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Influence of the degree of a complex network on heat conduction
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Devices made of nanotubes and nanowires networks are of great interest for applications and have caught
increasing attention in recent years. In this work, we study heat conduction in a network model with nodes being
atoms and links being one-dimensional chains of atoms. It is found that heat conduction in the complex network
is fundamentally different from that of regular lattices. It depends very sensitively on the average degrees of
complex networks and the degrees of nodes that are attached to the two heat baths. For example, when the two
heat source nodes have the same degree k0, the heat flux reaches a maximum at an optimized value of k0 and
decreases with the increase of the average degree 〈k〉. In other words, the source nodes with optimal degree k0

and the sparse network are more favorable to heat flux. Thermal rectification effect is found when the two heat
source nodes have different degrees or the network model has multiple heat source nodes. Theoretical analysis is
provided to explain the numerical results.
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I. INTRODUCTION

Study of heat conduction in low-dimensional [one- (1D) and
two-dimensional (2D)] microscale [1,2] and nanoscale [3,4]
systems has attracted increasing attention in past decades. On
the one hand, study gives us a rather comprehensive, albeit
not a complete, picture of heat conduction in a microscopic
scale. For example, it is now known that the Fourier’s law of
heat conduction, i.e., heat flux is proportional to a temperature
gradient applied to the system multiplied by a constant, might
not be always true in micro- and nanoscale systems. The con-
stant, called thermal conductivity, which is an intrinsic property
of materials, is independent of geometry and size for bulk
materials. However, it is found to be system size dependent
in many 1D momentum-conserved systems, including lattices,
toy models, and quasi-1D nanostructures like nanowires and
nanotubes up to a certain length [5–9]. In the strict 2D systems,
as revealed by the Fermi-Pasta-Ulam (FPU) model [10], the
thermal conductivity exhibits a logarithmic size dependence.
Recent intensive first principles calculations for graphene [11]
indicate that the logarithmic relation seems to hold up to a
certain length of ∼1 mm, as demonstrated by experiments [12].
On the other hand, study in particular of nonlinear system has
led to the invention of different thermal circuits, such as thermal
diode and thermal transistor, that have opened a new area for
controlling and managing heat flow with an electronic analog
[13].

These fundamental studies mainly focus on the thermal
properties of an individual lattice or nanostructure such as a 1D
lattice or a single nanowire or nanotube. However, for practical
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applications, a single nanowire or nanotube is extremely
difficult to assembly and to control and manipulate. Usually,
people try to make devices from networks of nanowires and
nanotubes [14], which find applications in many fields, such
as large-scale transparent conductors, transistors, sensors, and
even flexible electronics [15,16].

Therefore, the study of physical properties such as elec-
tronic conduction and thermal conduction of the networks
of nanowires and nanotubes is becoming very relevant and
important. Indeed, the electronic property of nanowire and
nanotube networks has been studied via percolation theory
[17]. As for the thermal conductivity, it is found that even if the
thermal conductivity of a single nanotube is very high, a system
consisting of a three-dimensional random array of nanotubes
shows an extremely low value of thermal conductivity [18].
However, compared with the electric properties, much less is
known for heat conduction in complex networks.

In this work, we will study heat conduction in complex
networks. In particular, we will focus on how the degree of
a complex network, i.e., the number of links, affects the heat
conduction behavior. In our model, the links between nodes
are 1D chains of atoms represented by the FPU chain. This
is very different from a previous model where the connection
between two nodes is just a spring [19]. With this model, we
show that the network structure can significantly influence the
heat flux and temperature distribution. Theoretical analysis will
be presented to understand the numerical results.

The remainder of the paper is organized as follows. In Sec. II
we construct the network model to represent the nanotube and
nanowire networks, with nodes forming a random network and
links being 1D chains of atoms. In Sec. III we present the results
of the numerical simulations of our quantities of interest such
as the heat flux, the temperature distribution, and the thermal
rectification. Theoretical analysis is provided to explain the
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FIG. 1. Schematic picture of a complex network model, where
the dark blue solid circles represent the nodes, the blue solid circles
denote the atoms on links, i0 and j0 represent the two heat source
nodes contacting two thermostats with high temperature Th and low
temperature Tl , respectively, and nij represents the number of atoms
between the two connected nodes i and j .

numerical results. We finally summarize our main results in
Sec. IV and conclude with a discussion.

II. THE NETWORK MODEL

The network model is constructed to represent the nanotube
and nanowire networks, with nodes forming a random network
and links being 1D chains of atoms. The random network is
obtained by the approach in Ref. [20], with size N (number
of nodes) and average degree 〈k〉(average degree of nodes).
Figure 1 shows a schematic picture where the dark blue solid
circles represent the nodes, the blue solid circles denote the
atoms on the links, the fire and snow represent the two source
nodes i0 and j0 contacting the Langevin heat baths with high
temperature Th and low temperature Tl , respectively, and nij

denotes the number of atoms on a link i ↔ j . It is clear
that each atom on a link is connected only to its two nearest
neighbors, while the atom at node i is connected to its ki nearest
neighbors.

For simplicity, we let the atoms at both the nodes and links
be the same one with the Hamiltonian

H =
∑

i

[
1

2
p2

i + Vi (xi )

]
(1)

and the potential

Vi (xi ) = 1

2

ki∑
l=1

[
1

2
(xi − xl )

2 + β

4
(xi − xl )

4

]
, (2)

where i runs through all the atoms on the network, xi represents
the displacement from the equilibrium position of the ith atom,
ki is the number of links connecting the ith atom, and β is the
normalized nonlinear constant, which is 1 in this paper; that
is, each link is considered as a 1D FPU-β chain [1].

We should mention that the 1D FPU model (or any other
nonlinear lattice models of a 1D chain of atoms) is very
different from realistic nanowire and/or nanotubes, not only
in atomic structures but also in vibration modes. For example,
for a 1D lattice model only vibration in longitudinal direction
is considered; the transverse vibrations are usually neglected.
Moreover, in the 1D lattice model, the atom has only two

nearest neighbor atoms, whereas in the real nanowire or
nanotube, there are more than two nearest neighbor atoms.
These are the detailed structure differences.

However, we should point out one important fact: that the
heat conduction behavior of a 1D nonlinear atomic chain is
quite similar to that of a nanowire and nanotube. For example,
generally in a 1D momentum-conserved system, such as the
FPU model, the thermal conductivity κ diverges with the length
of the system as κ ∼ Lξ , where ξ is a positive value that
varies from model to model, but it is between 0.3 and 0.5
[1,2]. A numerical simulation for a single-wall nanotube and
nanowire also shows similar behavior, in both the nanowire and
nanotube; the thermal conductivity also diverges with nanotube
or nanowire length as κ ∼ Lξ , ξ varies also from system to
system. For details, refer to Ref. [7] for nanowire, Ref. [5] for
nanotubes (numerical simulation), and Ref. [6] (experiment).
More about heat conduction properties for 1D models and
quasi-1D materials behavior can be found in the review [8].

In our simulations, fixed boundary conditions for two nodes
i0 and j0 that attached to the two heat baths are used (see Fig. 1).
The heat bath is modeled by a stochastic Langevin heat bath.
The coupling strength is determined by the friction coefficient
γ in Langevin dynamics; γ = 4 in this paper. This value is
within the range of γ ∈ (1, 100) recommended by Chen et al.
[21] so that a meaningful physics can be obtained.

The equation of motions of the other nodes follow the
canonical equations

dpi

dt
= −∂H

∂xi

. (3)

Let the Langevin heat baths act on the i0 and j0 nodes, keep-
ing them at temperatures Th and Tl , respectively. Therefore,
they satisfy

dph

dt
= −∂H

∂xh

+ �h − γph, (4)

dpl

dt
= −∂H

∂xl

+ �l − γpl, (5)

where �h,l are the Gaussian white noises with

〈�h,l (t )〉 = 0,

〈�h(t )�h(0)〉 = 2γ kBThδ(t ), (6)

〈�l (t )�l (0)〉 = 2γ kBTlδ(t ),

where kB is the Boltzmann constant, and we adopt the dimen-
sionless unit by setting kB = 1.

After an integration of 106 dimensionless time units with a
time step of 0.01, the network will reach a stationary state. The
local temperature at each atom can be defined as T (i) = 〈p2

i 〉,
and the heat flux along the chain is Ji = 〈ẋi∂V/∂xi+1〉 [13].

III. THE RESULTS

In our numerical simulations, we let N = 50, Th =
1.0, Tl = 0.1, and nij = 5 for all the links in this work unless
otherwise stated. We randomly choose two nodes as the source
nodes that are attached to the high- and low-temperature
thermal baths, respectively. The stationary heat flux J of
a network is the sum on all the paths from node i0 to its
neighbors or the sum on all the paths to node j0. It is found
that the flux J depends sensitively on the degree of the two
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FIG. 2. Heat fluxes in a random network with average degree
〈k〉 = 3. The length between two nodes is fixed at nij = 5. (a) Source
nodes 4 and 49 with only one link, i.e., k0 = 1, are chosen as the
high- and low-temperature node, respectively. (b) Source nodes 25
and 45 with seven links, i.e., k0 = 7, are chosen as the high- and
low-temperature heat source node, respectively. The thickness of the
arrow indicates the magnitude of the heat flux. The arrows indicate
the heat flux direction.

source nodes i0 and j0, ki0 and kj0 , respectively. Figures 2(a)
and 2(b) show qualitatively the heat flux and the distribution of
temperatures at nodes on links for two sets of heat source nodes,
respectively, where the atoms on links are not shown for clarity
and the arrows represent the directions of heat fluxes on links.
Figures 2(a) and 2(b) schematically illustrate the significant
difference of heat flux and temperature distribution when the
degrees of the heat source nodes are different.

It is found that when the source nodes have an optimal
degree, heat flux through the complex network is largest. To
get a clearer picture, we systematically investigated how the
degrees of the source nodes affect the heat flux. To make life
easier, we let the two source nodes have the same degree:
ki0 = kj0 = k0. Figure 3(a) shows the dependence of 〈J 〉 on
k0 where squares, circles, triangles, and antitriangles denote
the cases of 〈k〉 = 3, 4, 5, and 6, respectively, and 〈J 〉 is an
average over 20 realizations of network structures. It is easy
to see that there is a maximum of the 〈J 〉 at an optimal value
of k0, indicating that the source nodes with optimal degree k0

favor the heat conduction, while the source nodes with smaller
or larger degree k0 do not favor the heat conduction.

This finding, at first glance, is somehow counterintuitive as
we generally believed that heat flow will always increase with
the increase of paths attached to the source nodes. However,
it is understandable in terms of interfacial thermal resistance.
Larger degree k0 means more interfaces, thus larger interfacial
thermal resistance. On the other hand, Fig. 3(b) shows the
dependence of 〈J 〉 on 〈k〉 where squares, circles, and triangles
denote the cases of k0 = 1, 3, and 5, respectively, and 〈J 〉
is also an average on 20 realizations of network structures.

FIG. 3. Influence of the degree of two source nodes on heat
conduction for averaging over 20 realizations. The length between
two nodes is fixed at nij = 5. (a) 〈J 〉 versus k0 where squares, circles,
triangles, and antitriangles denote the cases of 〈k〉 = 3, 4, 5, and 6,
respectively; (b) 〈J 〉 versus 〈k〉 where squares, circles, and triangles
denote the cases of k0 = 1, 3, and 5, respectively; (c) and (d) P (T )
versus T for different values of k0, where (c) is for the case of 〈k〉 = 3
and (d) for 〈k〉 = 6.

We can see that for the same degree k0, the 〈J 〉 decreases
monotonically with the increase of 〈k〉, i.e., 〈J 〉 in the sparse
network of Fig. 3(b) with smaller 〈k〉 is larger than that in
the dense network with larger 〈k〉, indicating that the sparse
network with smaller 〈k〉 is more favorable to heat flux. While
the 〈k〉 is fixed, the 〈J 〉 increases as the k0 increases, further
confirming the effect that smaller k0 is not favorable for heat
conduction.

To gain a further understanding, we show the distribution
P (T ) of nodes’ temperatures for different k0 in Figs. 3(c)
and 3(d) with 〈k〉 = 3 and 6, respectively. We see that the
P (T ) will become narrower when 〈k〉 increases, indicating
that the larger the degrees, the more interfaces we find, and
thus the more difficult for heat flow. This may be because as
more nanotubes or nanowires are interconnected in one node,
more phonons will be backscattered [22,23]. Furthermore, the
similar results for nij = 5 can also occur if we assume nij to
be a random number from a uniform distribution and satisfies
1 ≤ nij ≤ 9 (see Fig. 8 in the Appendix).

To understand the heat conduction mechanism in Fig. 3, we
turn to a simplified theory. The simplified theoretical analysis
reflects only the influence of network topology but neglects
other aspects such as the atoms on links and the interface
resistance. We let the coupling strength between the nodes i

and j be cij , thus the adjacency matrix will be C = (cij ) with
cij = 1 if i and j are connected and 0 otherwise. Let cii = 0 for
avoiding self-connection. Denote F as the temperature vector
of N components. For convenience, we reorganize the network
and let the source with Th be node 1 and the sink with Tl be
node 2. Then the temperature vector F can be expressed as
F = (Th, Tl, T3, . . . , TN )T and can be divided into block 1 with
F1 = (Th, Tl )T and block 2 with F2 = (T3, . . . , TN )T :

F =
(

F1

F2

)
. (7)
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FIG. 4. Comparison between the numerical simulations (solid
circles) of Fig. 2 and theoretical analysis (open circles) of Eq. (9)
with average degree 〈k〉 = 3. (a) Source nodes 4 and 49 with only
one link, i.e., k0 = 1, are chosen as the high- and low-temperature
node, respectively. (b) Source nodes 25 and 45 with seven links, i.e.,
k0 = 7, are chosen as the high- and low-temperature heat source node,
respectively.

The discrete Laplace operator on the network, an analog of ∇2

is L = I − P with I = (δij ki ) and P = D−1C, where D is
the diagonal degree matrix. Correspondingly, the matrix L can
be divided into four submatrices L11, L12, L21, and L22. In the
steady state, we have

L F = J, (8)

where J is the external flux vector. Note that this is the discrete
analog of −κ∇2T(r) = ∇ · j(r) with F playing the role of
κT(r) and J playing the the role of −∇ · j(r), where j(r) is
the flux vector field. Except for the source and sink nodes, the
equilibrium condition demands that no net heat flux should
occur, namely, J = 0 for the nodes i = 3, . . . , N . Hence we
have (

L11 L12

L21 L22

)(
F1

F2

)
=

(
J

0

)
. (9)

From Eq. (9) we can get the temperature distribution F2. In
this way, the open circles in Figs. 4(a) and 4(b) show the results
for 〈k〉 = 3. For comparison, we also put there the numerical
results of the corresponding Figs. 2(a) and 2(b) (solid circles).
It is easy to see that the theoretical and numerical results
have the same variation tendency, indicating that the simple
theory do explain the influence of network topology. The shift
between the numerical and theoretical results will enlarge with
the increasing of k0; this may be because theoretical analysis
neglects the interfacial thermal resistance.

The above results are obtained for the case of constant nij at
all the links. In the nanotube and nanowire networks, nij will be
quite different from link to link, but its heat conduction can be
still investigated by this physical network model. This model
can be also extended to the case with multiple high-temperature
source nodes or multiple low-temperature source nodes.

Thermal rectification is one important physical phe-
nomenon discovered in past decades [24]. This nonreciprocal
transport phenomenon due to asymmetric interfacial thermal
resistance [25] has been confirmed in many nanostructure
systems [3,13]. Here we illustrate that the asymmetric degree

FIG. 5. Schematic picture of a simple network structure, where
the red (left) and black (right) solid circles represent the two heat
source nodes. (a) 2 and 2 degrees of the heat source nodes; (b) 4 and
2 degrees of the heat source nodes; and (c) 6 and 2 degrees of the heat
source nodes.

connection with the heat sources can also induce thermal
rectification in simple networks. This provides one additional
dimension for thermal management. Figures 5(a)–5(c) show
the schematic pictures of the simple network structures, where
the red and black solid circles represent the two heat source
nodes contacting the Langevin heat baths. Here the asymmetric
structure is generated by adding nodes to the left red source
node, but the structure of the right black source node is
unchanged, i.e., 2/2 (representing the degree of left and right
heat source nodes, respectively) for the left and right heat
source nodes in Fig. 5(a), 4/2 in Fig. 5(b), and 6/2 of the
heat source nodes in Fig. 5(c).

To make it clearer, we let the smaller and larger degrees of
the two source nodes be ks and kl , respectively. Without loss
of generality, we let ks = 2 and only change kl (≥ks ). Then we
let J+ (J−) represent the network flux when ks (kl) and kl (ks)
are chosen as the two source nodes with higher temperature
Th and lower temperature Tl , respectively. Figure 6(a) shows
the dependences of J+ versus kl (solid circles) and J− versus
kl (open circles). It is easy to see that J+ and J− decrease,
and behave quite differently, and their difference increases

FIG. 6. Effect of rectification for ks = 2.0. (a) J+ versus kl (solid
circles), and J− versus kl (open circles); (b) Re versus kl .
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FIG. 7. Effect of rectification for 〈k〉 = 2 and averaging on 20
realizations. (a) 〈J+〉 versus m (solid circles) and 〈J−〉 versus m (open
circles); (b) Re versus m.

monotonically with kl , indicating that there exists an effect
of rectification. We define the rectification coefficient as

Re = J+
J−

. (10)

Figure 6(b) shows the dependence of Re on kl . We see that
the Re increases as the kl increases, indicating that the larger kl

is favorite the thermal rectification. In the carbon nanotube net-
work, a measurable quantity is the network density, defined as
the number of nanotubes per unit area [26]. Therefore, Fig. 6(b)
represents the cases of different simple network structures, and
their confirmation can be expected in experiments.

We can obtain the range of frequency fi = ωi/2π as

0 < fi <
1

π

√
ki

2
. (11)

Thus, we have 0 < fi < 0.32 for ki = 2, which is consistent
with the result in a 1D lattice [24]. The detailed discussion of
fi is presented in the Appendix. To confirm the phonon band
in Eq. (11), we make power spectra from source nodes’ time
series in Fig. 5. The theoretical results are fki=2 = 0.32 for
ki = 2, fki=4 = 0.45 for ki = 4 and fki=6 = 0.55 for ki = 6,
which is consistent with the power spectra (see Fig. 10 in the
Appendix).

We now use Eq. (11) to explain the rectification. For the J+
from ks to kl , its phonon diffusion is from narrow frequency
to wide frequency. As the narrow phonon band is within the
wide phonon band, it is easy for the heat flux to be sent from
Th to Tl . While for the J− from kl to ks , its phonon diffusion
is from wide frequency to narrow frequency. In this case, only
part of the wide phonon band overlaps with the narrow phonon
band, and thus only part of the heat flux from the source node
with high temperature Th can be sent to the source node with
low temperature Tl , which results in J+ > J− and thus the
rectification effect.

Finally, we extend the above simple cases with two source
nodes to some complicated cases with more than two source
node, where 2m source nodes with the largest and smallest
degrees contact Th and Tl , respectively. Figures 7(a) and 7(b)
show the dependences of 〈J±〉 and Re on m for the sparse
network (〈k〉 = 2), respectively. It is seen that 〈J+〉 and 〈J−〉
increase and behave quite differently, and their difference

increases monotonically with m, indicating that the larger m

favors the thermal rectification. But for the dense network (i.e.,
larger 〈k〉), it should be pointed out that the thermal rectification
disappears (figure not shown here). This may be the case that
larger 〈k〉 will weaken the asymmetry of the network structure
and thus results in the disappearance of thermal rectification.
In addition, the similar results for nij = 5 can also occur if we
assume nij to be a random number from a uniform distribution
and satisfies 1 ≤ nij ≤ 9 (see Fig. 9 in the Appendix).

IV. CONCLUSION AND DISCUSSION

In summary, we have presented a network model to study
heat conduction in nanotube and nanowire networks. With this
model we find that heat flux is seriously influenced by the
chosen source nodes. The larger degree of source nodes does
not prefer heat conduction, instead it reduces the heat flux.
A dense network can reduce heat flux more than the sparse
network. On the other hand, thermal rectification has been
found when the degrees of the two source nodes are different.
The rectification will be significant when the degree difference
between the two source nodes becomes large or the network
model has more heat source nodes. A simplified theory is
provided to explain the numerical results.
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APPENDIX

Differently from the case of nij = 5, here we assume nij to
be a random number from a uniform distribution and satisfies
1 ≤ nij ≤ 9, which is shown in Figs. 8 and 9.

Figure 8(a) shows the dependence of 〈J 〉 on k0 where
squares, circles, triangles, and antitriangles denote the cases of
〈k〉 = 3, 4, 5, and 6, respectively, and 〈J 〉 is an average over 20
realizations of network structures. It is easy to see that there is
a maximum of 〈J 〉 at an optimal value of k0, indicating that the
source nodes with optimal degree k0 favor the heat conduction,
while the source nodes with smaller or larger degree k0 do not
favor the heat conduction. Figure 8(b) shows the dependences
of 〈J 〉 on 〈k〉 where squares, circles, and triangles denote the
cases of k0 = 1, 3, and 5, respectively, and 〈J 〉 is an average
over 20 realizations of network structures. We can see that
for the same degree k0, 〈J 〉 decreases monotonically with the
increase of 〈k〉, i.e., 〈J 〉 in the sparse network of Fig. 8(b) with
smaller 〈k〉 is larger than that in the dense network with larger
〈k〉, further confirming the effect that larger k0 does not favor
heat conduction. To gain a further understanding, we show the
distribution P (T ) of nodes’ temperatures for different k0 in
Figs. 8(c) and 8(d) with 〈k〉 = 3 and 6, respectively. We see
that the P (T ) will become narrower when k0 or 〈k〉 increases,
indicating that the larger the degrees, the more the interfaces,
thus the more difficult for heat flow. Comparing with Fig. 3, we
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FIG. 8. Influence of the degree of two source nodes on heat
conduction for averaging over 20 realizations. Differently from Fig. 3,
here nij is (uniform) randomly distributed in 1 ≤ nij ≤ 9. (a) 〈J 〉
versus k0 where squares, circles, triangles, and antitriangles denote
the cases of 〈k〉 = 3, 4, 5, and 6, respectively; (b) 〈J 〉 versus 〈k〉 where
squares, circles, and triangles denote the cases of k0 = 1, 3, and 5,
respectively; (c, d) P (T ) versus T for different values of k0, where
(c) is for the case of 〈k〉 = 3 and (d) for 〈k〉 = 6.

see that the results of the Fig. 8 for 1 ≤ nij ≤ 9 is consistent
with the results of Fig. 3 for nij = 5.

Figures 9(a) and 9(b) show the dependences of 〈J±〉 and
Re on m for the sparse network (〈k〉 = 2), respectively. It
is easy to see that 〈J+〉 and 〈J−〉 increase and behave quite
differently, and their difference increases monotonically with
m, indicating that the larger m favors the thermal rectification.
But for the dense network (larger 〈k〉), it should be pointed
out that the thermal rectification disappears (figure not shown
here). Comparing with Fig. 7, we see that the results of Fig. 9 for
1 ≤ nij ≤ 9 is consistent with the results of Fig. 7 for nij = 5.

To understand the underlying mechanism of rectification,
we make a brief theoretical analysis. We have equations of

FIG. 9. Effect of rectification for 〈k〉 = 2 and averaging over 20
realizations. Differently from Fig. 7, here nij is (uniform) randomly
distributed in 1 ≤ nij ≤ 9. (a) 〈J+〉 versus m (solid circles), and 〈J−〉
versus m (open circles); (b) Re versus m.
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FIG. 10. Power spectra of two heat source nodes of the corre-
sponding Fig. 5. (a) 2 and 2 degrees of the heat source nodes, (b) 4
and 2 degrees of the heat source nodes, and (c) 6 and 2 degrees of the
heat source nodes, respectively.

motion:

ẍi = −∂Vi (xi )

∂xi

−
ki∑

j=1

∂Vj (xj )

∂xi

, (A1)

where the first and second terms on the right-hand side of
Eq. (A1) come from the potentials of node i and its neighbors,
respectively. Substituting Eq. (2) into Eq. (A1) we have

ẍi = −
ki∑

j=1

[(xi − xj ) + β(xi − xj )3]. (A2)

When the amplitude of xi is small, we may neglect the
nonlinear term in Eq. (A2) and thus obtain

ẍi =
ki∑

j=1

(xj − xi ). (A3)

Equation (A3) has plane wave solutions xi = eI (qizi−ωi ti ) and
xj = eI (qj zj −ωj tj ), where I represents the imaginary unit. Sub-
stituting them back to Eq. (A3), we obtain the relationship
between the frequency ωi and degree ki as

ωi =
√√√√ ki∑

j=1

[1 − cos(qj zj − qizi + φ)], (A4)

in which φ = ωiti − ωj tj is a constant.
Therefore, we can obtain the range of frequency fi =

ωi/2π as

0 < fi <
1

π

√
ki

2
. (A5)

022115-6
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Figure 10 shows the power spectra from source nodes’ time
series of the corresponding Fig. 5, i.e., 2 and 2 degrees of
the heat source nodes in Fig. 10(a), 4 and 2 degrees of the
heat source nodes in Fig. 10(b), and 6 and 2 degrees of the

heat source nodes in Fig. 10(c). The theoretical results are
fki=2 = 0.32 for ki = 2, fki=4 = 0.45 for ki = 4 and fki=6 =
0.55 for ki = 6, which is consistent with the power spectra in
Fig. 10.
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