2 〈S3 + S4〉0. (B10)

APPENDIX C: 4 × 4 CLUSTER

AF phase [see Fig. 1(c)]:
Hamiltonian of the cluster boundary is of the form:

H′
0 = −(S1 + S16)λa−(S4 + S13)λb−(S3 + S8+S9 + S14)νa

− (S2 + S5 + S12 + S15)νb, (C1)
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where the molecular field parameters which minimize the
Gibbs energy are given by

λa = 2J1m
c
b + 2J2m

s
a + J2m

c
a,

λb = 2J1m
c
a + 2J2m

s
b + J2m

c
b,

(C2)
νa = J1m

s
b + J2

(
mc

a + ms
a

)
,

νb = J1m
s
a + J2

(
mc

b + ms
b

)
.

The perturbative term in the Gibbs energy is presented as

1

N
〈H − H0〉0

= 1

4
J1

(
mc

am
c
b + ms

am
s
b

) + 1

4
J2

(
mc

am
s
a + mc

bm
s
b

)

+ 1

16
J2

[
2
(
ms

a

)2 + 2
(
ms

b

)2 + (
mc

a

)2 + (
mc

b

)2]
. (C3)

The boundary magnetizations are calculated self-consistently
with the cluster trial Hamiltonian Hc

0 from the necessary
minimum conditions for the Gibbs energy, namely,

∂G

∂mx
α

= 0, (C4)

where α = a, b, x = c, s, and G is given by Eq. (6). Index
x = c, s corresponds to two nonequivalent edge spin positions
in Fig. 1(c): c, corner spins, and s, side spins. From Eqs. (C4)
we obtain

mc
a = 1

2 〈S1 + S16〉0,

mc
b = 1

2 〈S4 + S13〉0,
(C5)

ms
a = 1

4 〈S3 + S8 + S9 + S14〉0,

ms
b = 1

4 〈S2 + S5 + S12 + S15〉0.

SAF phase [see Fig. 1(d)]:
Hamiltonian of the cluster boundary is of the form

H′
0 = −(S1 + S4)λa − (S13 + S16)λb − (S2 + S3)νa

− (S14 + S15)νb − (S9 + S12)μa − (S5 + S8)μb,

(C6)

where the molecular field parameters which minimize the
Gibbs energy are given by

λa = J1
(
mc

a + mc
b

) + J2
(
mc

b + mh
b + mv

b

)
,

λb = J1
(
mc

a + mc
b

) + J2
(
mc

a + mh
a + mv

a

)
,

νa = J1m
h
b + J2

(
mc

b + mh
b

)
,

(C7)
νb = J1m

h
a + J2

(
mc

a + mh
a

)
,

μa = J1m
v
a + J2

(
mc

b + mv
b

)
,

μb = J1m
v
b + J2

(
mc

a + mv
a

)
.

The perturbative term in the Gibbs energy is presented as

1

N
〈H − H0〉0

= 1

16
J1

[
2mc

am
c
b + 2mh

am
h
b + (

mc
a

)2 + (
mc

b

)2

+ (
mv

a

)2 + (
mv

b

)2] + 1

8
J2

(
mc

am
c
b + mc

am
h
b

+mh
am

c
b + mh

am
h
b + mv

am
v
b + mc

am
v
b + mv

am
c
b

)
. (C8)

The boundary magnetizations are calculated self-consistently
with the cluster trial Hamiltonian Hc

0 from the necessary
minimum conditions for the Gibbs energy, namely,

∂G

∂m
y
α

= 0, (C9)

where α = a, b, y = c, h, v and G is given by Eq. (6). Index
y = c, h, v corresponds to three nonequivalent edge spin
positions in Fig. 1(d): c, corner spins; and two types of side
spins, h, on the horizontal sides, and v, on the vertical sides.
From Eqs. (C9) we obtain

mc
a = 1

2 〈S1 + S4〉0,

mc
b = 1

2 〈S13 + S16〉0,

mh
a = 1

2 〈S2 + S3〉0,
(C10)

mh
b = 1

2 〈S14 + S15〉0,

mv
a = 1

2 〈S9 + S12〉0,

mv
b = 1

2 〈S5 + S8〉0.
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