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Some interesting recent advances in the theoretical understanding of neural networks have been informed by
results from the physics of disordered many-body systems. Motivated by these findings, this work uses the replica
technique to study the mathematically tractable bipartite Sherrington-Kirkpatrick (SK) spin-glass model, which
is formally similar to a restricted Boltzmann machine (RBM) neural network. The bipartite SK model has been
previously studied assuming replica symmetry; here this assumption is relaxed and a replica symmetry breaking
analysis is performed. The bipartite SK model is found to have many features in common with Parisi’s solution
of the original, unipartite SK model, including the existence of a multitude of pure states which are related in
a hierarchical, ultrametric fashion. As an application of this analysis, the optimal cost for a graph partitioning
problem is shown to be simply related to the ground state energy of the bipartite SK model. As a second application,
empirical investigations reveal that the Gibbs sampled outputs of an RBM trained on the MNIST data set are
more ultrametrically distributed than the input data themselves.
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I. INTRODUCTION

Research into deep neural networks has advanced at a
stunning rate in recent years, leading to tremendous progress
for a number of difficult machine learning problems and
benchmarks [1]. Despite these impressive accomplishments,
there is a sense in which much of the recent progress has
been made in engineering new methods and techniques, and
the development of a robust theoretical understanding has
lagged behind. This state of affairs is a natural consequence
both of the inherent difficulty in building a strong theoret-
ical framework and of the unprecedented rate of success
that neural networks have had in solving machine learning
problems.

Recently, some interesting advances in improving the the-
oretical understanding of neural networks have been inspired
by results from physics, particularly the physics of disordered
many-body systems. For example, in [2], Bray and Dean
considered Gaussian random fields in high-dimensional spaces
and calculated many properties of the distribution of critical
points. Although the neural networks used in practical ap-
plications are certainly not Gaussian random fields, Dauphin
et al. [3] found through an empirical analysis that Bray and
Dean’s observations for Gaussian random fields hold for neural
networks trained on common machine learning data sets, such
as MNIST and CIFAR-10. These include the result that high-
error saddles pose a difficulty for training neural networks,
and that most local minima have errors very close to the global
minimum error. By drawing inspiration from physics, machine

*hartnett@rand.org
†tparker@alumni.physics.ucsb.edu
‡egeist@rand.org

learning researchers were able to improve their understanding
of neural networks, and moreover were led to propose a new
Newton method algorithm for optimization problems which
suffer from many saddle points.

Another advance in the theoretical understanding of neural
networks that borrows from physics was made in [4], where it
was observed that under certain simplifying assumptions, the
error surface of feed-forward neural networks can be mapped
precisely to the energy landscape for a physics model known
as the p-spin spherical spin glass, for which exact results have
recently been derived in [5,6]. As in the Dauphin et al. study,
these authors then empirically verified that these mathematical
insights qualitatively apply to neural networks trained on
MNIST, even though the assumptions behind the spin-glass
analysis no longer hold.1 Yet another recent work along these
lines is [8].

Inspired by these results, in this work we study in detail a
mathematically tractable spin-glass model, and then use these
results to better understand a family of neural networks. The
spin-glass model we consider is a simple extension of the
paradigmatic Sherrington-Kirkpatrick (SK) model [9]. The SK
model is an infinite-range spin glass with Hamiltonian

HSK = −
∑
i<j

Jij sisj . (1.1)

Here si , i = 1, . . . , N are binary spins, si ∈ {−1, 1}. The
2-spin couplings Jij are independent identically distributed
(iid) random variables drawn from a normal distribution with
mean J0 and standard deviation J . The SK model is an

1It is also worth noting that interesting progress has been made
recently in the other direction, namely using machine learning
methods to learn more about condensed matter systems [7].
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ideal toy model; despite its simplicity its theoretical analysis
is very rich and involves phenomena such as a continuous
order parameter, an ultrametric space of states, and stochastic
branching processes. In fact, the historical analysis of the SK
model is very closely tied to the development of spin-glass
theory.

As every spin in the SK model couples to every other spin,
the couplings may be characterized in terms of a complete
graph. In this paper, we consider the extension of the SK
model to complete bipartite graphs, which we will refer to
as the “bipartite SK model.” The special case of balanced
bipartite graphs has been studied for quite some time [10–
15], but the general case has only been studied much more
recently [16–25]. These papers have calculated the model’s
phase diagram in certain regimes [13,16,18] (related to our
results in the next section), but to our knowledge the replica
symmetry breaking of the bipartite SK model, which is crucial
for correctly describing the physics of the spin-glass phase, has
been much less well studied.2

Our primary motivation for studying the bipartite SK
model is its similarity to a family of neural networks known
as restricted Boltzmann machines (RBMs) [29]. RBMs are
generative models used in unsupervised learning, and are
appealing to study from a physics perspective because they
are energy-based models with a Hamiltonian of the same
parametric form as the bipartite SK model. In fact, the only
real difference between the bipartite SK model and the RBM
lies in how the parameters are chosen. In the bipartite SK model
they are iid normally distributed, whereas in the RBM they are
determined by a learning algorithm. Therefore, similarly in
spirit to Dauphin et al. [3] and Choromanska et al. [4], it is
plausible that the spin-glass analysis of the bipartite SK model
could provide novel insights into RBMs. Indeed, we will find
this to be the case.

The outline of this paper is as follows. First, in Sec. II
we analyze the bipartite SK model, considering both the
replica-symmetric and replica symmetry breaking cases. Then
in Sec. III we consider a combinatorial optimization problem
for which the optimal cost can be shown to be simply related
to the ground state energy of the bipartite SK model. In
Sec. IV we present the results from a range of numerical
investigations, including Markov chain Monte Carlo (MC)
simulations, and find good agreement. In Sec. V, we em-
pirically investigate the extent to which RBMs trained on
realistic data exhibit spin-glass phenomena. We conclude in
Sec. VI.

2Some relevant works are as follows. Reference [15] considered
the replica symmetry breaking for the special case of balanced
bipartite graphs. Reference [21] considered the replica symmetry
breaking of multispecies spin models and proved an upper bound
on the free energy, and [22] subsequently showed that the bound
is sharp. However, the model they considered necessarily allows
self-interactions between species, unlike the bipartite model con-
sidered here. Reference [26] considered the bipartite spherical SK
model. Reference [27,28] performed a replica-symmetric analysis
very similar to the one we perform in Sec. II A.

II. THE BIPARTITE SHERRINGTON-KIRKPATRICK
MODEL

In this section we study the statistical physics of an infinite-
range spin-glass model called the bipartite SK model, which
generalizes the famous Sherrington-Kirkpatrick (SK) model
[9] to a bipartite coupling graph. The Hamiltonian is

H = −
Nv∑
i=1

Nh∑
j=1

Wijvihj −
Nv∑
i=1

b
(v)
i vi −

Nh∑
j=1

b
(h)
j hj . (2.1)

Here vi, hj ∈ {−1, 1} are spin variables which, anticipating the
connection with RBMs in Sec. V, we will call the visible and
hidden spins, respectively. There are N spins in total, divided
into Nv visible and Nh hidden spins. We will use the convention
that the index i runs from 1 to Nv , and the index j runs from 1
to Nh. The parameters of the model are an Nv × Nh matrix of
couplings Wij , and the Nv- and Nh-length vectors b

(v)
i and b

(h)
j

which correspond to an independent external magnetic field
for each spin. Following the machine learning literature, we
will also refer to these as the biases. The Hamiltonian defines
a Gibbs probability distribution over the spin variables,

p(v, h) = e−βH

Z
, (2.2)

with β = 1/T the inverse temperature and

Z = Tr e−βH (2.3)

the partition function. The Tr symbol indicates a sum over all
2Nv+Nh = 2N configurations of the spin variables. The sum is
intractable for both sets of spins together, but because there
are no visible-visible or hidden-hidden couplings, it can be
performed analytically if one set of spins is held fixed. For
example, the marginal distribution over the visible spins can
be written as p(v) = e−βHv/Z, with

Hv = −
∑

i

b
(v)
i vi − 1

β

∑
j

ln

[
2 cosh

(
β b

(h)
j

+β
∑

i

viWij

)]
, (2.4)

and similarly for the hidden spins.
In the bipartite SK model, the parameters appearing in the

Hamiltonian are independently drawn from normal distribu-
tions,

Wij ∼ N (W0,W ), b
(v)
i ∼ N

(
b

(v)
0 , b(v)

)
,

b
(h)
j ∼ N

(
b

(h)
0 , b(h)

)
, (2.5)

where the notation x ∼ N (μ, σ ) indicates that the random
variable x is drawn from a normal distribution with mean
μ and standard deviation σ . Our motivation for studying the
bipartite model is its similarity to a class of neural networks
used for unsupervised learning known as restricted Boltzmann
machines (RBMs). RBMs are probabilistic models whose
Hamiltonians take the same general form as Eq. (2.1), but
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with the parameters allowed to take on arbitrary values.3 The
spin-glass properties of RBMs will be the focus of Sec. V.

Calculating the free energy

F = −β−1 ln Z (2.6)

for a specific choice of parameters Wij , b
(v)
i , b

(h)
i (known as a

“disorder realization” in physics terminology) is an intractable
problem, but in the large-N limit we can calculate the expec-
tation value of the free energy with respect to the probability
distributions given in Eqs. (2.5). We will use the notation [X] to
denote this expectation value (known as the “disorder-averaged
value”) for any quantity X.

Crucially, in the large-N limit, certain “self-averaging”
quantities (including the free energy) become independent of
the particular disorder realization. In order to have a well-
defined large-N limit in which the number of spins is infinite,
the moments of the 2-spin coupling Wij will need to be
rescaled. Defining W0 = w0/

√
NvNh and W = w/ 4

√
NvNh,

the Nv,Nh → ∞ limit may be taken while keeping w0, w

finite. We will also find it useful to introduce

αv = Nv

N
, αh = Nh

N
. (2.7)

We can calculate [F ] using the replica method, which is
based on the simple mathematical identity

[ln Z] = ∂[Zn]

∂n

∣∣∣∣
n=0

. (2.8)

[Zn] is initially computed with n taken to be a positive integer,
and each copy of Z is referred to as a replica. At the end of

the calculation, the above formula is used to compute [ln Z]
and hence also [F ]. There are many mathematical subtleties
associated with the replica method which have been discussed
extensively in the physics literature; we therefore omit any
further discussion here.

For the bipartite SK model, the disorder average may be
taken immediately, yielding

[Zn] = Trn exp

⎡⎣W̄0

∑
a,i,j

va
i h

a
j + W̄ 2

2

∑
a,b,i,j

va
i v

b
i h

a
jh

b
j

+ b̄
(v)
0

∑
a,i

va
i + (b̄(v) )2

2

∑
a,b,i

va
i v

b
i + b̄

(h)
0

∑
a,j

ha
j

+ (b̄(h) )2

2

∑
a,b,j

ha
jh

b
j

⎤⎦. (2.9)

Here the indices a, b, run from 1 to n, and label each replica.
Trn indicates a trace over all replicas, and a bar indicates that the
inverse temperature β has been absorbed into the parameter,
for example W̄ij = β Wij .

In the analysis of the original, unipartite SK model, the
Hubbard-Stratonovich integral transform is used to convert
the argument of the exponential to be quadratic in the spin
variables, at the cost of introducing an integral. For the bipartite
SK model, there are two species of spin variables, and a
different integral transform is required. Such a transform is
provided by

e
BC√

2a = a2

23/2π2

∫ ∞

−∞
dx dx̃ dy dỹ e−a(x2−√

2xy+y2+ 1
2 x̃2+ 1

2 ỹ2 )+B(x+ix̃ )+C(y+iỹ ), (2.10)

which converges for a > 0. This transform may be applied to the W̄0 term in Eq. (2.9) for

a = N

√
αvαh

2
w̄0, B = w̄0

∑
i

va
i , C = w̄0

∑
j

ha
j , (2.11)

and to the W̄ 2 term for

a = N

√
αvαh

2

w̄2

2
, B = w̄2

2

∑
i

va
i v

b
i , C = w̄2

2

∑
j

ha
jh

b
j . (2.12)

The resulting expression is

[Zn] =
(∫ ∏

a<b

dXabdX̃abdYabdỸab

)(∫ ∏
a

dUadŨadVadṼa

)
e−βNnFn , (2.13)

where

βnFn = w̄2√αvαh

∑
a<b

(
X2

ab√
2

− XabYab + Y 2
ab√
2

+ X̃2
ab

2
√

2
+ Ỹ 2

ab

2
√

2

)
+ w̄0

√
αvαh

∑
a

(
U 2

a√
2

− UaVa + V 2
a√
2

+ Ũ 2
a

2
√

2
+ Ṽ 2

a

2
√

2

)

− n

2
[
√

αvαhw̄
2 + αv (b̄(v) )2 + αh(b̄(h) )2] − αv ln Trn,v �v − αh ln Trn,h �h, (2.14)

3In the symmetric, uniform-bias case Nv = Nh, b(v)
0 = b

(h)
0 , b(v) = b(h) = 0, the bipartite SK model is known as the Korenblit-Shender model

[10,11]. Nv and Nh are typically equal in physical spin systems but not in RBMs.

022116-3



GAVIN S. HARTNETT, EDWARD PARKER, AND EDWARD GEIST PHYSICAL REVIEW E 98, 022116 (2018)

and

�v = exp

{∑
a<b

[w̄2(Xab + iX̃ab ) + (b̄(v) )2]vavb +
∑

a

[
w̄0(Ua + iŨa ) + b̄

(v)
0

]
va

}
, (2.15a)

�h = exp

{∑
a<b

[w̄2(Yab + iỸab ) + (b̄(h) )2]hahb +
∑

a

[
w̄0(Va + iṼa ) + b̄

(h)
0

]
ha

}
. (2.15b)

In the above, the site indices i, j for the spins have been dropped
because the sums over sites factorize and each site is treated
equally due to the disorder average, and Trn,v refers to a trace
over all n replicas of just the visible spins only, and similarly
for Trn,h.

In the large-N limit, the integral may be evaluated by
steepest descents: [Zn] ≈ e−βNnFn

∗
. The ∗ indicates that Fn

has been evaluated at a saddle, which is determined by the
following equations:

X∗
ab =

√
2
√

αv

αh

q
(v)
ab +

√
αh

αv

q
(h)
ab , X̃∗

ab = i
√

2
√

αv

αh

q
(v)
ab ,

(2.16a)

Y ∗
ab =

√
αv

αh

q
(v)
ab +

√
2

√
αh

αv

q
(h)
ab , Ỹ ∗

ab = i
√

2

√
αh

αv

q
(h)
ab ,

(2.16b)

U ∗
a =

√
2
√

αv

αh

m(v)
a +

√
αh

αv

m(h)
a , Ũ ∗

a = i
√

2
√

αv

αh

m(v)
a ,

(2.16c)

V ∗
a =

√
αv

αh

m(v)
a +

√
2
√

αv

αh

m(h)
a , Ṽa = i

√
2

√
αh

αv

m(h)
a ,

(2.16d)

where we have introduced the average magnetizations

m(v)
a = 1

Nv

∑
i

[〈
va

i

〉]
, m(h)

a = 1

Nh

∑
j

[〈
ha

j

〉]
, (2.17)

as well as the overlaps

q
(v)
ab = 1

Nv

∑
i

[〈
va

i v
b
i

〉]
, q

(h)
ab = 1

Nh

∑
j

[〈
ha

jh
b
j

〉]
, for a 	= b.

(2.18)

Angled brackets 〈·〉 denote a thermal average with respect to
the Gibbs distribution Eq. (2.2).

It is not useful to immediately impose the saddle point
equations because the trace must still be carried out in the �v,h

terms. Before carrying out the traces, however, it is convenient
to first convert to complex variables, defined by

M (h)
a =

√
αv

αh

(Ua + i Ũa ), M (v)
a =

√
αh

αv

(Va + i Ṽa ),

(2.19a)

M̂ (h)
a =

√
αv

αh

(
Ua − i Ũa

)
, M̂ (v)

a =
√

αh

αv

(
Va − i Ṽa

)
,

(2.19b)

Q
(h)
ab =

√
αv

αh

(Xab + i X̃ab ), Q
(v)
ab =

√
αh

αv

(Yab + i Ỹab ),

(2.19c)

Q̂
(h)
ab =

√
αv

αh

(Xab − i X̃ab ), Q̂
(v)
ab =

√
αh

αv

(Yab − i Ỹab ).

(2.19d)

These variables have the useful property that the hatted vari-
ables do not depend on the traces, and so their saddle equations
may be immediately solved for, yielding4

βnF∗
n = √

αvαh

(
w̄2

∑
a<b

Q
(v)
ab Q

(h)
ab + w̄0

∑
a

M (v)
a M (h)

a

)

− n

2
[
√

αvαhw̄
2 + αv (b̄(v) )2 + αh(b̄(h) )2]

− αv ln Trn,v �v − αh ln Trn,h �h, (2.20)

where now

�v = exp

{∑
a<b

[√
αh

αv

w̄2Q
(h)
ab + (b̄(v) )2

]
vavb

+
∑

a

[√
αh

αv

w̄0M
(h)
a + b̄

(v)
0

]
va

}
, v ↔ h. (2.21)

(The notation v ↔ h means that the equivalent equation with
every appearance of the labels v and h interchanged also holds.)
This choice of variables has the additional property that the
saddle equations (2.16) become simply

M (v)
a

∗ = m(v)
a , Q

(v)
ab

∗ = q
(v)
ab , v ↔ h. (2.22)

At this point the calculation has been formulated as a simple
extension of the usual replica symmetry breaking calculation of
the unipartite model; see for example [30–32]. One interesting
point to note is that if αv = αh = 1/2 and b

(v)
0 = b

(h)
0 , b(v) =

b(h), then there is a symmetry between the visible and hidden
spins and the expression reduces to exactly that of the unipartite
SK model. We have verified that our results reduce to those of
the SK model when this condition is imposed.

For simplicity, we will henceforth neglect the bias terms
by setting them to zero.5 The free energy is invariant under

4Note that the hatted quantities are not necessarily the complex
conjugates of the unhatted quantities: this is true only if the saddle
solutions of the variables Xab, X̃ab, Yab, Ỹab are all real, which will
turn out not to be the case.

5References [10–15] considered the effect of a uniform bias in the
special case of the Korenblit-Shender model defined in footnote 3.
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the transformation Wij → −Wij , b
(v)
i → −b

(v)
i , which corre-

sponds to flipping all the spins in the visible part (and also
under the equivalent transformation for the hidden part). In the
bipartite SK model, this corresponds to w0 → −w0 and either
b

(v)
0 → −b

(v)
0 or b

(h)
0 → −b

(h)
0 , but not both. In the zero-bias

case we will consider, the free energy is therefore symmetric
in w0, and without loss of generality we will only consider the
ferromagnetic case w0 > 0.

As in the SK model, an ansatz for the matrix structure of
the integration variables will need to be specified in order to
proceed. We will first assume a replica-symmetric ansatz and
analyze the phase diagram. Replica symmetry is broken in
the spin glass phase, and in the subsequent section the replica
symmetry breaking (RSB) ansatz of Parisi will be used.

A. Replica-symmetric analysis

First, we assume a replica-symmetric ansatz, with all matrix
and vector entries equal:

Q
(h)
ab

∗ =q (h), Q
(v)
ab

∗ =q (v), M (h)
a

∗ =m(h), M (v)
a

∗ =m(v),

(2.23)

which results in

βF∗
n = √

αvαh

{
w̄2

2
[(n − 1)q (v)q (h) − 1] + w̄0 m(v)m(h)

}
− αv

n
ln Trn,v �v − αh

n
ln Trn,h �h, (2.24)

where now

�v = exp

[√
αh

αv

(
w̄2q (h)

∑
a<b

vavb + w̄0 m(h)
∑

a

va

)]
,

v ↔ h. (2.25)

The quadratic spin terms in �v,h may be linearized through
the Hubbard-Stratonovich transform, after which the traces
become trivial. Finally, Eq. (2.8) may be used to yield the free
energy density, [f ] = [F ]/N = F∗

0 , with the result that

β[f ] = −
√

αvαhw̄
2

2
(q (v) − 1)(q (h) − 1)

+ √
αvαhw̄0 m(v)m(h) − αv〈ln[2 cosh Hh(z)]〉z

− αh〈ln[2 cosh Hv (z)]〉z, (2.26)

where

Hv (z) = w̄

(
αv

αh

) 1
4 √

q (v)z + w̄0

√
αv

αh

m(v), v ↔ h. (2.27)

The notation 〈·〉z indicates an expectation value taken over the
Gaussian random variable z with zero mean and unit variance
that was introduced by the Hubbard-Stratonovich transform,

〈g(z)〉z =
∫ ∞

−∞

dz√
2π

e−z2/2g(z). (2.28)

Extremizing the free energy with respect to the variables
{m(v),m(h), q (v), q (h)} yields the saddle equations

m(v) = 〈tanh Hh(z)〉z, v ↔ h, (2.29a)

q (v) = 〈tanh2 Hh(z)〉z, v ↔ h. (2.29b)

We can now map out the phase diagram of the zero-bias
system, and we find three phases. In the paramagnetic phase,
with m = q = 0, each spin fluctuates randomly over time. In
the ferromagnetic phase, with q = m2 	= 0, the spins are frozen
into a single globally aligned symmetry-breaking direction. In
the spin-glass phase, with m = 0 but q 	= 0, each individual
spin is frozen in a particular direction, but an equal number are
frozen in each direction, so there is no net magnetization.

The equations (2.29) must be solved numerically, except
in the vicinity of the transitions that border the paramagnetic
phase, at which both the magnetizations and overlaps are small
and a perturbative analysis may be applied. The ferromag-
netic/spin glass transition is not accessible via perturbative
methods as the overlap is nonzero on both sides of the
transition. Perturbative analysis yields the following critical
lines: w̄0 = 1 for 0 � w̄ < 1 as a phase boundary between
the paramagnetic and ferromagnetic phases, and w̄ = 1 as the
boundary between the paramagnetic and spin-glass phases.
The ferromagnet/spin glass phase boundary can be solved
numerically by expanding the equations (2.29) around zero
magnetization. The paramagnetic/spin glass phase boundary
for w̄0 = 0 was previously derived (with different conventions)
in [16,18]. We plot the zero-bias phase diagram in Fig. 1.6

In more detail, the ferromagnet/spin glass boundary w̄0(w̄)
may be solved for by first specifying a value of w̄. Then the
overlaps are determined by solving Eqs. (2.29b) evaluated at
zero magnetization. Finally, the value of w̄0 corresponding to
the phase boundary may be determined by solving Eqs. (2.29a)
expanded to linear order in the magnetizations. The final
equation governing the phase boundary is

1 − ω̄0
2

〈
sech2

[(
αh

αv

) 1
4 √

q (h)w̄z

]〉
z

×
〈

sech2

[(
αv

αh

) 1
4 √

q (v)w̄z

]〉
z

= 0. (2.30)

In the paramagnetic phase, the magnetizations and overlaps
are zero, and the expression for the free energy Eq. (2.26)
simplifies to

β[f ] = −
√

αvαh

2
ω̄2 − ln 2. (2.31)

6This phase diagram only applies for the case of zero biases. When
the bias means b

(v,h)
0 are nonzero, the Hamiltonian is no longer

symmetric under the transformation vi → −vi, hj → −hj and the
ferromagnetic and antiferromagnetic cases are no longer equivalent.
Assuming the bias means have the same sign, in the ferromagnetic
case w0 > 0 the transition between the paramagnetic and ferromag-
netic phases disappears and they merge into a single phase, which
has m 	= 0 but is best thought of as the paramagnetic phase, because
the ground state is unique and there is no symmetry breaking. In the
antiferromagnetic case w0 < 0, the two parts magnetize unequally,
with the larger part more strongly magnetized (in the symmetric case
αv = αh, there remains a Z2 symmetry-breaking phase in which the
larger magnetization is selected spontaneously). Both cases still have
a spin-glass phase characterized by many pure states [10,31], but with
a net magnetization.
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FIG. 1. (a) The phase diagram for the bipartite SK model (restricted to zero biases), as predicted by the replica-symmetric analysis. Only
the SG/F phase boundary depends on the relative fractions of visible and hidden spins, and in this plot we have set αv = αh = 1/2 so that this
phase diagram is exactly the same as in the SK model. (b) To display the effect of a disparity between the numbers of the two types of spins, we
have zoomed into the SG/F transition for various values of αh. The solid line corresponds to αv = αh = 1/2, and starting in the lower right-hand
corner, the curves descend as αh decreases.

This expression was first derived in [18], and it was also proven
that this replica-symmetric expression is valid in this phase. In
the SK model, the assumption of replica symmetry fails to
hold in the spin-glass phase and in a low-temperature subset
of the ferromagnetic phase due to the presence of unstable
modes, as shown by [33]. We expect the same is true for the
bipartite SK model; however we will omit a detailed stability
analysis here. Instead, the unphysical nature of the replica-
symmetric solution may be illustrated by the fact that it predicts
a negative entropy in the zero-temperature limit within the spin-
glass phase. In particular, setting w0 = 0, the zero-temperature
limit of the saddle equations (2.29) yields zero magnetization,
m(v) = m(h) = 0, as well as

q (v) = 1 −
√

2

π

(
αv

αh

)1/4
T

w
+ O(T 2), v ↔ h. (2.32)

This may be inserted into the free energy to yield

[f ] = −
√

2αvαh

π
w

[(
αv

αh

)1/4

+
(

αh

αv

)1/4
]

+
√

αvαh

π
T + O(T 2). (2.33)

As the free energy is related to the entropy via S =
−∂F/∂T at fixed volume and particle number, the assump-
tion of replica symmetry predicts a negative entropy density
S/N = −√

αvαh/π , which is unphysical.

B. Replica symmetry breaking analysis

In this section we drop the assumption of replica symmetry,
which fails to hold in the spin-glass phase. (Reference [15]
performed a similar calculation for the related Korenblit-
Shender model defined in footnote 3, in which αh = 1/2; here
we consider zero biases but arbitrary α.)

1. Review: Parisi ansatz

Parisi famously proposed in [34] a very interesting ansatz
for replica symmetry breaking in the context of the original
unipartite SK model. We will consider the natural extension of
his ansatz to the bipartite model studied here. In order for the

presentation to be as self-contained as possible, we first briefly
review the Parisi ansatz for the unipartite SK model for a single
set of N spins si , with the Hamiltonian given by Eq. (1.1).

The spin-glass phase of the unipartite SK model is charac-
terized by a free energy with many local minima separated by
high free energy barriers. As a result, thermodynamic averages
may be decomposed into sums of pure states. If the pure
states are indexed by a (the reason for using the same index
as for the replicas will become apparent soon), then for any
observable O,

〈O〉 = Tr(e−βHO)

Z
=
∑

a

wa〈O〉a, (2.34)

where the weights of the pure states are given by wa =
e−Fa /Z, with Fa the free energy of the pure state. Pure
states satisfy cluster decomposition, which for an infinite-
dimensional model such as the bipartite SK model implies
that correlation functions of observables at different sites must
factorize: 〈Oi1Oi2〉a = 〈Oi1〉a〈Oi2〉a . The large free energy
barriers between pure states cause ergodicity to be broken, so
that the system becomes trapped in a single pure state during
time evolution.

The relationship between the existence of many distinct
pure states and the replica method was first worked out by
Parisi [34], who showed that the matrix which measures the
overlap between replicas a and b may be identified with the
matrix which measures the overlap between pure states a and
b. This corresponds to equating

Qab = 1

N

∑
i

〈si〉a〈si〉b, (2.35)

and justifies using the same index for replicas and pure states.
Under time evolution, ergodicity is broken, and different
replicas can spontaneously equilibrate into different pure states
despite having been initialized equivalently. Thus, to properly
capture the physics of the many pure states, an ansatz for
the overlap matrix Qab must be specified which breaks the
permutation symmetry between replicas.

Parisi introduced a particularly interesting ansatz, which
may be constructed according to the following prescription.
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FIG. 2. The block-diagonal Parisi ansatz for the overlap matrices
Qab (bottom) along with a dendrogram (top) illustrating the hier-
archical relationship contained within the ansatz. Here, k = 3, with
mi = (64, 16, 8, 4, 1) for i = 0, . . . , k + 1. The branching ratio of
the tree at level i equals mi/mi+1. This plot uses a gray scale with
white corresponding to 0 and black corresponding to 1. The shading
thus reflects the fact that the qi form an increasing sequence (for
readability, only q0 and q1 have been labeled).

First, a series of k + 2 integers is introduced, mI , I =
0, . . . , k + 1, with m0 = n, and mk+1 = 1, and all mI/mI+1

assumed to be integers. The off-diagonal elements of the n × n

overlap matrix are then parametrized according to

Qab = qI , for

⌈
a

mI

⌉
=
⌈

b

mI

⌉
and⌈

a

mI+1

⌉
	=
⌈

b

mI+1

⌉
, (2.36)

where x� is the ceiling function. The qI form a sequence
of variational parameters which replace the role of q in
the replica-symmetric analysis. An example of this ansatz is
depicted in Fig. 2.

This ansatz breaks the permutation symmetry among repli-
cas in a sequential, iterative manner. The symmetry is broken
between pure states belonging to different blocks, and as k

increases the number of different blocks increases. The case
k = 0 corresponds to the replica-symmetric case considered
previously. Finite k corresponds to partial symmetry breaking,
and is referred to as the RSB-k scheme. In the extreme case
where k → ∞, the symmetry is fully broken. Regardless
of the degree to which replica symmetry is broken, even-
tually the n → 0 limit is taken and the overlap matrix Qab

becomes 0 × 0.
At this point, the relationship between the replica symmetry

breaking ansatz for Qab and the many pure states can be seen

by computing

PJ (q ) =
∑
a,b

wawbδ(qab − q ), (2.37)

which is the probability distribution of finding two pure states
a and b with a given overlap qab = q. The J subscript indicates
that this expression is not self-averaging; unlike the free
energy, it depends on the particular realization for the coupling
matrix. After imposing the Parisi ansatz for k → ∞, taking the
disorder average, and the n → 0 limit, the overlap probability
can be shown to be expressible as

P (q ) = [PJ (q )] = dx(q )

dq
, x(q ) =

∫ q

0
dq ′P (q ′). (2.38)

With k → ∞, the sequence of overlaps qI has been con-
verted to a continuous function of a single variable, q(x), and
moreover that function has been related to the probability of
finding two states with a given overlap. The inverse function
x(q ) is the cumulative distribution function for the random
variable P , and gives the probability of finding an overlap less
than or equal to q. The overlap q(x) is the quantile function
for P , with domain x ∈ [0, 1] and range q ∈ [0, qmax].7 Thus,
breaking of replica symmetry has allowed for a multitude of
distinct pure states with different overlaps between each other.

Perhaps the most fascinating feature of Parisi’s replica
symmetry breaking solution of the SK model is the fact that
the space of pure states is ultrametric [35,36]. Just as P (q )
is defined to be the disorder-averaged probability that two
arbitrary pure states, a and b, will have an overlap qab = q,
a 3-state overlap distribution may also be defined. For pure
states a, b, c, P (q1, q2, q3) may be defined to be the probability
that qab = q1, qbc = q2, and qac = q3. Interestingly, unlike the
case of P (q ) which can only be analytically calculated near
criticality, the 3-state overlap distribution of the SK model
may be calculated in the spin-glass phase for any value of
the temperature [35,36]:

P (q1, q2, q3) = 1
2P (q1)x(q1)δ(q1 − q2)δ(q1 − q3)

+ 1
2 [P (q1)P (q2)θ (q1 − q2)δ(q2 − q3)

+ cyclic permutations], (2.39)

where θ (x) is the Heaviside theta function.
The simple expression for the 3-overlap distribution,

Eq. (2.39), implies that the pure states of the model are arranged
in a treelike structure. This can be best seen by first introducing
the distance between pure states:

(dab )2 = 1

N

∑
i

(〈si〉a − 〈si〉b )2 = 2(qEA − qab ), (2.40)

7A subtlety here is the fact that in the zero-bias case, for every
pure state there is a Z2 partner state with the each spin reversed.
This means that the overlap functions should lie within the interval
−1 � −|qmax| � q(x ) � |qmax| < 1. The replica symmetry breaking
ansatz implicitly assumes that q(x ) � 0, and so the probability
distribution across the full interval is related to those of Eq. (2.38)
via P full(q ) = P (q )/2 + P (−q )/2. See p. 32 of [31] for more details
on this point.
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T = T0 + ΔT

T = T0

T = T0 − ΔT

FIG. 3. Schematic depiction of the hierarchical tree of spin-glass
states, with ancestor states at higher temperatures related to descen-
dant states at lower temperatures by a branching process. The various
curves represent the free energy at different temperatures, plotted
against a one-dimensional line through the state space. Although the
state space is discrete, it is schematically shown here as a continuum.

where qEA = qaa = qbb is the state-independent Edwards-
Anderson order parameter. Assuming without loss of general-
ity that qab � qbc � qac, Eq. (2.39) implies that P (q1, q2, q3)
is nonzero only for

dac � dab = dbc. (2.41)

Thus, all triangles in the space of states are either equilateral
or isosceles with the unequal side shorter than the equal sides.

Metric spaces satisfying Eq. (2.41) are called ultrametric.8

One interesting property of ultrametric spaces which is relevant
here is that points in such a space may be associated with
the leaves of a tree diagram, and therefore the dendrogram in
Fig. 2 serves to illustrate how the assumption of ultrametricity
is implicitly contained within the Parisi ansatz, Eq. (2.36). The
phenomenon of ultrametricity may be understood dynamically.
As the temperature is lowered, ancestor pure states split into
descendant pure states according to a stochastic branching
process [31] depicted in Fig. 3.

2. Free energy

Given the form of Eq. (2.20), it is natural to separately
assume the Parisi ansatz for each of the two overlap matrices,
Q

(v)
ab , Q

(h)
ab . We will not attempt to rigorously prove the

correctness of this ansatz in the bipartite model, but in Sec. IV
we show good agreement with Monte Carlo simulations. One
immediate implication of the ansatz is that the pure states in
the bipartite model will also be ultrametrically distributed. The
derivation of Eq. (2.39) only relies on the properties of the
algebra of Parisi matrices [matrices of the form Eq. (2.36)],
and not on the functional form of the Hamiltonian. Thus, by
repeating the original calculation for the marginal distributions

8The defining equation for ultrametric spaces is normally written as
dac � max{dab, dbc}, which is equivalent to Eq. (2.41). For a review
of ultrametricity from the perspective of physics, see [37].

p(v), p(h), one finds that the pure states in each reduced
system will exhibit the same ultrametric structure.

The calculation of the free energy proceeds analogously to
the SK calculation, which can be found in many textbooks
[30–32], and so we will not repeat the derivation here. A set of
Parisi equations may be derived for infinite breaking of replica
symmetry:

β[f ] = −
√

αvαh

2
w̄2

[
1 +

∫ 1

0
dx q (v)(x)q (h)(x) − q (v)(1)

− q (h)(1)

]
− αv

〈
f

(h)
0 (0,

√
r (h)(0)z)

〉
z

− αh

〈
f

(v)
0 (0,

√
r (v)(0)z)

〉
z
, (2.42)

where we have introduced

r (v)(x) =
√

αv

αh

q (v)(x), v ↔ h (2.43)

to simplify the expressions. The functions f
(I )

0 (x, h), for
I ∈ {v, h}, are determined to be a solution of the differential
equation:

∂f
(I )

0

∂x
= −w2

2

dr (I )

dx

⎡⎣∂2f
(I )

0

∂h2
+ x

(
∂f

(I )
0

∂h

)2
⎤⎦. (2.44)

The boundary condition is that f
(I )

0 (1, h) = ln 2 cosh βh.
These equations may be solved to a high degree of numerical

precision using the methods of [38]. As these techniques are
somewhat involved, we will instead be content to solve the
equations in the RSB-1 scheme (see Sec. II B 1). The n → 0
limit converts the integer m1 into a variational parameter in
the interval (0, 1) which we denote by m (which should not
be confused with the magnetization). The other variational
parameters are a sequence of q values for each spin species:
{q (v)

0 , q
(v)
1 }, {q (h)

0 , q
(h)
1 }. The RSB-1 expression for the free

energy is

β[f ] = −
√

αvαh

2
w̄2

[
1 + mq

(v)
0 q

(h)
0 + (1 − m)q (v)

1 q
(h)
1

− q
(v)
1 − q

(h)
1

] − ln 2

− αv

m

∫ ∞

−∞
dP

(
r

(h)
0 , z

)
× ln

{∫ ∞

−∞
dP

(
r

(h)
1 − r

(h)
0 , y

)
coshm [β(y + z)]

}
− αh

m

∫ ∞

−∞
dP

(
r

(v)
0 , z

)
× ln

{∫ ∞

−∞
dP

(
r

(v)
1 − r

(v)
0 , y

)
coshm [β(y + z)]

}
,

(2.45)

where dP (q, z) := dz√
2πq

exp(− z2

2q
) is a Gaussian measure, and

the r variables are related to the q variables as in Eq. (2.43).
The variational parameters are set to the critical point at
which ∇[f ] = 0, subject to the constraint that 0 < m < 1,
0 < q

(v)
0 < q

(v)
1 < 1, and similarly for q

(h)
0 , q

(h)
1 . We present
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the numerical solution of this equation, along with the results
of MC simulations, in Sec. IV below.9

3. Near-critical solution

Analytic results for the spin-glass phase are in general not
possible for the replica symmetry breaking analysis. However,
they are obtainable in the vicinity of the spin-glass phase
transition. Here we will work out the near-critical overlap
distributions, and verify that in the RSB analysis the bipartite

SK model exhibits a spin-glass transition which is very similar
to that of the standard, unipartite model. For simplicity, we will
again set w̄0 = 0.

The starting point is the free energy, Eq. (2.20). In the
paramagnetic phase, the overlap matrices will be zero, and
in the spin-glass phase, they will be nonzero. In the spin-glass
phase and near the phase boundary w̄ = 1, they will be nonzero
but small, and therefore the free energy may be expanded
as

βnFn =
√

αvαhw̄
2

2
(Tr[Q(h)Q(v)] − n) − n ln 2

− αv

{(
αh

αv

)
w̄4

4
Tr[(Q(h) )2] +

(
αh

αv

)3/2
w̄6

6
Tr[(Q(h) )3] +

(
αh

αv

)2
w̄8

12

∑
ab

[(
Q

(h)
ab

)4]
−

(
αh

αv

)2
w̄8

4

∑
abc

[(
Q

(h)
ab

)2(
Q(h)

ac

)2] +
(

αh

αv

)2
w̄8

8
Tr[(Q(h) )4]

}

− αh

{(
αv

αh

)
w̄4

4
Tr[(Q(v) )2] +

(
αv

αh

)3/2
w̄6

6
Tr[(Q(v) )3] +

(
αv

αh

)2
w̄8

12

∑
ab

[(
Q

(v)
ab

)4]
−

(
αv

αh

)2
w̄8

4

∑
abc

[(
Q

(v)
ab

)2(
Q(v)

ac

)2] +
(

αv

αh

)2
w̄8

8
Tr[(Q(v) )4]

}
, (2.46)

where we have carried out the expansion to fourth order and
have only kept the quartic terms which contribute to the phase
transition at leading order.

To further analyze this expression, an ansatz for the overlap
matrices Q

(v)
ab , Q

(h)
ab must be specified in order to carry out the

traces. A natural choice, given the similarity of the bipartite
SK model to the unipartite SK model, is to assume that each of
these matrices is of the Parisi form [30–32]. In the limit n → 0,
the matrices may be written in terms of continuous functions

9One new subtlety that arises in the bipartite case is that the critical
point turns out to be a saddle point of [f ], instead of a local maximum
as in the unipartite case. We have two possible explanations for this
phenomenon: (1) Even in the unipartite case, the local extremum
of [f ] within the RSB-k ansatz at finite k is known to become a
saddle point if we allow perturbations that violate the ansatz [33].
The more general bipartite RSB-k ansatz may directly include these
“unstable directions” in parameter space as an artifact of the finite
value of k. (2) The integration contour deformation implicit in the
change of variables Eq. (2.19) may not lie along the direction of
steepest descent of |e−βNnFn |. In this case a more careful integration
contour deformation might convert the free energy’s critical point
from a saddle point to a local extremum. However, the orientation of
the integration contour in the complex plane as it passes through the
critical point only makes a contribution subleading in large N , and so
is irrelevant in the N → ∞ limit. Regardless of the explanation, the
saddle nature of the critical point makes it much more difficult to locate
numerically than a local extremum, especially at low temperature, as
we must simultaneously solve the five equations ∇[f ] = 0 instead of
simply extremizing a single scalar quantity.

q (v)(x), q (h)(x), and the traces may be carried out, yielding

β[f ] =
∫ 1

0
dx

[
1

4
(
√

αhq
(h) − √

αvq
(v) )2

+ √
αvαhq

(v)(x)q (h)(x)τ

− α
3/2
h

6α
1/2
v

(
xq (h)(x)3 + 3q (h)(x)

∫ x

0
du q (h)(u)2

)

− α
3/2
v

6α
1/2
h

(
xq (v)(x)3 + 3q (v)(x)

∫ x

0
du q (v)(u)2

)

+ α2
h

12αv

q (h)(x)4 + α2
v

12αh

q (v)(x)4

]
+ C. (2.47)

Here we have expanded around the critical point, setting
w̄ = 1 + τ , with τ > 0 and τ � 1. C is an irrelevant overall
constant. Additionally, we will neglect the first term; this will
be justified by the solution a posteriori.

Next, the variational derivative with respect to both overlap
functions may be taken, yielding

0 = √
αvαhq

(v)(x)τ − α
3/2
h

6α
1/2
v

(
3xq (h)(x)2

+ 3
∫ x

0
du q (h)(u)2 + 6q (h)(x)

∫ 1

x

du q (h)(u)

)
+ α2

h

3αv

q (h)(u)3, v ↔ h. (2.48)
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(a) (b)

FIG. 4. (a) The near-critical overlap q (v) for the visible spins. The
overlap for the hidden spins may be obtained by interchanging αv ↔
αh. (b) The probability distribution of visible overlaps. The vertical
line represents a delta function spike.

These equations are solved (to leading order in τ ) by

q (v)(x) =
⎧⎨⎩
√

αh

αv

x
2 , 0 � x � 2τ,√

αh

αv
τ, 2τ � x � 1,

v ↔ h. (2.49)

Using Eq. (2.38), the disorder-averaged probability distri-
butions of the overlaps may be found to be nonzero only in the

intervals q (v) ∈ [0,
√

αh

αv
τ ], v ↔ h, in which case they are

P (q (v) ) = (1 − 2τ )δ

(
q (v) −

√
αh

αv

τ

)
+ 2

√
αv

αh

, v ↔ h.

(2.50)

The Dirac delta function terms in Eq. (2.50) correspond a
nonzero probability (1 − 2τ ) that two random pure states will
have an overlap equal to the largest value in the interval. The
constant 2 corresponds a nonzero probability for the overlap to
take on a value within the interval. The near-critical overlaps
and their distributions are plotted in Fig. 4.

In Sec. IV the analytic predictions of the RSB analysis will
be compared with Monte Carlo (MC) simulations, and the two
methods will be found to be in good agreement.

III. APPLICATION: GRAPH PARTITIONING

In this section, we consider an application of the bipartite SK
model to a combinatorial optimization problem. By solving this
combinatorial problem we will obtain an independent check on
the RSB and MC results.

There is a rich connection between the replica method and
optimization problems; for example, in [36] it was used to study
the traveling salesman problem. Of course, the replica method
cannot yield a solution to a general instance of the problem
(which would be extremely surprising), but can instead allow
for various “thermodynamic” quantities to be calculated, such
as the average length of the shortest path. In another appli-
cation of spin-glass theory to optimization problems, Fu and
Anderson [39] considered an NP-complete graph partitioning
problem and related it to the SK model. Given a graph G(V,E)
with vertex and edge sets V,E respectively, the problem is
to find the partitioning of the vertices into two equally sized
subsets, such that the number of edges between the two subsets
is minimized.10

10This problem corresponds to ND14 in Garey and Johnson [40].

FIG. 5. A depiction of the bipartite graph partitioning problem.
The vertices have been separated into two clusters, A, B, with each
cluster containing Nv/2 vertices of one species, and Nh/2 of the other.
The clusters were chosen to minimize the number of interpartition
edges.

Fu and Anderson considered a special case of this problem,
and took the graph to be an instance of a random graph for
which each edge is present with probability p. Defining N :=
|V |, they considered the large-N limit with p kept finite, so
that each vertex has an infinite number of connections. They
showed that the cost function C, when evaluated on the optimal
solution, grows as

C∗ ∼ N2

4
p + N3/2

√
p(1 − p)

ESK
gs

2N
. (3.1)

C measures the number of edges between the partitions and
the ∗ indicates that the cost has been evaluated on the optimal
solution. Here ESK

gs /N is the ground state energy density of
the original SK model.11 The energy can be calculated via the
replica method to be ESK

gs /N = −0.7633 [31]. Note that the
term involving the energy appears as a subleading correction
to the optimal cost.

A bipartite extension of the graph partitioning problem may
be formulated, which can then be related to the ground state
of the bipartite SK model. The problem is as follows: given a
bipartite graph with Nv vertices of one type and Nh of another
(with both Nv and Nh assumed to be even), find a clustering
of the vertices into two equally sized subsets each with Nv/2
vertices of one part and Nh/2 vertices of the other part, such
that the number of edges between vertices in separate clusters
is minimized.12 This is depicted in Fig. 5.

The version of the bipartite graph partitioning problem that
we study here is the following. Of the NvNh possible edges,
each one is present independently with probability p. With
minor modifications, the treatment of Fu and Anderson [39]
can be applied to this problem as well. Let i = 1, . . . , Nv label
the vertices in the first partition, and j = 1, . . . , Nh label the
vertices in the second. Also let �ij be a matrix used to indicate
whether a given edge is present, with �ij = � if the edge
between vertices (i, j ) is present, and 0 otherwise. Let A and

11Here it has been assumed that Jij ∼ N (0, N−1/2).
12One possible source of confusion here is that there are two

different notions of partitions: the partitioning implied by the bipartite
structure, and the partitioning which is the goal of the optimization
problem. We will refer to this second partitioning as a “cluster” to
avoid confusion.
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B be the two clusters, with vi, hj = +1 if the ith or j th vertex
is assigned to cluster A, and vi, hj = −1 if it is assigned to
cluster B.

In order to relate this problem to the bipartite SK model, we
introduce the Hamiltonian H = −∑

i,j �ij vihj . Evaluated on
any spin configuration, the Hamiltonian may be related to the
cost function C as

C = NvNh

2
p + H

2�
. (3.2)

C again counts the number of edges between clusters A and
B. The cost of the optimal solution can then be related to the
minimal value of the Hamiltonian—in other words the ground
state energy:

C∗ = NvNh

2
p + Egs

2�
. (3.3)

Since the energy is a self-averaging quantity, the ground
state energy of the Hamiltonian H may be computed by taking
the disorder average and applying the replica method. The
calculation is similar to that of the bipartite SK model, although
it is not identical because of the important difference that the
couplings �ij are now Bernoulli random variables rather than
Gaussian, and there is an additional constraint that each cluster

should contain half of the visible and half of the hidden vertices,
so that

∑
i vi = ∑

j hj = 0. Nevertheless, the ground state
energies of the two Hamiltonians are the same in the large-N
limit, up to an overall scaling, as we will now show.

The calculation proceeds by first computing the free energy
[F ] for arbitrary temperature. Then, the zero-temperature limit
may be taken, in which case the free energy reduces to the
ground state energy. As above, to compute [F ] we first compute
[Zn],

[Zn] = (1 − p)NvNhTr′
∏
i,j

[
1 + p

1 − p
exp

(
β�

∑
a

va
i h

a
j

)]

= (1 − p)NvNhTr′ exp

{∑
ij

ln

[
1 + p

1 − p

× exp

(
β�

∑
a

va
i h

a
j

)]}
, (3.4)

where Tr′ indicates that the trace is constrained to be over all
configurations of the spins such that

∑
i v

a
i = 0,

∑
j ha

j = 0.
By expanding the logarithm and the second exponential, inter-
changing the summations, and dropping terms which vanish
due to the constraints, one finds

[Zn] = Tr′ exp

[ ∞∑
�=2

c�(β�)�NvNh

∑
a1

. . .
∑
a�

(
1

Nv

∑
i

v
a1
i . . . v

a�

i

)(
1

Nh

∑
i

h
a1
i . . . h

a�

i

)]
, (3.5)

with the constants c� defined to be

c� := 1

�!

∞∑
k=1

(−1)k−1

k

(
p

1 − p

)k

k�. (3.6)

In order for the large-N limit to exist, we should again set
�2 = ω2/

√
NvNh, in which case the only term that is relevant

in the sum is the � = 2 term.
At this point we observe that Eq. (3.5) defines the same

partition function as the bipartite SK model, Eq. (2.9), except
for the minor difference that the coupling has been rescaled
(as in Sec. II, the biases and the mean w0 have been set to
zero). Using the fact that the ground state energy is linear in
the coupling constant, and that c2 = p(1 − p)/2, the optimal
cost in the large-N limit grows as

C∗ ∼ N2

2
αv αh p + N3/2(αvαh)1/4

√
p(1 − p)

EbSK
gs

2Nw
. (3.7)

Finally, the ground state energy EbSK
gs may be computed

numerically, either by Monte Carlo simulation or through
solution of the replica symmetry breaking equations [for
example Eq. (2.42)].13

13We have glossed over one important point, which is that although
the expressions for the free energies Eq. (3.5) and Eq. (2.9) are the
same, the traces in the former expression are restricted to obey the
constraints

∑
i v

a
i = 0,

∑
i h

a
j = 0. Fu and Anderson showed that

in the unipartite case, these constraints are automatically satisfied

We numerically tested the replica prediction Eq. (3.7) by
simulating many instances of random bipartite graphs and
using a simple variant of the well-known Kernighan-Lin (KL)
[41] algorithm. The KL algorithm applies to the balanced graph
partitioning problem, and performs a greedy heuristic search
through the space of all clustering assignments. The constraint
that each cluster contains exactly half of the vertices is
respected by the algorithm, provided that the initial clustering
does too. We developed a simple extension of this algorithm to
the bipartite problem considered here that (1) enforces that each
of the initial clusters contain half of each vertex type (visible
and hidden), and (2) only swaps vertices between clusters if
both are of the same type. By applying many passes of the
algorithm to a given graph, a good estimate of the optimal cost
may be obtained.

In Fig. 6 we plot the simulation results for p = 1/2 and a
range of values for N and αh, and find excellent agreement with
the analytical prediction of Eq. (3.7). The simulation details are
as follows: for each N , 100 passes of the heuristic KL algorithm
were made and the lowest cost was recorded. By repeating this
step 100 times and averaging the result, an estimate for C∗(N )
was obtained.

and do not need to be separately imposed. They also provided a
general explanation for this which should hold equally well in the
bipartite case studied here. Indeed, the numerical results described
below confirm this to be the case.
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FIG. 6. The optimal cost of the graph partitioning problem with
the leading term in the large-N limit subtracted, plotted against N3/2.
The points correspond to simulation results and the dashed lines are
linear fits. Equation (3.7) gives that each line slope is proportional
to the ground state energy density of the bipartite SK model with
the same value of αh. When αh = 1/2 the ground state energy of the
bipartite SK model agrees with that of the unipartite SK model, which
is known to high accuracy: ESK

gs /N = −0.7633 [31]. The solid line
corresponds to the αh = 1/2 analytic prediction, calculated using this
value for the ground state energy. The best-fit slope for the simulation
data agrees with the analytic prediction to within 2.9%. In Sec. IV
below we will compare this method’s estimates for ESK

gs for αh 	= 1/2
against other numerical methods’ estimates.

IV. NUMERICAL RESULTS

In this section we present the results of several numerical
studies and show that they are in good agreement. First, we
numerically solved for the critical point of the RSB-1 free
energy Eq. (2.45). Then we performed Monte Carlo simula-
tions of the bipartite SK model, using the parallel tempering
method [42] to surmount the obstacle of ergodicity breaking.
Lastly, we extracted an estimate of the ground state energy by
calculating the optimal cost of the graph partitioning problem
introduced in the previous section, again using the variant of the
Kernighan-Lin algorithm described there. The fact that these
rather different methods agree both serves as a check on our

calculation and provides strong numerical evidence that the
Parisi ansatz is indeed correct for the bipartite SK model.14

The MC simulation details are as follows. The bias param-
eters were again set to zero, as was w0. We also set w = 1,
and worked in terms of the temperature, so that w̄ = 1/T , and
the critical temperature is Tc = 1. Using parallel tempering,
we simultaneously simulated NT = 20 temperatures for a
given disorder realization, with the temperatures distributed
geometrically across the interval [0.1, 4.0]. We considered
N = 400 spins and 31 different values of αh = Nh/N uni-
formly distributed from 0.125 to 0.875.15 In order to compute
the disorder average, we repeated the experiment for K = 100
different random draws of the coupling matrix Wij . Each
simulation consisted of 105 iterations of a full sweep over
all spin variables and a parallel tempering swap. We chose to
sample p(v, h), rather than the marginal distributions, because
we are interested in both sets of spins. This distribution is also
numerically convenient to simulate, because of the fact that
in bipartite models all spins within a given partition may be
flipped independently of each other due to the factorization
property of the conditional probability distribution. During
each of the K runs, after each iteration we took a sample,
omitting the first 100 samples for a burn-in period.

For the graph partitioning problem, we also considered N =
400 and the same range of αh values as in the MC simulations.
For each value of αh, we performed 40 KL passes over each
of 50 random graphs with p = 1/2, and averaged the lowest
costs to obtain the final estimate, which was then fitted to the
analytic form Eq. (3.7).

We plot the energy and entropy densities as functions of
temperature in Fig. 7, from the MC simulations and the RS
and RSB-1 approximations. (For T < 1 we expect the system

14Note that the RSB-1 calculation assumes the N → ∞ limit while
the MC and graph partitioning simulations necessarily incorporate
finite-size effects, so the methods would produce slightly different
results even if the numerical simulations were perfectly accurate.

15The all-to-all nature of the bipartite couplings results in far more
bonds than are present in a local system with the same number of
spins. This prevents us from reaching system sizes as large as can be
reached for local systems, but also means that we do not need to go
to nearly as many spins in order to reach the large-N limit.

FIG. 7. The disorder-averaged energy density (a) and entropy density (b), obtained from 3 distinct calculations and for several values of
αh. The bottom set of 3 (blue) curves in both figures corresponds to αh = 1/2, the middle set of (orange) curves to αh = 1/4, and the top set
of (green) curves to αh = 1/8. Within each set of 3 curves, the solid lines correspond to the RSB-1 ansatz, the dashed to the RS ansatz, and
the dotted lines to MC simulations. Above T > 1, the RS ansatz is exact and gives Eq. (2.31), and the RSB-1 result is omitted. In both plots
N = 400. In (b) the horizontal line corresponds to zero entropy density.
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FIG. 8. The ground state energy density of the bipartite SK model
as a function of the ratio αh = Nh/N . The dashed and solid black
curves are the RS and RSB-1 approximations, respectively. The blue
crosses correspond to the T = 0 extrapolation of the Monte Carlo
curves shown in Fig. 7. The orange stars correspond to the estimate
yielded by the graph partitioning problem considered in Sec. III for
N = 400. The isolated black point at αh = 1/2 corresponds to the
exact RSB-∞ result for the ground state energy of the SK model,
ESK

gs /N = −0.7633 [31]. For αh = 1/2, the exact ground state energy
lies between the RSB-1 and MC estimates, and as explained in the
main text, we believe this holds true for general values of αh.

to be in the spin-glass phase, so the RSB-1 prediction should be
more accurate than the RS prediction.) Overall the agreement
is excellent, although at low temperatures there are some
differences. The sampling error of the MC simulation increases
as the temperature nears 0, and the RSB-k approximation is
known to yield a spurious negative entropy for finite k [34].
Moreover, numerically solving the critical point equations
for Eq. (2.45) in the RSB-1 approximation becomes very
challenging at low temperature, as discussed in footnote 9.

The ground state energy as a function of αh := Nh/N is
shown in Fig. 8, where we have also included the predictions
from the graph partitioning problem and the RS ansatz. We
again find good agreement between the methods, although
as expected the RS ansatz is significantly less accurate than
the RSB-1 ansatz. On general principles, we expect Monte
Carlo simulations and the KL algorithm to systematically

overestimate the ground state energy of a frustrated system.
In the unipartite SK model, the RSB-k approximation system-
atically underestimates the ground state energy by an amount
that decreases with k [34]. Assuming this also holds true in
the bipartite case, we therefore expect the exact ground state
energy to lie above the RSB-1 prediction but below the MC
prediction.

This is indeed the case for αh = αv = 1/2, when the result
should agree with the original SK model for which ESK

gs /N =
−0.7633 [31]: the errors of the various approximations for
the ground state energy are RS: −4.5%, RSB-1: −0.95%,
MC: +1.9%, KL graph partitioning: +2.6%. That such widely
differing approaches yield results which agree to within a few
percent is a strong check on our calculations and numerical
implementations. It is particularly impressive that the graph
partitioning results agree so well with the RSB-1 and MC
results, since the graph partitioning estimate for the ground
state energy was obtained from an optimal cost C∗ which was
itself only approximately estimated by repeated application of
a heuristic algorithm. Remarkably, including only a single level
of replica symmetry breaking is enough to improve the replica
ansatz’s estimate from the least accurate to the most accurate
of all the methods we considered.

In Fig. 9 we plot the overlap distributions P (q ) over the
full range of q ∈ [−1, 1] (see footnote 7) for temperatures in
both phases. For T < Tc = 1, the distribution is bimodal, with
two well-separated peaks, indicating that replica symmetry has
been broken. As the temperature is raised, the peaks move
closer together, until they merge into a single, well-localized
peak around q = 0.

Lastly, we numerically investigated the ultrametric property
of the spin-glass phase. We created an interesting visualization
of the relationship between the pure states very similar to Fig. 2.
Following [43,44], we numerically simulated the model for
only a single realization of the couplings Wij , and obtained
M = 150 independent samples, for Nv = Nh = 500. For every
pair of states a, b, the distance dab can be computed, resulting in
an M × M matrix. Using this distance matrix, we then applied
a clustering algorithm to the states. Initially, each state belongs
to its own cluster. Then, the two clusters which are closest
together are joined into a new cluster. This process continues,
with the definition of intercluster distances given by the average
of all the distances between elements of each cluster. The

FIG. 9. Overlap distribution, P (q ), for the visible spins (blue, solid) and the hidden spins (orange, dashed), for (a) a temperature in the
spin-glass phase, and (b) a temperature in the paramagnetic phase. The distributions are estimated from N = 400, αh = 0.25 MC samples using
Parzen windows with a standard deviation of 0.05. In an infinite RSB analysis, one would expect delta function peaks at the maximal values of
q, though these divergences are difficult to capture with finite-N simulations.
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FIG. 10. Visual depictions of the ultrametric structure, or lack thereof, in the state space of the bipartite SK model for different temperatures
and w = 1, w0 = 0. The first temperature (a) corresponds to the paramagnetic (disordered) phase, and the others (b), (c) correspond to the
spin-glass (ordered) phase. Black pixels correspond to matrix entries with dab = 0, and the color then changes from dark purple to yellow as
the distances increase. These plots were made for Nv = Nh = 500.

process terminates when there is just a single cluster. This
clustering process results in a tree, which is depicted in Fig. 10
for various temperatures. The ordering of the end points, or
leaves, of the tree provides a natural ordering of the states.
Below the trees plotted in Fig. 10 we also show the distance
matrix dab, with the indices ordered as in the tree. The resulting
plots clearly illustrate a hierarchical relationship between the
states in the spin-glass phase and absent in the paramagnetic
phase.

More insight into the degree of ultrametricity can be gleaned
by considering the distribution of triangles formed by draws of
three random pure states. For any triplet of states a, b, c, let the
distances 0 � dmin � dmid � dmax � 1 be the sorted pairwise
distances between these states. Various simple diagnostics of
ultrametricity have been proposed in the literature; see for
example [43–45]. Unfortunately, it is difficult to construct diag-
nostics which are capable of distinguishing between so-called
trivial ultrametricity, in which all the triangles are equilateral
(which is the case for purely random spins), and nontrivial
ultrametricity, in which a fraction of triangles are nonequilat-
eral isosceles. We therefore directly examine the probability

density of triangles, plotted in the (dmid − dmin, dmax − dmid)
plane, as shown in Fig. 11.16 If the states are organized
ultrametrically, then they should all lie near the horizontal
axes, which is indeed the case. In the spin-glass phase there are
clearly two clusters, one near the origin which corresponds to
equilateral triangles, and a second cluster which corresponds
to nonequilateral isosceles triangles. The equilateral cluster
contains approximately 25% of all points, in accord with the
analytic prediction Eq. (2.39). In the paramagnetic phase there
is only a single equilateral cluster.

V. APPLICATION: RESTRICTED BOLTZMANN
MACHINES

Restricted Boltzmann machines (RBMs) are neural net-
works used in unsupervised machine learning applications, in
which the goal is to approximate the probability distribution
that gave rise to a given data set. RBMs define a probability

16Recently we learned that this same approach was used in [46].

FIG. 11. The probability density of triangle side lengths, for visible spins only, in the (dmid − dmin, dmax − dmid) plane for (a) the paramagnetic
phase at T = 4.0, and (b) the spin-glass phase at T = 0.217. Points which lie on the horizontal axis correspond to isosceles triangles, and the
origin corresponds to equilateral triangles. In the spin-glass phase, approximately 25% of the points lie in the equilateral cluster near the origin,
in agreement with the theoretical prediction Eq. (2.39). These plots were generated for Nv = 400, Nh = 200.
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distribution over a space of two sets of variables v, h, called
the visible and hidden neurons. The distribution is of the
Boltzmann form, p(v, h) = e−βH /Z, and for the case of
Bernoulli RBMs, the Hamiltonian is of precisely the same
expression as in the bipartite SK model, Eq. (2.1), with the
crucial difference that the network parameters Wij , b

(v)
i , b

(h)
j

are now determined by a learning procedure.17

Given that the probability distribution defined by the RBMs
is of the same parametric form as the equilibrium distribution
of the bipartite SK model, it is interesting to consider to what
extent RBMs exhibit spin-glass phenomena. The connection
between neural networks and spin glasses has a long and rich
history, including the seminal work of Amit et al. [47–49]
on the problem of associative memory in Hopfield networks.
This line of research has been recently extended to RBMs
in [16,17], where it was observed that RBMs are equivalent
to generalized Hopfield networks and spin-glass techniques
were used to study the problem of memory retrieval. These
works only studied the replica-symmetric case, leaving the
replica symmetry broken analysis for later work. Other recent
work on the thermodynamic properties of RBMs includes
[27,28], who focused on the singular value decomposition of
the weight matrix, as well as [50], who used a message-passing-
based approach. These works all assume replica symmetry; it
would be very interesting to extend their results to the replica
symmetry breaking case.

The network parameters for a practical RBM implementa-
tion will certainly not follow an iid Gaussian distribution as
in Eq. (2.5), so the results of Sec. II should not be expected
to directly apply to this more general case.18 Additionally, it
is very difficult to see how the general case can be treated
analytically, without making some set of strongly simplifying
assumptions that are not likely to hold in realistic scenarios.19

We will therefore empirically investigate to what extent the
trained RBM exhibits general spin-glass behavior, including
replica symmetry breaking and ultrametricity, and we will
choose to focus on an RBM that has been trained on the MNIST
character recognition data set. All results presented here are for

17Although the Hamiltonians for both the bipartite SK model and the
RBM are of the same form, the standard convention is that the RBM
variables take on the values vi, hj ∈ {0, 1}. We will continue with
the spin convention used in Sec. II, namely that vi, hj ∈ {−1, 1}. The
parameters for either convention are related through a simple linear
transformation.

18One interesting point on this topic is that the physics of the bipartite
SK model is, to some weak extent, independent of the Gaussianity
assumption. A universality result was proven for the SK model by
[51,52] and recently extended to the bipartite SK model by [25]. These
authors showed that the behavior of the model is independent of the
particular distribution of the parameters, provided the parameters are
still iid and that the first two moments of the distributions are finite.

19Recently a new Boltzmann machine has been proposed in [53]
for which the partition function may be solved for in closed form.
Although the usefulness of this new model for machine learning
applications has yet to be evaluated, it is remarkable that a closed-form
expression can be found for the partition function (and hence also the
probabilities). It may be possible to derive analytic results for this
model without assuming that the weights are iid.

FIG. 12. (a) A random selection of 100 MNIST images, with 10
examples of each digit. (b) Images generated from the RBM through
Gibbs sampling, using the MNIST data shown in the left panel as
initial seeds.

an RBM with Nv = 282 = 784 visible and Nh = 500 hidden
neurons, although we verified that the results are qualitatively
the same for a range of Nh values.20 In Fig. 12 we plot a
selection of the original MNIST images (left) as well as a states
generated through Gibb sampling (right), using the MNIST
images as seeds.

To gain some qualitative insight into the form of replica
symmetry breaking that occurs (if any), in Fig. 13 we plot
the dissimilarity matrix of Gibbs samples drawn from the
trained RBM, again organizing the matrix entries according to
a clustering analysis. We do the same for an arbitrary selection
of MNIST images. Interestingly, the RBM samples lead to a
plot that looks remarkably similar to the corresponding plot
for the low-temperature spin-glass phase of the bipartite SK
model (the leftmost image of Fig. 10). Both exhibit a strong
blocking structure, and the RBM image looks like it could well

20We have also repeated some of the analyses of this section for the
Caltech 101 Silhouette data set [54], and verified that the results are
qualitatively unchanged.

FIG. 13. (a) The dissimilarity matrix and associated dendrogram
for 150 images of the MNIST data, after converting to binary by
rounding all nonzero pixel intensities to 1. (b) The same plot, made
for the Gibbs samples drawn from the trained RBM, using the MNIST
images as initial seeds. The distances are calculated according to the
formula used in Fig. 10, namely dab = (1 − N−1

v

∑
i v

a
i v

b
i )/2.
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FIG. 14. Distribution of triangle side lengths for the visible spins. (a) MNIST data, converted to binary by rounding all nonzero pixel
intensities to 1. (b) Samples generated through Gibbs sampling a fully trained RBM. The insets show zoomed-in depictions of the distribution.

have been generated by a spin-glass simulation. In contrast,
the MNIST plot exhibits some blocking structure, but it is
much weaker, and is more similar to the near-critical spin-glass
image (the middle image of Fig. 10). The stark difference
between the two plots is rather remarkable given the close
visual similarity between the actual MNIST images and the
RBM Gibbs samples, as shown in Fig. 12.

To further investigate the extent to which the Gibbs samples
exhibit ultrametricity, we next plot the distribution of triangles
side lengths in Fig. 14, in the same fashion as we did for
the bipartite SK model in Fig. 11. We again show results for
both the MNIST data and the Gibbs samples drawn from the
RBM. The MNIST distribution seems to entirely consist of
near-equilateral triangles, the same sort of trivial ultrametricity
observed in the paramagnetic phase of the spin glass. The
RBM distribution is different, however. Although there is not
a clear separation between a cluster of equilateral triangles
and a cluster of isosceles triangles, as was the case for the
bipartite SK model, the contour plot reveals two distinct peaks.
One peak is near the origin and corresponds to approximate
equilateral triangles, and the other is centered around (0,0.1)
and corresponds to approximate isosceles triangles. If the peaks
are separated by a vertical line at dmid − dmin ∼ 0.06, then the
fraction of triangles which are approximately acute isosceles
is roughly 40%, compared to the 75% for the bipartite SK and
bipartite SK models, as implied by the Parisi ansatz.21

The above results suggest that RBMs trained on realistic
data do in fact exhibit a significant degree of ultrametricity, just
like spin glasses. This may seem somewhat natural, given that
the RBM Hamiltonian is of the same form as in the bipartite
SK model, and the results of Sec. II which showed that the
physics of the bipartite SK model is qualitatively the same as
of the standard SK model. On the other hand, the universal
approximation theorem for RBMs [55] suggests that in the
infinite-N limit, a trained RBM should be able to precisely
reproduce any training data distribution without changing (or
introducing) ultrametric structure. We believe that there are two
regimes of large-N at play: for fairly large N , the spin-glass
description seems to hold fairly well, but at even larger N the

21The 40% estimate is rough, and varies by a few percentage points
depending on where the dividing line is drawn. The key point is that
the fraction is far from the result for the bipartite SK model.

universal approximation theorem eventually dominates and the
trained RBM’s ultrametric structure converges to that of the
training distribution. An unusually high degree of ultrametric
(or more generally, hierarchical) structure could conceivably
even serve as a diagnostic for distinguishing natural data
from the visually indistinguishable output of a well-trained
RBM.

VI. CONCLUSION

We have considered a simple extension of the well-known
Sherrington-Kirkpatrick (SK) model to bipartite graphs, and
performed both a replica-symmetric and replica symmetry
breaking analysis. In the latter case, we used the same Parisi
ansatz originally introduced for the unipartite SK model for
both the visible and hidden overlap matrices. Our combined
analytical and numerical analyses revealed that the bipartite
model exhibits the same general phenomena as the unipartite
model, including the existence of a spin-glass phase character-
ized by a continuous order parameter and an ultrametrically
distributed space of pure states. As part of our analytical
treatment we solved the RSB-1 equations, saving the case
of infinite RSB for future work. Even with this somewhat
crude approximation, we still found excellent agreement both
with the results of MC simulations and with the subleading
correction to the large-N optimal cost for a combinatorial graph
partitioning problem.

We then applied these results to study the closely related
family of neural networks known as restricted Boltzmann
machines (RBMs). The Gibbs sampling outputs of the trained
RBM exhibited properties which were qualitatively similar to
the outputs of Monte Carlo simulations of the bipartite SK
model. Perhaps the most interesting aspect of the Parisi ansatz
is the prediction of ultrametricity, which implies a hierarchical
organization of states. Neural networks may be generally
described as representing knowledge in a hierarchical fashion
[1], and given the close connection between RBMs and the
bipartite SK model, it is natural to wonder whether the
learned distribution exhibits ultrametricity. Interestingly, our
empirical analysis revealed that the trained RBM exhibits a
much stronger signature of ultrametricity than the training
data.

Finally, we discuss some avenues for future work. First,
it would be interesting to extend our results to deep Boltz-
mann machines (DBMs) with many hidden layers [56]. The
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Hamiltonian for a DBM with L hidden layers is

H = −
L∑

I=1

NI∑
iI =1

NI+1∑
iI+1=1

W
(I )
iI iI+1

s
(I )
iI

s
(I+1)
iI+1

−
L+1∑
I=1

NI∑
iI =1

b
(I )
iI

s
(I )
iI

,

(6.1)

where the s
(I )
iI

∈ {−1, 1} are spin variables. For L = 1 this
reduces to the expression for RBMs. If the weights W (I ) and
biases b(I ) are again normally distributed, then the integral
identity Eq. (2.10) may be used to derive an expression for
the disorder-averaged free energy analogous to Eq. (2.20), at
which point either a replica symmetric or symmetry breaking
analysis may be performed. It would be interesting to consider
the L → ∞ limit of such a network, and to compare the results
of such a calculation with the behavior of DBMs with many
layers trained on realistic data.

Lastly, it would also be very desirable to use spin-glass
theory to better understand the distribution of critical points
of the loss function of RBMs, similarly to what was done

in [4] for feed-forward networks. Given the intractability of
the RBM partition function for general values of the network
parameters, this seems to be a difficult undertaking, even if
strong simplifying assumptions are made regarding the training
data.
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