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The Jarzynski equality (JE) provides a nonequilibrium method to measure and calculate the free energy
difference (FED). Note that if two systems share the same Hamiltonian at two equilibrium states, respectively,
they share the same FED between these two equilibrium states as well. Therefore the calculation of the FED of a
system may be facilitated by considering instead another virtual system designed to this end. Taking advantage
of this flexibility and the JE, we show that by introducing an integrable virtual system, the evolution problem
involved in the JE can be solved. As a consequence, FED is expressed in the form of an equilibrium equality, in
contrast with the nonequilibrium JE it is based on. Numerically, this result allows FED to be computed by sampling
the canonical ensemble directly and the computational cost can be significantly reduced. The effectiveness and
efficiency of this scheme are illustrated with numerical studies of several representative model systems.
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I. INTRODUCTION

The (Helmholz) free energy is a state variable of a thermo-
dynamic system. When the system changes its state from one
to another at the same temperature, the decrease of the free
energy gives the largest work the system can output. As the
free energy explains the phase behavior of a system and can be
directly related to the experimentally determined properties, it
plays an important role in a broad spectrum of applications [1].

Nevertheless, in general, to efficiently measure and calcu-
late the free energy is challenging. According to the second
law, the largest work can be captured only when the system
changes its state reversibly, i.e., infinitely slow so that the
process remains quasistatic. This makes the measurement of
the free energy (the largest work) difficult, as any measure-
ment has to be carried out in a reasonable, finite time. The
numerical computation of the free energy is also difficult,
because unlike “mechanical” state variables, which can be
computed directly by sampling the equilibrium ensemble, the
free energy involves the evaluation of the whole phase space
by definition [2,3]. A conventional method for computing
the free energy difference (FED) between two given states is
the thermodynamic integration method [4], by which one has to
first compute some related state variables (e.g., the pressure, in
an isothermal process) as a function of the medium equilibrium
states of the quasistatic process that connects the two given
states, then obtain FED by integrating this function. Obviously,
this is computationally more expensive and inefficient than the
computation of a mechanical state variable.

In 1997, Jarzynski found a significant equality that relates
FED between two equilibrium states (at the same tempera-
ture) to the work done to the system in a nonequilibrium
process [5,6]. Precisely, suppose the Hamiltonian of the system
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is H (s; λ), where s is the system state and λ is a system
parameter. When the parameter is changed in time following a
given prescribed protocol λ(t ) from λA at time tA to λB at time
tB, the Jarzynski equality (JE) states that

e−β�F = 〈e−βw〉A. (1)

Here β ≡ 1/(kBT ) is the inverse temperature, �F ≡ FB − FA

is FED between equilibrium state A and B parametrized by λA

and λB, respectively, and w is the work done to the system when
it is evolved from an initial state sampled from the canonical
ensemble of state A at time tA up to time tB. The work depends
on the initial condition; by repeating sampling of the initial
condition, the work distribution can be established, over which
the exponential work average can be evaluated and in turn FED
is obtained. The angular brackets and the subscript A at the
right-hand side (r.h.s.) of Eq. (1) represent the average over
the canonical ensemble of A. Note that the system does not
necessarily relax to equilibrium state B at time tB, which is a
profound property of the JE. Also note that when the system
evolves, it can be isolated or coupled to the environment of
temperature T [5–7].

Jarzynski’s equality provides an alternative method for mea-
suring and computing FED. As the time interval tB − tA during
which the system is driven can be finite and short, it seems
particularly favorable for experimental measurements [8–11].
However, as pointed out by Jarzynski [5,12] and other authors,
in practice, to apply the JE directly may be inconvenient,
because small work with rare probability weighs heavily for the
exponential average 〈e−βw〉A; a hefty sample could be needed
to evaluate it accurately, and thus the cost could be demanding.
Therefore, a key consideration in applying the JE directly is
how to allocate the cost for sampling and driving the system.
In general, for a given accuracy, the shorter the time interval
tB − tA, the larger the work fluctuation and the sampling size
needed. An empirical rule is to keep the work fluctuation less
than kBT [13].
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Since the JE was revealed, many efforts have been made to
develop improved algorithms for computing FED. A thorough
survey can be found in Ref. [13]. Roughly speaking, these
efforts can be classified into two categories: one is to shorten
the time needed to evolve the system by molecular dynamics
simulations and another is to reduce the statistical uncertainty
for evaluating 〈e−βw〉A. In the former, the main progress is
the targeted free energy perturbation method developed by
Jarzynski based on a generalized JE [14]. This method is a vari-
ant of the free energy perturbation theory [15], which allows
FED to be computed with crude trajectories simulated with
large time steps [16,17]. To reduce the statistical uncertainty,
the most “straightforward” way is to take the work biased
sampling schemes to generate more trajectories whose work
values dominate in calculating 〈e−βw〉A. To this end, one way
is to introduce an explicit bias function in calculating 〈e−βw〉A

to enhance the sampling of important trajectories [18,19] and
another is to introduce a parameter that biases the contribution
of different trajectories to make sure that all their contribu-
tions are fully taken into account [20,21]. The latter can be
viewed as a thermodynamic integration procedure in trajectory
space [13]. For enhancing sampling of important trajectories,
general methods designed for simulating rare events, e.g., the
population dynamics with cloning [22], might be adopted as
well. In order to reduce the statistical uncertainty, another
important direction to explore is to optimize the protocol. Note
that the JE does not depend on the details of the protocol; all
paths from λA to λB give the same result of FED. But the work
distribution depends on the protocol, implying the existence of
an optimal protocol that can minimize the work fluctuation. If
the changing rate of λ is small, example studies suggest that a
protocol with small mean work also leads to small statistical
uncertainty [21,23]. Considering this, Schmiedl and Seifert
found that an optimal protocol may consist of two jumps at
tA and tB [24].

In fact, the flexibility implied by the JE lies not only in the
protocol; the dynamics of the system can be manipulated as
well. For example, the JE can be generalized to incorporate
an artificial flow field to escort a trajectory such that in the
best situations, it may give FED exactly by sampling the
initial condition and evolving the system only once [12]. The
drawback of this scheme, however, is that it is hard to solve
the appropriate flow field except in some special cases [12].

Recently, Gong’s group studied the general methods to
suppress the work fluctuation for a given protocol by applying
a control field to the system [25,26]. The applied control
field is expressed as an additional term to the Hamiltonian,
which is turned off before time tA and after time tB but turned
on for tA < t < tB. For an integrable system, based on the
shortcuts to adiabatic process, the authors worked out the
control field that makes the work distribution identical to
that of quasistatic processes from A to B [25]. Hence the
work fluctuation is suppressed to be the minimum allowed in
principle. Later this scheme was generalized to nonintegrable
systems where the control field is determined by the optimal
control technique [26]. In this general scheme, minimizing
the fluctuation of e−βw from its average e−β�F [see Eq. (1)]
has been taken as the explicit control target, hence it can be
adopted as a boosting JE method for evaluating FED for both
experimental and numerical studies.

In this work we explore a different strategy for boosting the
calculation of FED based on the JE. We also take advantage of
the fact that the dynamics of the system can be manipulated,
but unlike in Refs. [25,26], we get rid of the original Hamil-
tonian of the system during the time interval tA < t < tB but
replace it with an integrable dynamics such that the evolution
of the system can be solved analytically. As a result, an
equilibrium equality of FED, in contrast with the underlying
nonequilibrium JE, is derived. Numerically, this equilibrium
equality allows FED to be computed like a mechanical state
variable [2,3] by sampling the canonical ensemble directly,
which is a significant simplification. Compared with the direct
JE algorithm, the computational cost can be saved for orders in
the studied examples. In the following, we will first outline the
general scheme of our strategy, then apply it to the protocol that
the system changes its volume from state A to B. The analytical
results will be checked with numerical examples and extended
to more general protocols. Finally, some related issues will be
discussed with a brief summary.

II. A GENERAL SCHEME: APPLYING THE JE
TO A VIRTUAL INTEGRABLE SYSTEM

Our task is to calculate the FED of the system H (s; λ) be-
tween states A and B. Consider a different Hamiltonian system
H̃ (s; �) that shares the same phase space, where � represents
its parameter set. If, for a certain value of �, denoted as �A,
this Hamiltonian is identical to H (s; λA), i.e., H̃ (s; �A) =
H (s; λA), then the two systems share the same equilibrium dis-
tribution PA(s) ≡ e−βH̃ (s;�A )/ZA = e−βH (s;λA )/ZA and there-
fore the same free energy F̃A = FA = − ln ZA/β. Here ZA is
the partition function of their common state A. Similarly, if for
�B we have H̃ (z; �B) = H (z; λB), then the two systems have
the same free energy F̃B = FB = − ln ZB/β at state B as well.
Given these, the FED of the original system �F = FB − FA

is equal to that of H̃ , �F̃ = F̃B − F̃A, and therefore can be
calculated by the JE with H̃ instead:

e−β�F = e−β�F̃ = 〈e−βw̃〉A. (2)

Here w̃ is the work performed on the “virtual” system H̃ when
it is driven by the control parameter set � from �A to �B

with a given protocol �(t ). This relation has been pointed out
and utilized in Refs. [25,26], which is very flexible: It gives us
the freedom to manipulate not only the protocol, but also the
Hamiltonian. We emphasize that the only requirements are

H̃ (s; �α ) = H (s; λα ), α = A, B. (3)

At other system parameter values, the two Hamiltonians can
be different and arbitrary.

In the following we will show that, indeed, this scenario can
lead to significant simplification in calculating �F . Suppose
that the system consists of N particles and its Hamiltonian is

H (s; λ) =
∑ p2

i

2mi

+ U (r; λ), (4)

where mi , ri , and pi are, respectively, the mass, position,
and momentum of the ith particle, and s = (p, r) with p ≡
(p1, . . . , pN ) and r ≡ (r1, . . . , rN ). To apply the JE, the
protocol should follow that λ(t ) = λA for t � tA and λ(t ) = λB
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FIG. 1. Schematic plot of the protocol adopted in the scheme
based on the JE (a) and in our suggested scheme (b) for evaluating the
free energy difference. The two switch functions θ and θ̃ introduced in
our scheme are used to suppress the original interaction but activate
a virtual interaction for t̃A < t < t̃B (and vice versa for t � tA and
t � tB). Protocol λ̃(t ) in our scheme (not shown) is arbitrary given
that λ̃(t ) = λA for t � tA and λ̃(t ) = λB for t � tB.

for t � tB [see Fig. 1(a)]. When the protocol is assigned, �F

can be obtained by the JE directly.
Alternatively, we can obtain �F in the following virtual

system by using Eq. (2):

H̃ (s; �) =
∑ p2

i

2mi

+ θU (r; λ̃) + θ̃V (r; λ̃). (5)

Here � = (θ, θ̃ , λ̃), where θ and θ̃ are two switch functions.
In order to ensure that at tA and tB the two Hamiltonians are
identical, we set θ , θ̃ , and λ̃ as follows: For t � tA < t̃A and t �
tB > t̃B, we assign θ = 1 and θ̃ = 0 to adopt the interaction, U ,
of the original system. In addition, we assume that λ̃(t ) = λ(t )
for t � tA and t � tB. With these settings, Eq. (3) is guaranteed
to hold; �F of the original system is therefore identical to that
of the virtual system and can thus be obtained with the latter.

But for t̃A < t < t̃B, we set θ = 0 and θ̃ = 1 instead, to
switch the interaction to the introduced virtual interaction, V

[see Fig. 1(b)]. It is worth noting that, in principle, any V

allowed by physics is acceptable. Moreover, the protocol λ̃(t )
can be arbitrary over tA < t < tB, as long as it changes from
λA at t = tA to λB at t = tB. These flexibilities and freedoms
are the advantages the introduced virtual system brings, and
our main motivation in this work is to make use of them to
facilitate the calculation of FED.

Before proceeding, we notice that by taking the limits
t̃A → tA and t̃B → tB, we can write down part of the work
immediately. As the Hamiltonian changes abruptly at tA and
tB, the work done to the system is [5], respectively,

w̃A ≡ �H̃ |t̃A→tA = V [r(tA); λA] − U [r(tA); λA];

w̃B ≡ �H̃ |t̃B→tB = U [r(tB); λB] − V [r(tB); λB]. (6)

Following Eq. (2), we then have

e−β�F = 〈e−β(w̃A+w̃B+w̃V )〉A, (7)

where w̃V is the work done to the virtual system with the
introduced interaction V (r; λ̃) when being driven by λ̃ from
λ̃ = λA to λ̃ = λB.

One advantage of this scheme is apparent now: In principle,
for an integrable interaction V , w̃V can be solved; then the
calculation of FED reduces to an equilibrium average without
any explicit nonequilibrium quantities. Numerically, as evolv-
ing the system is avoided, the reduction of the simulation cost
is guaranteed.

III. FREE ENERGY DIFFERENCE BETWEEN
TWO VOLUMES

As an application of our general scheme, here we discuss the
FED of a system at two different volumes. The derivation of
FED between two values of any other parameter or param-
eter set is similar (see Sec. V). For the sake of simplicity,
we consider one-dimensional (1D) systems in this section.
The possible extension to two-dimensional (2D) and three-
dimensional (3D) cases will be discussed in Sec. VI. For a 1D
system, r = x ≡ (x1, . . . , xN ) and p = (p1, . . . , pN ), where
xi and pi are the position and the momentum of the ith particle.
Its volume is the length of the system, denoted as L. By the
JE, we can take the protocol, identifying λ with L, as follows:
At tA, the system volume is LA; then we press or pull one
end of the system at a fixed velocity u to make its volume
LB at tB = tA + (LB − LA)/u. During this process the system
keeps its interaction U (x, L(t )). By our scheme with the virtual
system, the key difference is that at tA, we replace U by the
virtual potential V , and at tB, we switch back to U . For our aim
here one convenient option of V is that which consists of Nc

identical cells of hard walls (see Fig. 2). We set Nc large enough
to make sure that in each cell there is at most one particle, so
that the particles become noninteractive. At t = tA, we press or
pull one boundary of each cell with velocity u as well until time
tB , during which when a particle collides with any boundary

FIG. 2. Illustration of the suggested scheme for evaluating the free
energy difference when the system has a reference system volume,
LA (a), and a given system volume, LB (g), with a 1D diatomic
lattice as illustrating example. (a) For t � tA, the original interaction
U , represented by wavy lines, operates. (b) At t = tA, interaction
U (x(tA ); LA ) is cut off and (c) the virtual auxiliary interaction,
V (x(tA ); LA ), represented by cells, is switched on simultaneously.
At this time work w̃A is calculated. (d) For tA < t < tB, each particle
is “pressed” by the right boundary of its cell moving at velocity u.
Meanwhile work w̃V is evaluated. (e) At t = tB, cells are aligned
one by one, then (f) interaction V (x(tB); LB) is removed and (g) the
original interaction U (x(tB); LB) is activated again. At this moment
work w̃B is evaluated.
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of its cell, it is reflected back elastically. The work w̃V done to
the system can thus be obtained by summing up the work done
to each particle by the moving boundary of its cell, denoted as
w̃V,i , which can be solved analytically [Eq. (A8) in Appendix
A; see also Ref. [27]]. The advantage of the adopted V is
that it keeps the order of particles. This is particularly crucial
for a lattice, otherwise the original interaction U may not be
retrieved at time tB.

It is rewarding to take the limits Nc → ∞ and u → 0 fur-
ther, following which we have immediately xi (tB) = rxi (tA)
with r ≡ LB/LA and w̃V,i = (1/r2 − 1)p2

i /(2mi ) [Eq. (A9)
in Appendix A], allowing Eq. (7) to be rewritten as

e−β�F = rN 〈eβ[U (x;LA )−U (rx;LB )]〉A,x (8)

with the distribution function for averaging PA,x ≡
e−βU (x;LA )/ZA,x and ZA,x = ∫

e−βU (x;LA )dx. Here the
prefactor rN on the r.h.s. is for the result of 〈e−βw̃V 〉A, which
can be integrated out independently from 〈e−β(w̃A+w̃B )〉A as
w̃V depends only on variable p while w̃A and w̃B depend
only on x. The exponential average on the r.h.s. of Eq. (8)
corresponds to 〈e−β(w̃A+w̃B )〉A. The derivation of Eq. (8) and
its extension to 2D and 3D cases is detailed in Appendix B.

Theoretically, this result reveals a new equilibrium relation
between the free energy of a system at two different volumes.
It is interesting in view of the fact that it is derived from
the JE that is established based on nonequilibrium processes.
Numerically, the standard Monte Carlo algorithm involving
variable x only can be applied directly. In doing so, as the
exponential average of w̃A + w̃B, rather than that of w̃ = w̃A +
w̃B + w̃V , is evaluated, for a given accuracy the ensemble size
can be reduced because the distribution of w̃A + w̃B is narrower
than that of w̃A + w̃B + w̃V . This simplifies the computation
of FED further.

IV. FREE ENERGY DIFFERENCE OF TWO
ONE-DIMENSIONAL MODELS

To test the effectiveness and efficiency of our main results
Eqs. (7) and (8), here we study two representative model
systems as examples. Note that in all the figures (Figs. 3–
7) where our numerical results are provided, the statistical
uncertainty of the data (“error bar”) is smaller than at least
one-tenth of the thickness of the line, or the size of the symbols
that represent them, and hence is not shown.

The first model is the one-dimensional (1D) diatomic Toda
lattice [28] with

U =
∑

[e−(xi+1−xi−1) + (xi+1 − xi − 1)]. (9)

The two kinds of particles have mass 1 and 2 and align
alternately. Note that this model is nonintegrable [29]. The
fixed boundary conditions are taken by fixing the zeroth and
the (N + 1)th particle at the left and right boundary. For our
aim here we also calculate the FED with the conventional
thermodynamic integration method [4] and use the result as a
benchmark. To this end, the pressure of the system as a function
of the system size, or equivalently, the particle density ρ ≡
N/L, is calculated with high accuracy by using the canonical
ensemble Monte Carlo algorithm (see Fig. 3). The free energy
difference is then obtained by integrating the pressure based
on the relation (∂F/∂V )N,T = −p. The statistical uncertainty

FIG. 3. The pressure of the diatomic Toda lattice of N particles
as a function of the particle density. β = 50 here and in Figs. 4 and 5.

of the simulated pressure is smaller than 2 × 10−6 and the
corresponding uncertainty of FED per particle, �f ≡ �F/N ,
is less than 10−5 (see the dashed and the solid line in Fig. 4).

The results of FED computed by using the direct JE
method, and our method with Eqs. (7) and (8), respectively,
are compared in Fig. 4. For all three methods, the involved
average ensemble of microscopic states of state A (with volume
LA) are generated by the canonical ensemble Monte Carlo
algorithm. For the direct JE method, the sampled microscopic
states are set to be the initial states and evolved by the double
precision, fourth-order Runge-Kutta algorithm with the time
step h = 10−3. For N = 20 with u = 0.1 and the average
ensemble size 105, the relative deviation from the benchmark
of the results by the direct JE method is less than 0.9%. For
the same settings, our method based on Eq. (7) gives the same
accurate results, but as w̃V has been solved analytically, the
simulation time is only about 3 × 10−3 of the former.

The most efficient one is our method based on Eq. (8). To
reach the same accuracy, it needs only ten samples. So not
only the time for evolving the system is completely saved, but

FIG. 4. The free energy difference per particle of the 1D diatomic
Toda lattice between system volume LA = 3N/2 and a given volume
LB = N/ρB that changes from LA to LA/2. The squares and the
diamonds are for the direct JE method and our scheme Eq. (7) with
Nc = 300, respectively, for N = 20 with u = 0.1 and the average
ensemble size 105. The dots (triangles) are for our scheme Eq. (8) for
N = 20 (N = 104) with the average ensemble size 10. The dashed
(solid) line gives the result of the conventional method by integrating
the pressure [see Fig. 3] for N = 20 (N = 104).
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FIG. 5. Comparison of the work distribution involved in our
scheme based on Eq. (8) (dots) and that in the direct JE method
with u = 0.1 (squares) for the diatomic Toda lattice of N = 20. The
initial and final system length is LA = 30 and LB = 25 [ρB = 0.8;
see Fig. 4], respectively.

also the cost for sampling is reduced remarkably. Indeed, as
expected and shown in Fig. 5, the distribution of w̃A + w̃B

involved in Eq. (8) is much narrower than that of w involved
in the direct JE method. As a comparison, for N = 20 the
computation time this scheme takes is only about 3 × 10−7 of
that by the direct JE method. It is so efficient that it can be
applied to a much bigger system (e.g., N = 104; see Fig. 4)
where the computational cost for the direct JE method has been
forbiddingly expensive.

The second example is a gas model with repulsive interac-
tion

U =
∑

(xi+1 − xi )
−6. (10)

All particles have a unity mass and the fixed boundary con-
ditions are assumed as well. All the simulation details are the
same as in the first example. In Fig. 6, the results of FED
by our scheme with Eq. (8) are compared with those by the
direct JE method and by another method based on Eq. (11) (see
the following). Note that the systematically biased deviation
of the latter two methods at larger particle density is due to
insufficient sampling, which has been confirmed by changing
the average ensemble size.

For the gas of identical particles where their position order
is irrelevant, the �F between two system volumes can be
calculated in a different way. Let us consider the following
four systems, all consisting of N particles of the same mass:
(1) the system size is LA and the interaction is U ; (2) the
system size is LA but without interaction; (3) the system size
is LB without interaction; and (4) the system size is LB and
the interaction is U . Systems (2) and (3) are actually ideal
gases. Obviously, the �F we want is in fact that between
system (1) and system (4), i.e., �F = �F14 = F4 − F1 (Fi

is the free energy of the ith system), which can be expressed
in a chain as �F = �F12 + �F23 + �F34. On the one hand,
F12 and F34 can be obtained by the free energy perturbation
theory [15] or equivalently as the limiting result of the JE [see
Eq. (5) in Ref. [5]], which read �F12 = − ln〈eβU 〉A/β and
�F34 = ln〈eβU 〉B/β, respectively. On the other hand, as the

FIG. 6. The free energy difference per particle of the gas model
(N = 20 and β = 1) between system volume LA = 10N and LB =
N/ρB. Squares, dots, and triangles are for, respectively, the results
by the direct JE method (u = 0.1), our scheme with Eq. (8), and that
based on Eq. (11). For all three cases the average ensemble size is
104. The dashed line is for the conventional method by integrating the
numerically obtained pressure (not shown).

partition function of an ideal gas is known, the FED between the
ideal gases (2) and (3) can be written down straightforwardly:
�F23 = −N ln(LB/LA)/β = −N ln r/β. As a consequence,
we have

e−β�F = rN [〈eβU (x;LA )〉A,x/〈eβU (x;LB )〉B,x]. (11)

Comparing with Eq. (8), an essential difference is that another
ensemble average with PB,x = e−βU (x;LB )/ZB,x and ZB,x =∫

e−βU (x;LB )dx is involved here. For the gas model under study,
the algorithm based on Eq. (11) is not as efficient as that based
on Eq. (8), either, although it is more efficient than the direct
JE method where evolving the system is avoided.

V. FREE ENERGY DIFFERENCE BETWEEN TWO
GENERAL STATES

As shown in Sec. II, not only for the FED between two
volumes, our general scheme based on Eq. (7) is equally
applicable to the FED between two states determined by other
parameters as well. The key task is to design the virtual poten-
tial to facilitate the calculation of w̃V . This can be fulfilled by
cutting interactions to make particles move independently, just
as we have done by introducing the hard-wall-cell potential.
In principle, as the motion of each particle is a one-body
problem, it is integrable and can be solved definitely. To
this end, the hard-wall-cell potential is only one option. If
the considered parameter is not the volume, another feasible
choice could be an onsite harmonic potential array that confines
each particle to move around its equilibrium position. For
numerical calculations, for a given parameter a better choice of
the virtual potential should be one that makes the distribution
of w̃A + w̃B + w̃V narrower so that the sampling cost is less.
To this end, an appropriate protocol can help additionally.
For example, assuming tB − tA → ∞ will not add any more
computational cost as w̃V can be solved analytically, but it may
suppress the fluctuations of w̃V and w̃A + w̃B + w̃V .
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If the system state is parametrized by a set of parameters �

to which the volume does not belong, the FED between two
states A and B can be obtained by the free energy perturbation
theory [15]:

e−β�F = 〈eβ[H (s;�A )−H (s;�B )]〉A

= 〈eβ[U (x;�A )−U (x;�B )]〉A,x. (12)

This result can be derived from the JE with a limiting protocol
that � changes instantaneously from �A to �B [5]. As x remains
unchanged, it cannot be applied when the volume change is
involved.

However, taking our scheme, Eq. (12) can be extended
straightforwardly to incorporate the volume change as follows:
At time tA, the potential U (x; �A, LA) is switched off and the
hard-wall-cell potential is switched on. Next, the volume is
changed from LA to LB following the same procedure as in
deriving Eq. (8). Finally, at time tB the hard-wall-cell potential
is switched off and U (x; �B, LB) is switched on. This gives

e−β�F = rN 〈eβ[U (x;�A,LA )−U (rx;�B,LB )]〉A,x, (13)

where r = LB/LA. For LB = LA it reduces to Eq. (12).

VI. EXTENSION TO 2D AND 3D CASES

Our general scheme based on Eq. (7) does not depend on
the system dimension, which can be seen from its establish-
ment in Sec. II. Therefore it can be applied to 2D and 3D
systems as well. Nevertheless, as 2D and 3D systems are
more complicated, in general it would be more challenging
to design an appropriate virtual integrable system to simplify
the calculation of FED. Taking the volume change problem as
an example, for a 2D or 3D lattice system, its shape can also
change as the volume if a twist force is exerted. In this case,
the hard-wall-cell potential cannot be used by simply adopting
its 2D and 3D versions. Hence, how to design appropriate
virtual integrable systems needs more study in attempting to
put Eq. (7) into more complicated applications.

On the other hand, it is worth noting that our scheme is
developed based on the JE. As such its applicability is not
expected to go beyond that of the JE. For example, a phase
transition can happen in a 2D and 3D system, which may cause
an abrupt change in the system’s structure. Whether or to what
extent the JE or its necessarily generalized version can be used
to capture the corresponding free energy change is still an open
issue, which is also the case for our scheme. This could be
interesting for future investigations.

Coming back to the volume change problem, for the simpler
case that a 2D (3D) system has a rectangle (rectangular
solid) shape and changes its volume under forces or pressures
perpendicularly applied on each side, the corresponding free
energy change can be calculated with the help of the 2D
(3D) hard-wall-cell potential, given that no phase transition
occurs during this process (see Appendix B for a detailed
derivation). Consider the 3D case first. Suppose that at the
beginning the length, width, and height of the system are,
respectively, LA,x , LA,y , and LA,z, and the volume of the
system is VA = LA,xLA,yLA,z; at the end they become LB,x ,
LB,y , LB,z, and VB, respectively, then the FED is

e−β�F = (VB/VA)N 〈eUA−UB〉A,r, (14)

FIG. 7. The free energy difference per particle of the 2D square
(dots) and 3D cubic (diamonds) Toda lattice model with 8 × 8 and
8 × 8 × 8 sites, respectively, computed with our scheme, Eq. (14).
The average ensemble size is 10, ρA,B ≡ N/VA,B, and ρA = 0.8.
The dashed and the solid line are the corresponding results of the
thermodynamic integration method by integrating the numerically
computed pressure (not shown). β = 104.

where UA ≡ U (x, y, z; LA,x , LA,y, LA,z) and UB ≡
U (rxx, ryy, rzz; LB,x, LB,y , LB,z) with rα ≡ LB,α/LA,α

(α = x, y, z), and the distribution function for averaging
is PA,r ≡ e−βUA/ZA,r with ZA,r ≡ ∫

e−βUAdr. Here
r ≡ (x, y, z) is the coordinates of all particles at the beginning
(t = tA). For the 2D case, Eq. (14) also applies and keeps its
form unchanged; the only change that needs be made is to
drop the terms related to the z coordinate in the expressions
of UA, UB, and PA,r. Similarly, Eq. (14) also incorporates the
1D case, which reduces to Eq. (8) when the y coordinate is
dropped further.

Now let us put Eq. (14) into a numerical check. To this end,
we take the square (2D) and the cubic (3D) Toda lattice with
Nx × Ny and Nx × Ny × Nz sites, respectively, as illustrating
examples. The potential is

U =
∑

[e−(|ri−rj |−1) + (|ri − rj | − 1)], (15)

where the sum runs over both i and j satisfying that the ith
and the j th particles are the nearest neighbors and meanwhile
i < j . The numerical results of the FED for the 2D square
lattice of a square shape and that for the 3D cubic lattice of a
cubic shape are shown in Fig. 7. It can be seen that again, the
agreement with the benchmark is perfect.

VII. DISCUSSIONS AND SUMMARY

In summary, we have explored the idea to investigate the free
energy by taking advantage of a virtual system. The tremen-
dous flexibility and possibility it implies can be envisaged,
as both the Hamiltonian and the protocol can be assigned
arbitrarily to some extent. Particularly, we have discussed one
“realization” of this idea, i.e., a scheme that consists of an
integrable virtual system activated (removed) simultaneously
when the protocol begins (stops). Its effectiveness and effi-
ciency have been corroborated with numerical studies.
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We emphasize that our scheme based on hard-wall-cell
potential represents only one possibility. Other options of
the virtual system and the protocol are worth investigating,
which may lead to different results that resemble Eqs. (8)
and (14). Theoretically, we believe these results may deepen
our understanding of the free energy. Numerically, they may
provide more optional tools for computing the free energy. In
this regard, as Eqs. (8) and (14) have shown, its advantage
(compared with the JE) is that the conventional Monte Carlo
algorithm is sufficient and can be adopted directly. In fact, as
the computation has reduced to a sampling problem, various
techniques developed for enhancing the sampling [1–3] can
be employed to increase its efficiency further. This could be
another interesting issue to explore for future studies.
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APPENDIX A: MOTION OF A PARTICLE IN A 1D CELL
WITH A MOVING BOUNDARY

See Fig. 8. Consider a point particle of mass m confined
to move freely in a one-dimensional cell with two hard
boundaries. When the particle collides with one boundary, it
will be reflected back elastically. The left boundary is kept fixed
and the right boundary moves at a fixed velocity, u. Initially,
the size of the cell is lA, and the position and the velocity of the
particle is x and v, respectively. After a certain time, denoted as
τ , the size of the cell becomes lB. Apparently, τ = (lB − lA)/u.
Given these, in the following we will discuss the position and
the velocity of the particle, denoted as x ′ and v′, at time τ . Note
that in Ref. [27] this problem has been studied for confirming
Jarzynski’s equality with one-dimensional, noninteracting gas.

Let us consider the case u < 0, i.e., the right boundary
moves to the left. The results can be extended to u � 0
straightforwardly. In this case, (a) if 0 < x + vτ < lB, then
the particle does not collide with any boundary during time τ

and v′ = v, x ′ = x + vτ . Otherwise, (b) if −lB < x + vτ � 0,
then the particle only collides with the left boundary for once,
so that v′ = −v and x ′ = −(x + vτ ).

Other than these two simple cases, the particle will col-
lide with the right boundary for at least one time. (c) For
x + vτ � lB, right before the first collision with the right
boundary, the particle’s position and velocity is, respectively,

FIG. 8. Schematic plot for the to-and-fro motion of a point particle
in a cell with the right boundary moving at a fixed velocity u. The
initial position of the right boundary is at x = lA; the initial position
and velocity of the particle is x and v. When the right boundary moves
to x = lB, the position and velocity of the particle becomes x ′ and v′.

v1 = v and x1 = lA + ut1, where t1 = (lA − x)/(v − u) is
the time when the first collision occurs. Similarly, (d) for
x + vτ � −lB, we have v1 = −v, x1 = lA + ut1, and t1 =
−(lA + x)/(v + u), instead.

For cases (c) and (d), it is easy to establish the map from x1

and v1 to the particle’s state right before the ith collision with
the right boundary that occurs at time

ti = t1 + 2(i − 1)x1

v1 − 2iu + u
(A1)

as follows:

vi = v1 − 2(i − 1)u,

xi = v1 − u

v1 − 2iu + u
x1. (A2)

The total number, n, of collisions with the right boundary
during time τ satisfies tn < τ < tn+1, which gives that

n = 1 +
[

(v1 − u)(τ − t1)

2lB

]
int

, (A3)

where the brackets represent the integer part of the variable
inside. Right after the last collision, the particle’s velocity
becomes

v+
n = 2nu − v1. (A4)

Finally, for cases (c) and (d), if

0 < xn + (τ − tn)v+
n , (A5)

then we have

v′ = v+
n ,

x ′ = xn + (τ − tn)v+
n ; (A6)

otherwise,

v′ = −v+
n ,

x ′ = −[xn + (τ − tn)v+
n ]. (A7)

It follows that the total work the right boundary does to the
particle during the whole process is

w = 1
2m[(v′)2 − v2]. (A8)

In the limit u → 0, i.e., the right boundary moves in-
finitely slow, from Eqs. (A3) and (A4) we have nu → v1(lB −
lA)/(2lB) andv+

n → v1lA/lB, suggesting that the kinetic energy
of the particle becomes (lA/lB)2 times that of its initial value.
Therefore, the total work performed on the particle is

w = 1

2
mv2

[
l2
A

l2
B

− 1

]
. (A9)

APPENDIX B: DERIVATION OF EQS. (8) AND (14)

Here we calculate w̃V in the virtual system with the hard-
wall-cell potential and substituting the result into Eq. (7), i.e.,

e−β�F = 〈e−β(w̃A+w̃B+w̃V )〉A, (B1)

to obtain Eq. (8) for the 1D case and Eq. (14) for the 2D and
3D cases.
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FIG. 9. The scheme for evaluating the free energy difference of a 2D system between a reference system volume, VA = LA,xLA,y (a), and
a given system volume, VB = LB,xLB,y (h), which is illustrated with a 2D square lattice system of Nx × Ny = 3 × 2 sites. The four black
dotted lines in each panel represent the boundaries of the system (here the periodic boundary conditions are adopted, for example). (a) For
t � tA, the interaction U of the system, represented by the gray dashed lines, operates; (b) at t = tA, interaction U (x(tA), y(tA ); LA,x , LA,y ) is
removed and (c) a 2D hard-wall-cell potential, V (x(tA ), y(tA ); LA,x , LA,y ), represented by small cells, is switched on simultaneously. At this
moment work w̃A is calculated. For tA < t < tB, each cell is shrunk (d) by moving its right boundary at velocity ux first, then (e) by moving
its top boundary at velocity uy . During this process work w̃V is evaluated. (f) At t = tB, cells are aligned one by one first, then (g) interaction
V (x(tB), y(tB); LB,x , LB,y ) is removed and (g) the original interaction U (x(tB), y(tB); LB,x , LB,y ) is switched back. At this moment work w̃B is
evaluated.

For the 1D case, when the system changes its volume from
LA to LB (see Fig. 1), the hard-wall cell a particle resides
in changes its volume from lA = LA/Nc to lB = LA/Nc.
According to Eq. (A9), in the limit that u → 0, the work
done to a particle, say the ith, during this process is w̃V,i =
1
2miv

2
i (tA)( 1

r2 − 1) with r = LB/LA = lB/lA. As a result,

w̃V =
∑

w̃V,i =
(

1

r2
− 1

) ∑ p2
i (tA)

2mi

. (B2)

On the other hand, if we take further the limit that Nc →
∞, then the ith particle changes its position from xi (tA) to
xi (tB) = rxi (tA), implying that for the whole system, the coor-
dinates change from r(tA) to r(tB) = x(tB) = rx(tA) = rr(tA),
which leads to [see Eq. (6)] w̃A = −U (x(tA); λA) and w̃B =
U (x(tB); λB) = U (rx(tA); λB), considering that for the hard-
wall-cell potential we have V (x(tA); λA) = V (x(tB); λB) = 0.
Now, by substituting w̃A, w̃B, and w̃V into Eq. (7), we have

e−β�F =
∫

e−β/r2 ∑
p2

i /2mi dp∫
e−β

∑
p2

i /2mi dp

∫
e−βU (rx;λB )dx∫
e−βU (x;λA )dx

, (B3)

where the product of the two denominators on the r.h.s. is the
partition function of state A (with system volume LA). The
first term on the r.h.s. can be integrated out, which equals rN ,
and the second term can be expressed as the ensemble average
over distribution function PA,x ≡ e−βU (x;λA )/ZA,x with ZA,x ≡∫

e−βU (x;λA )dx. Then we have

e−β�F = rN 〈eβ[U (x;LA )−U (rx;LB )]〉A,x, (B4)

which is exactly Eq. (8).
Next, let us deal with the 2D case. A schematic illustration

of our scheme is presented in Fig. 9. Following the same
line as in the 1D case, when the system changes its volume
from VA = LA,xLA,y to VB = LB,xLB,y , the length and the

width of the hard wall cells change from lA,x = LA,x/Nc,x and
lA,y = LA,y/Nc,y to lB,x = LB,x/Nc,x and lB,y = LB,y/Nc,y ,
respectively. Here Nc,x and Nc,y are the number of cells in x and
y direction, respectively. This process can be divided into two
steps: First, the cells are pressed in the x direction by moving
their right boundaries at a speed ux [see Fig. 9(d)]. Based
on Eq. (A9), at the limit that ux → 0, the work done to the
ith particle is 1

2miv
2
i,x (tA)( 1

r2
x

− 1), where rx = LB,x/LA,x =
lB,x/ lA,x . Note that as the motion of a particle in a rectangular
cell is independent in the x and y directions, this result is
independent of the particle’s state component in the y direction.
Next, the cells are pressed in the y direction by moving their
top boundaries at a speed uy [see Fig. 9(e)]. Again, based
on Eq. (A9), at the limit that uy → 0, the work done to the
ith particle reads 1

2miv
2
i,y (tA)( 1

r2
y

− 1) with ry = LB,y/LA,y =
lB,y/ lA,y . Similarly, this part of the work has nothing to do with
the particle’s state component in the x direction. To sum all the
work done to all the particles, we have that

w̃V =
(

1

r2
x

− 1

) ∑ p2
i,x (tA)

2mi

+
(

1

r2
y

− 1

) ∑ p2
i,y (tA)

2mi

.

(B5)
As to w̃A and w̃B, as in the limits Nc,x → ∞ and Nc,y → ∞

we have xi (tB) = rxxi (tA) and yi (tB) = ryyi (tA), i.e., x(tB) =
rxx(tA) and y(tB) = ryy(tA); we can write them down im-
mediately [see Eq. (6)]: w̃A = −UA and w̃B = UB, where
UA = U (x, y; LA,x , LA,y ) and UB = U (rxx, ryy; LB,x, LB,y ).
Finally, by substituting w̃A, w̃B, and w̃V into Eq. (7), we obtain
Eq. (14), i.e.,

e−β�F = (VB/VA)N 〈eUA−UB〉A,r (B6)

with the distribution function for averaging being PA,r =
e−βUA/ZA,r. Note that this result can be extended to the 3D
case straightforwardly.
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