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We introduce a nonparametric approach for estimating drift and diffusion functions in systems of stochastic
differential equations from observations of the state vector. Gaussian processes are used as flexible models for
these functions, and estimates are calculated directly from dense data sets using Gaussian process regression.
We develop an approximate expectation maximization algorithm to deal with the unobserved, latent dynamics
between sparse observations. The posterior over states is approximated by a piecewise linearized process of the
Ornstein-Uhlenbeck type and the maximum a posteriori estimation of the drift is facilitated by a sparse Gaussian
process approximation.
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I. INTRODUCTION

Dynamical systems in the physical world evolve in continu-
ous time and often the (noisy) dynamics is described naturally
in terms of (stochastic) differential equations (SDE) [1]. In
cases where the parameters (which determine the drift and
the diffusion) of such a model cannot be computed from first
principles, it is necessary to fit such parameters to a time
series of observed data [2]. Since small changes in parameters
could lead to large changes in global dynamical behavior when
the model is nonlinear, a proper fit of parameters may be
crucial to make good predictions or for allowing a system to
be controlled [3] by external forces. The Bayesian approach
provides an important method for parameter estimation when
prior knowledge on typical values and uncertainties of param-
eters is available which can be encoded in a prior probability
distribution. In many applications of Bayesian methods closed
form analytical computations of parameter estimates are not
possible. Hence, one often has to resort to Monte Carlo (MC)
sampling from the posterior distribution of parameters (for a
review see, e.g., Refs. [4–9]). While such sampling approaches
are feasible for SDE models with a small number of parameters,
their efficiency decreases when the number grows. This is
of special relevance, when we deal with the nonparametric
scenario discussed in this paper.

In the nonparametric case, the drift (and possibly the
diffusion) as a function of the state of the system can no
longer be expressed by a finite number of parameters. One
possibility is to keep the number of parameters (e.g., the
number of basis functions used to model the drift) as a random
variable and use reversible-jump Markov chain Monte Carlo
methods to sample from the posterior distribution [10]. In
this paper we work with a different Bayesian approach, by
specifying prior distributions over functions. This allows for
a considerable freedom of modeling assumptions and is, at
least in a statistical sense, feasible when one has enough
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data observations to allow for a good estimation of an entire
function. But from a computational point of view, estimation
becomes more complicated [11].

The simplest class of nonparametric priors are Gaussian
processes (GP), which are completely determined by a mean
function and a covariance kernel. The use of Gaussian random
fields in modeling unobserved functions is well known in
physical sciences. See, e.g., Ref. [12], where a permeability
field is modelled by a Gaussian random function. In this
and similar applications, the measurements are noisy versions
of nonlinear functions of the unobserved fields, yielding
analytical expressions for likelihoods which in turn allow for
straightforward MC sampling.

The SDE case, however, turns out to be more complicated.
As shown in Refs. [13,14], dense observations (in time) of
the state variables lead to an exact analytically computable
quadratic log-likelihood functional for the drift. This, together
with a Gaussian process prior, yields an exact Gaussian
posterior distribution. Unfortunately, this simplicity is lost,
when observations are not dense, but separated by larger time
intervals. In this sparse case, the likelihood is a functional
integral without an explicit exact analytical solution. Hence,
one has to resort to Monte Carlo Gibbs samplers [13], which
are generalizations of the ones used for the parametric case [6].
These alternate between sampling complete trajectories of the
SDE conditioned on observations and drift, and sampling a GP
for the drift given a complete trajectory. One computational
problem is the sampling of SDE trajectories conditioned on
the observations. This requires good proposals for trajecto-
ries which are used in Metropolis-Hastings steps within the
sampler. A second problem stems from the matrix inversions
required by the GP predictions. For a densely sampled tra-
jectory these matrices become very large which leads to a
strong increase in computational complexity. Papaspiliopoulos
et al. [13] have shown for the case of univariate SDEs that
the latter numerical problem can be circumvented if one
chooses a GP prior where the covariance operator is the inverse
of a differential operator. In this case efficient predictions
are possible in terms of solutions of ordinary differential
equations.
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In this paper, we develop an alternative, approximate
method for Bayesian inference for SDEs using GP priors. The
method is faster than the MC sampling approaches and can be
applied to GPs with arbitrary covariance kernels and also mul-
tivariate SDEs. In case of dense observations the framework
of GP regression is used to estimate both drift and diffusion in
a nonparametric way. GP inference becomes feasible by using
an additional variational GP approximation frequently used in
the field of machine learning. With this method only small
matrices have to be inverted. For sparse observations, we use
an approximate expectation maximization (EM) algorithm [15]
for estimating the most likely drift function. This extends our
approach introduced in the conference publication [16]. The
EM algorithm cycles between the computation of expectations
over SDE paths which are approximated by those of a locally
fitted linear model and the computation of the maximum
posterior GP prediction of the drift.

The paper is organized as follows. Stochastic differential
equations are introduced in Sec. II and Gaussian processes
in Sec. III. Then Sec. IV explains GP based inference for
completely observed paths and shows results on dense data
sets. As large data sets slow down standard GP inference
considerably, Sec. V reviews an efficient sparse GP method.
In Sec. VI our approximate EM algorithm is derived and its
performance is demonstrated on a variety of SDEs. Section VII
presents a discussion and concludes with an outline of possible
extensions to the method.

II. STOCHASTIC DIFFERENTIAL EQUATIONS
AND LIKELIHOODS FOR DENSE OBSERVATIONS

We consider diffusion processes given by a SDE written in
Ito form as

dXt = f (Xt )dt + D1/2(Xt )dWt, (1)

where the vector function f (x) = [f 1(x), . . . ,f d (x)] defines
the deterministic drift depending on the current state Xt ∈ Rd .
Wt denotes a Wiener process, which models white noise, and
D(x) is the d × d diffusion matrix.

Suppose we observe a path X0:T of the process over a
time interval [0,T ]. Our goal is to estimate the drift function
f (x) based on the information contained in X0:T . A well-
known statistical approach to the estimation of unknown model
parameters is the method of maximum likelihood [2]. This
would maximize the probability of the observed path with
respect tof . To derive an expression for such a path probability,
we use the Euler time discretization of the SDE [17] given by

Xt+�t − Xt = f (Xt )�t + D(Xt )
1/2

√
�t εt , (2)

where εt ∼ N (0,I ) is a sequence of i.i.d. Gaussian noise
vectors and �t is a time discretization. We will later set
�t → 0, when we compute explicit results for estimators.
Since the short-time transition probabilities of the process are
Gaussian, the probability density for the discretized path can
be written as the product

p(X0:T |f ) = p0(X0:T )L(X0:T |f ), (3)

where

p0(X0:T ) ∝ exp

[
− 1

2�t

∑
t

||Xt+�t − Xt ||2
]

(4)

is the measure over paths without drift, and a term

L(X0:T |f ) = exp

[
−1

2

∑
t

||f (Xt )||2�t

+ (f (Xt ),Xt+�t − Xt )

]
, (5)

which is the relevant term for estimating the function f from
the observations of the path. To avoid cluttered notation, we
have introduced the inner product

(u,v)
.= u�D−1v (6)

and the corresponding squared norm

||u||2 .= u�D−1u. (7)

The estimation of f using the method of maximum likelihood
can be motivated by the following heuristics: Consider the case
of a very large observation time T . In this limit we may write

− 1

T
ln L(X0:T |f )

= 1

2T

∑
t

||f (Xt )||2�t − 2(f (Xt ),Xt+�t − Xt )

� 1

2T

∫ T

0
E
[||f (Xt )||2

]− 2E[(f (Xt ),f∗(Xt ))]dt

= 1

2

∫
||f (x)||2p(x)dx −

∫
(f (x),f∗(x))p(x)dx, (8)

where we have taken the limit �t → 0. The expectations
are defined with respect to the true (but unknown) process
from which the data points are generated and p(x) denotes its
stationary density. The true drift is given by the conditional
expectation

f∗(x) = lim
�t→0

1

�t
E[Xt+�t − Xt |Xt = x]. (9)

Obviously, a minimization of the last term in Eq. (8) would
lead to the estimator f̂ (x) = f∗(x), which is the true drift
indicating that asymptotically, for a long sequence of data
we get a consistent estimate. Unfortunately, for finite sample
time T , an unconstrained maximization of the likelihood
Eq. (5) does not lead to sensible results [13]. One has to use
a regularization approach which restricts the complexity of
the drift function. The simplest possibility is to work with a
parametric model, e.g., representing f by a polynomial and
estimating its coefficients. However, in many cases it may not
be clear in advance how many parameters such a model should
have.

Another possibility for regularization is a nonparametric
Bayesian approach which uses prior probability distributions
P0(f ) over drift functions. With different choices of the prior
different statistical ensembles of typical drift functions can be
selected. We denote probabilities over the drift f by upper case
symbols to avoid confusion with path probabilities. We will
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also denote expectations over functions f by the symbol Ef .
Our Bayes estimator will be based on the posterior distribution

p(f |X0:T ) ∝ P0(f )L(X0:T |f ), (10)

where the neglected constant of proportionality only contains
terms which do not depend on f . To construct such a prior
distribution, we note that the exponent in Eq. (5) contains the
drift f at most quadratically. Hence, a natural (conjugate) prior
to the drift for this model is given by a Gaussian measure over
functions, i.e., a Gaussian process (GP) [13]. Although a more
general model is possible, we will restrict ourselves to the case
where the GP priors over the components f j (x), j = 1, . . . ,d

of the drift factorize and we also assume that we have a diagonal
diffusion matrix D(x) = diag[D1(x), . . . ,Dd (x)]. In this case,
the GP posteriors of f j (x) also factorize in the components j ,
and we can estimate drift components independently.

We will show, that for dense observations, Bayesian in-
ference with GPs becomes equivalent to GP regression, a
topic which has been studied extensively in the machine
learning community [18]. We will also show later, that for the
dense setting, also the nonparametric estimation of diffusion
functions Dj (x) can be mapped onto a GP regression problem.
Since the topic of GP regression may not be well known in the
physics community, we will give a short introduction into this
problem in the following section.

III. BAYESIAN REGRESSION WITH
GAUSSIAN PROCESSES

In the following, we will give a heuristic derivation of
the analytical results for solving regression problems with
Gaussian processes which will be later applied to both drift
and diffusion estimation. A more detailed formulation can be
found in Ref. [18]. In the basic regression setting, we assume
that we have a set of n input-output data points (xi,yi) for
i = 1, . . . ,n, where the yi are modeled as noisy values of an
unknown function f (x), i.e.,

yi = f (xi) + νi, (11)

where the noise values νi are taken to be independent Gaussian
random variables with zero mean and possibly different but
known variances σ 2

i . Within a Bayesian setting, we assume
that the unknown function f is treated as a random object,
being the realization of a Gaussian process. Using a GP prior
over functions f , we try to filter out the noise from the
observations and learn to predict the unknown function f (x) at
arbitrary input values x. GPs are completely defined through
a mean function m(x) = Ef [f (x)] (which we will set to zero
throughout the paper) and a kernel function defined as

K(x1,x2) = Ef [f (x1)f (x2)], (12)

which specifies the correlation of function values at two
arbitrary arguments x1 and x2. By the choice of the kernel
K we can encode prior assumptions about typical realizations
of such random functions.

A popular covariance kernel is the radial basis function
(RBF) kernel

KRBF(x1,x2) = τ 2
RBF exp

(
−||x1 − x2||2

2l2
RBF

)
, (13)
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FIG. 1. Randomly drawn samples from a GP prior with RBF
kernel and hyperparameters set to τ = 1 and l = 1. The prior mean
function is shown as blue solid line and blue shades denote the
95%-Bayes confidence bounds of the prior GP.

where the hyperparameters τ 2
RBF and lRBF denote the variance

and the correlation length scale of the process. The RBF
kernel assumes smooth, infinitely differentiable functions f (·).
Samples from a GP using this kernel are shown in Fig. 1.

In some cases, the class of functional relationship in the
data set is known beforehand, so that specialized kernel
functions encoding this prior information can be applied. In
our experiments, we use such kernels for the estimation of
periodic and polynomial functions f (·). A (one-dimensional)
periodic kernel is given by

K(x1,x2)Per = τ 2
Per exp

[
−2 sin

(
x1−x2

2

)2

l2
Per

]
, (14)

where the hyperparameters τ 2
Per and lPer denote the variance

and the correlation length scale of the process. The polynomial
kernel of degree p is given by

KPol(x1,x2) = (
1 + x�

1 x2
)p

. (15)

Since this may not immediately appear as a valid covariance
function, we give a short proof in Appendix A that KPol is in
fact a positive semidefinite kernel.

The probabilistic model for regression Eq. (11) corresponds
to a likelihood

p(y|f ) ∝ exp

{
−

n∑
i=1

1

2σ 2
i

[f (xi) − yi]
2

}
. (16)

We will next give a derivation of the Bayes prediction f̂ (x)
for the function f (x) given the observations y1, . . . ,yn. This
prediction is given by the posterior mean of f (x). Our deriva-
tion is a heuristic alternative to the standard approach given in
Ref. [18], which is based on properties of conditional Gaussian
distributions. We will instead use the fact that the mean of a
Gaussian distribution equals the most likely value. Hence, we
compute the most likely function f given the observations by
minimizing the negative log-posterior functional

− ln[P0(f )p(y|f )] � 1

2

∫∫
f (x)K−1(x,x ′)f (x ′)dx dx ′

+
n∑

j=1

1

2σ 2
i

[f (xj ) − yj ]2. (17)
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FIG. 2. Gaussian process regression using a GP with RBF kernel
conditioned on four noise-free observations (GP posterior). Hyper-
parameters have been set to τ = 1 and l = 1. The mean function of
the posterior GP is shown as blue solid line and blue shades denote
the 95%-Bayes confidence bounds. Dashed and dashed-dotted lines
show randomly drawn samples from the GP posterior.

Here K−1 is the formal inverse of the kernel operator. Setting
the functional derivative

δ ln[P0(f )p(y|f )]

δf (x)
= 0 (18)

and applying the kernel operator K to the resulting equation,
we get

f (x) =
n∑

j=1

[yj − f (xj )]

σ 2
j

K(x,xj ). (19)

Evaluating this equation at each observation x = xi we obtain
a system of linear equations for the f (xi), which is solved by

[yi − f (xi)]

σ 2
i

= [(K + �)−1y]i . (20)

Here K = [K(xi,xj )]ni,j=1 denotes the kernel matrix and � =
diag(σ 2

1 , . . . ,σ 2
n ) is a diagonal matrix composed of the noise

variances at the data points. Inserting this result back into
Eq. (19) we get the following explicit expression (see also
Ref. [18]) for the GP estimator of the function f :

f̂ (x) = [k(x)]�(K + �)−1y, (21)

where k(x) = [K(x,xi)]�. A similar approach leads to the
Bayesian uncertainty at x: the posterior variance

V̂f (x) = K(x,x) − [k(x)]�(K + �)−1k(x) (22)

is used to calculate the 95% Bayesian confidence interval
(credible interval)

Ĉ = [f̂ (x) − 2V̂f (x)1/2; f̂ (x) + 2V̂f (x)1/2], (23)

which contains the true function value f (x) with probability

P [f (x) ∈ Ĉ|y] = 0.95 (24)

if the assumptions made for Gaussian process regression
are correct. An example of GP regression applied to four
observations is shown in Fig. 2.

The GP predictions depend on a set of hyperparameters,
which determine the shape of the underlying kernel function.
The RBF and periodic kernel have variance and length scale
parameters, where the latter denotes the smoothness of the

process, the polynomial kernel has a variance and a degree
parameter.

In the GP framework, the hyperparameters are usually found
by optimizing the so-called Bayes evidence, which equals the
probability of the path p(y) (in its Euler discretization), with
respect to the hyperparameter of interest. The evidence is
defined as the nd-dimensional Gaussian integral

p(y) =
∫

p(y|f)p0(f)df, (25)

where f denotes the vector with components f (Xti ) for i =
1, . . . ,n, and p0(f) = N (f |0,K) is the prior Gaussian density
induced by the GP prior over functions. Since both terms are
Gaussian distributed, we can easily obtain the closed form
expression

p(y) = N (y|0,K + �). (26)

We note however, that finding hyperparameters by optimizing
the evidence presupposes that we are dealing with the correct
model and could lead to suboptimal results under a model
mismatch. In this case, the hyperparameters can be found by
using so called cross validation methods, which determine the
optimal values by minimizing the expectation error based on a
given target function. In contrast to the evidence ansatz, cross
validation does not presuppose the correct model, but functions
as a general black-box optimization tool. For our purposes, we
will consider a twofold cross-validation scheme. This method
randomly divides the observation into two subsets of equal
size, and learns a GP estimator on each of the subsets. Then the
goodness of fit is determined by computing the mean squared
error of each estimator on the data of the remaining subset.

IV. DIRECT ESTIMATION FOR DENSE OBSERVATIONS

We first consider the case of dense observation, where we
can apply Gaussian process regression directly to estimate drift
and diffusion functions of stochastic differential equations.

A. Drift estimation

To apply GP regression to the drift estimation problem,
we specialize to the j th drift component and identify f (x) ≡
f j (x). Setting D(x) ≡ Dj (x), a comparison between the SDE
Eq. (1) and the regression problem Eq. (11) shows that we can
identify

yi = (
Xti+�t − Xti

)
/�t, (27)

σ 2
i = D

(
xti

)
�t

. (28)

Note the scaling of the noise variance with 1/�t reflecting the
roughness of a diffusion path.

Hence, from Eq. (21) we can read off the GP prediction for
the drift

f̂ j (x) = [k(x)j ]�
(

Kj + 1

�t
Dj

)−1

yj , (29)

where k(x)j = [K(x,xi)j ]� and where Dj is a diagonal matrix
composed of the diffusions Dj (xi) for i = 1, . . . ,n. The
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FIG. 3. Sample path with n = 6000 data points generated from a
double-well model with time distance �t = 0.002.

Bayesian uncertainty at x is found from Eq. (22) as

V̂f j (x) = K̂j − [k(x)j ]�
(

Kj + 1

�t
Dj

)−1

k(x)j , (30)

with K̂j = K(x,x)j .
Bayesian methods such as GP regression are known to be

typically fairly robust against choosing “wrong” hyperparam-
eters when there is enough data. This corresponds to the limit
T → ∞ in the SDE case. In this limit we can estimate the drift
well, even if the diffusion function is not known, but simply
replaced by a constant.

As an example, we take observations from a double-well
process shown in Fig. 3, which has a state-dependent diffusion
displayed in Fig. 5, and compare the drift estimation which uses
the true diffusion with the corresponding estimation assuming
a model with constant noise. As Fig. 6 shows, both drift
estimations practically agree around the data rich regions,
despite the constant diffusion assumption only being a crude
approximation to the true process noise.

Another point of view is to argue that one can use GP
regression in the limit of a large amount of data as a tool for
estimating the drift as the conditional expectation

f (x) = E[Xt+�t − Xt |Xt = x]/�t (31)

for �t → 0 without making precise assumptions on the noise.
We will use this property of GP regression in the next section
to derive a simple heuristic method for estimating also the
diffusion function.

B. Diffusion estimation

For a smaller data length, one would expect that a good
knowledge of the diffusion will also improve the estimation of
the drift. To estimate the diffusion from data we distinguish
between two cases in the following, namely models with
constant and with state-dependent diffusion. If the diffusion
matrix D is known to be constant, i.e., it does not depend on
the state, we will use a Bayesian maximum likelihood approach
and optimize the so-called Bayes evidence, which equals the
probability of the pathp(X0:T ) (in its Euler discretization), with
respect to the diffusion constants D = (D1, . . . ,Dd ). Again
the probability factorizes in the components j = 1, . . . ,d. For
component j of the process, the evidence is defined as the

n-dimensional Gaussian integral,

p
(
X

j

0:T

) =
∫

p
(
X

j

0:T |fj
)
p0(fj )dfj , (32)

where fj denotes the vector with components f j (Xti ) for
i = 1, . . . ,n and p0(fj ) = N (fj |0,Kj ) is the prior Gaussian
density induced by the GP prior over functions. Introducing,
as before, the notation

y
j

i = X
j

ti+�t − X
j
ti

�t
, (33)

we easily obtain the closed form expression

p
(
X

j

0:T

) = N (yj |0,Kj + �j ) (34)

from Eq. (32) with �j = (Dj/�t)I, and where I denotes the
identity matrix. For the optimization, we use a quasi-Newton
method.

For the case of state-dependent diffusions Dj (x), we will
again assume prior knowledge about functions encoded in a
prior distribution. Since the diffusion must be nonnegative,
one would have to use a nonlinear transformation of GPs,
e.g., by exponentiation. A Bayesian approach, where drift and
diffusion are jointly estimated using two GP priors is no longer
analytically tractable. One might use a variational Bayesian
technique [19], where regression with heteroscedastic noise is
solved approximately by iteration. We will use a much simpler
but more efficient heuristic technique assuming that with
enough data, GP regression will be able to estimate conditional
expectations of the type Eq. (11) fairly well even when the
assumptions about the noise in the estimation problem are not
entirely correct. Hence, we use the well known representation
[1] for an arbitrary component of the exact diffusion

D∗(x) = lim
�t→0

1

�t
Var(Xt+�t − Xt |Xt = x)

= lim
�t→0

1

�t
(E[(Xt+�t − Xt )

2|Xt = x]

−E[Xt+�t − Xt |Xt = x]2)

= lim
�t→0

1

�t
(E[(Xt+�t−Xt )

2|Xt = x] − E[�tf ∗(x)]2)

= lim
�t→0

1

�t
E[(Xt+�t − Xt )

2|Xt = x]. (35)

In the third line, we use the fact that the second term on the right
hand side equals the squared conditional drift Eq. (9). Then—
by taking �t out of the expectation E[�tf ∗(x)]—we can
easily see that the term vanishes in the limit �t → 0. Hence,
the conditional variance does not depend on the drift. For its
computation, we use again GP regression, but now on the data
set [(x1,ỹ1), . . . ,(xn,ỹn)], where ỹi = (Xti+�t − Xti )

2/�t are
proportional to the squared observations of the drift estimation
problem.

By taking the square of the time discretized SDE Eq. (2) we
see that the dominant fluctuations of the data ỹi for �t → 0 are
given by the non–Gaussian noise D(Xt )(1 − ε2

t ). In contrast to
the fluctuations of the data for drift estimation, diffusion data
are much smoother with a variance which remains finite as
�t → 0. Hence, for dense data, it should be possible to filter
out the noise even if we do not use the correct noise model
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for regression. We expect that the following simple heuristics
gives good results for densely sampled paths: We regard the GP
framework as a regression tool for function estimation, which
in our case happens to be the diffusion function. The regression
curve is given by the GP mean Eq. (21) with yj substituted
by ỹj . Under the GP as a regression toolbox lense, we work
with a constant Gaussian noise rate σ 2 in the likelihood which
becomes a nuisance parameter without a direct interest to us.
Still, we have to determine suitable variance values as well as
possibly length scale parameters in the case of a RBF kernel,
which might not be readily available. Finding hyperparameters
by optimizing the evidence presupposes that the we are dealing
with the correct model and could lead to suboptimal results in
the case of model mismatch. Therefore, we resort to a twofold
cross-validation scheme. This method randomly divides the
observations into two subsets of equal size and learns a GP
estimator on each of the subsets. Then the goodness of fit
is determined by computing the mean squared error of each
estimator on the data of the remaining subset.

C. Experiments

We consider drift and diffusion estimation in cases where
the time grid �t on which the data points are observed is small.
This approach will be referred to as the direct Gaussian Process
(GP) estimation with mean and variance given by Eqs. (29) and
(30), respectively. We will treat drift and diffusion estimation in
turn and start with the latter. The order is motivated by the fact
that the diffusion estimation is independent of the drift. Hence,
if both drift and diffusion are unknown, one should first learn
the diffusion and then incorporate the estimation results into the
drift learning procedure. But, as shown in Fig. 6, this typically
leads to only a small correction in regions with sufficient data
points.

Once we have diffusion values at the observations at
our disposal, the estimation of the drift function becomes
straightforward. All we have to do is to evaluate for each
component j the diffusion at the observations Dj (x), which
we then use as GP variance in the drift estimation. For the
constant but unknown diffusion model, we insert the estimated
value D̂j into the diagonal of the matrix Dj , in the state-
dependent unknown diffusion model, we use the estimated
value D̂j (xi) from the diffusion regression function described
above. Then, running the GPs on the observations yj leads
to a drift estimation, which can once again be interpreted as
Bayesian posterior.

In our experiments we found that the choice of the variance
kernel parameter τ for both drift and diffusion estimation
did not have a noticeable impact on the estimation results.
Consequently, we fixed its value to τ = 1. In the case of the
length scale hyperparameter l the user usually has relevant
prior expert knowledge about the specific problem at hand
and is able to determine its value a priori. Similarly, if one
knows that the underlying problem is of polynomial form,
one should be able to specify its order p or at least an upper
bound for p. We found that this approach usually works well
in practice. We note, however, that in the case of dense data the
kernel hyperparameters can also be automatically determined
in a principled way (see Sec. III). Here we show the results
for two experiments with unknown state-dependent diffusion.
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FIG. 4. Estimation for the double-well model based on the direct
GP with the solid black line denoting the mean and the dashed red
line the true drift function. The blue shades denote the 95%-Bayes
confidence bounds.

First we look at synthetic data and then at a real-world data
set used in climate research. The synthetic data sets analyzed
are generated using the Euler method from the corresponding
SDE with grid size �t = 0.002.

1. Double-well model with unknown state-dependent diffusion

To evaluate the direct GP method, we generated a sample of
size n = 5000 with step size �t = 0.002 from the double-well
process [20] with state-dependent diffusion,

dX = 4(X − X3)dt +
√

max(4 − 1.25X2,0)dWt, (36)

which is shown in Fig. 3. The direct GP was run with a
polynomial kernel function of order p = 4. The estimated
functions for drift and diffusion are shown in Figs. 4 and 5,
respectively. In both cases, we see a good fit between estimator
and true function.

As an alternative using less prior knowledge the drift
estimation with a RBF kernel is shown in Fig. 6. Comparing
the results for polynomial and RBF kernel, one can see that
the difference is most pronounced in the tail regions where
few observations are located.

In a second experiment, we empirically checked the con-
vergence rate of the diffusion estimator as a function of the
time grid for this particular model. We generated the different
data sets by first generating a sample path on a dense grid
�t = 0.002 and then selecting for i = 1, . . . ,20, every ith
sample point as observation point, yielding 20 data sets with
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FIG. 5. Diffusion estimation of the double well based on the direct
GP. The dashed red line denotes the square root of the diffusion
D(x)1/2 and the solid black line the estimator. The blue shades denote
the 95%-Bayes confidence bounds.
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FIG. 6. The figure shows drift estimations based on n = 5000
dense observations from the double well with state-dependent diffu-
sion. The dashed red line is the true drift, the black solid line the drift
estimator using the true diffusion, and the dashed-dotted blue line
the estimator which assumes a constant drift σ̂ = 1.19 determined by
maximizing the evidence. In both cases, we used a RBF kernel with
l = 0.42.

corresponding time steps from �t = 0.002 to �t = 0.04.
We repeated this procedure for M = 15 dense sample paths
and computed for each data set the GP estimator, using a
polynomial kernel of order p = 2. To compare the estimation
accuracy over the different time grids, we used the approximate
mean-squared error (MSE)

∫
p(z)(D̂(z) − D(z))2dz ≈ 1

S

S∑
i=1

[D̂(zi) − D(zi)]
2 (37)

of the corresponding estimator. Here D̂(z) denotes the esti-
mated diffusion function and D(z) the true diffusion value,
each evaluated on a set of S = 100 fixed points evenly spaced
over the range of the samples.

As in the previous experiment, the M dense sample paths,
each with size n = 10 000, were generated from the process
given in Eq. (36). Figure 7 shows the empirical result of the
MSE as a function of the time grid. One can see that for very
small time intervals, the model fit denoted by the dotted line
in the graph roughly equals MSE ≈ n−1 as a function for the
number of data points (remember that in our construction, the
data set with twice the time grid contains half the number
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FIG. 7. The figure shows the mean MSE of the diffusion estimator
as a function of the time grid. Each dot in the figure represents the
mean of the M = 15 MSE values for the particular time grid. The
dotted line is fitted by linear regression for the first five data points
with time grid �t � 0.01. The dotted red line denotes the model fit
MSE ≈ n−1.1 based on the values of the smallest five time grids.
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FIG. 8. Plot of the ice-core data (as solid black line) with
metastable states marked by dashed green lines. These four minima
of the potential function were identified by the direct GP algorithm
with state-dependent diffusion.

observations). The error rate increases significantly for time
grids bigger than �t = 0.01, indicating that the estimation of
the diffusion function becomes inexact for even moderately
densely distributed observations. We return to this issue in our
discussion of diffusion estimation for sparse observations.

2. Ice-core model

As an example of a real-world data set, we used the
NGRIP ice-core data (provided by Niels-Bohr institute in
Copenhagen [21]), which provides an undisturbed ice-core
record containing climatic information stretching back into
the last glacial. Specifically, this data set as shown in Fig. 8
contains 4918 observations of oxygen isotope concentration
δ18O over a time period from the present to roughly 1.23 × 105

years into the past. Since there are generally less isotopes in
ice formed under cold conditions, the isotope concentration
can be regarded as an indicator of the temperature at the time
of the ice formation.

While this time series itself only shows the evolution of the
average temperature in the past, finding a model explaining
the dynamics behind the observed change is important to
understanding climate transitions and to predict future changes
of the temperature. Possible approaches for constructing such
models include:
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FIG. 9. Diffusion function estimators of the ice-core model for the
state-dependent (solid black line) and the constant diffusion model
(dotted red line). The constant value D1/2 = 2.81 was found by
optimization of the marginal likelihood. For the GP in the state-
dependent model we used a RBF kernel, whose length scale l = 2.71
and diffusion D = 0.1 was determined by twofold cross-validation.
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FIG. 10. The figure shows the estimated potentials of the ice-core
data both from a model with state-dependent diffusion D(x) (solid
black line) and with constant diffusion D (dotted red). For both models
we use a RBF kernel with length scale l = 0.7. The corresponding
diffusion estimators are shown in Fig. 9.

(1) A complex model is built starting from the basic laws
of physics (ab initio). These models can become very accurate
descriptions by including more and more details, but it is
difficult to see the high-level properties of the dynamics
directly. Instead one has to try out numerical simulations of
different scenarios.

(2) Some assumed or observed properties of the dynamics
lead to a parametric model which implements them. For
example, a system switching between two meta-stable states
could be described qualitatively by a polynomial drift of order
3. To reproduce the observations and to make quantitative
predictions the model has to be fit to the data by parameter
estimation. But a good fit alone does not guarantee that the
model is correct.

(3) A nonparametric model—as used in this paper—is
more flexible and can adapt to different data sets. It typically
has only few built-in assumptions, e.g., that functions are
smooth and differentiable. This reduces the risk of a model
mismatch considerably.

Recent research [22,23] suggest to model the rapid paleocli-
matic changes exhibited in the data set (Dansgaard-Oeschger
events [24]) by a simple dynamical system with a drift function
of order p = 3 as canonical model, which allows for bistability.
This corresponds to a metastable state at higher temperatures
close to marginal stability and a stable state at low values,
which is consistent with other research on this data set linking
a stable state of oxygen isotopes to a baseline temperature
and a region at higher values corresponding to the occurrence
of rapid temperature spikes. For this particular dataset the
consecutive observations are spaced �t = 0.05 ky−1 apart.
The underlying dynamics of the NGRIP data set is often
modelled as a constant noise process in the literature [23].

Figure 9 shows that the estimated diffusion function
changes significantly over the range of the observed isotope
concentration, which seems to make the constant diffusion
assumption in the model of Ref. [23] inadequate. Our data-
driven and nonparametric approach not only reveals this
multiplicative nature of the noise but also a richer structure
of the learnt potential in comparison to the potential function
of the constant diffusion model. Both functions � are shown
in Fig. 10 and defined by their usual relation

f(x) = −∇x�(x) (38)

to the corresponding drift function f(x).
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FIG. 11. Plot of the ice-core drift function corresponding to the
potential function shown in Fig. 10 as solid black line together with
the 95%-Bayes confidence bounds shaded in blue.

Hence, choosing a state-dependent diffusion model is advis-
able even in cases where one is only interested in the qualitative
form of the potential, since a wrong diffusion estimate can
obscure it. This has happened here for δ18O > −39, where
the two minima are barely visible in the result of the constant
diffusion model.

In total, we find four local minima, but only two would
be expected for a polynomial drift of order p = 3. Switches
between the two lowest states at δ18O ≈ −43.1 and δ18O ≈
−40.2 occur quite frequently due to a low barrier and high
diffusion. As indicated by the 95%-Bayes confidence bounds in
Fig. 11, another possible but less likely explanation of the data
points would be only one zero-crossing of the drift function
in this region. A more obvious metastable state is found at
δ18O ≈ −35.0 because of an asymmetric barrier and lower
noise levels. Around the last metastable state at δ18O = −32.4,
the diffusion remains small, but the uncertainty about the drift
function increases again, as there are only a few data points
available there.

V. LARGE NUMBER OF OBSERVATIONS:
THE NEED FOR A SPARSE GP

In practice, the number of observations can be large for a
fine time discretization, and a fast computation of the matrix in-
verses in Eq. (29) could become infeasible. A possible way out
of this problem—as suggested by [13]—could be a restriction
to kernels for which the inverse kernel is a differential operator.
We will now resort to a different approach which applies to
arbitrary kernels and generalizes easily to multivariate SDEs.
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FIG. 12. Snippet of the double-well sample path in black with
observations denoted as red dots.
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Our method is based on a variational approximation to the
GP posterior [25,26], where the likelihood term of the GP
model Eq. (5) is replaced by another effective likelihood, which
depends only on a smaller set of variables fs .

A. The general case

We assume a collection of random variables f =
{f (x)}x∈T , where the index variablex ∈ T takes values in some
possibly infinite index set T . We will assume a prior measure
denoted by P0(f ) and a posterior measure of the form

P (f ) = 1

Z
P0(f ) e−U (f ), (39)

where U (f ) is a functional of f . The goal is to approximate
P by another measure Q of the form

Q(f ) = 1

Zs

P0(f ) e−Us (fs ), (40)

where the potential Us depends only on a smaller sparse set
fs = {f (x)}x∈S of dimension m. S is not necessarily a subset
of T . While we keep the set S fixed, Us will be optimized to
minimize the variational free energy of the approximation

− ln Z � − ln Zs + Es[U (f ) − Us(fs)]. (41)

We write the joint probability of f and fs as

Q(f,fs) = Q(f |fs)Q(fs) = P0(f |fs)Q(fs), (42)

where the last equality follows from the fact that fixing the
sparse set fs , U (fs) becomes non-random and the dependency
on the random variables f is only via P0 and we have

Q(fs) = P0(fs)
Zs

e−Us (fs ). (43)

Hence, we can integrate out all variables f except fs using
P0(f |fs) and rewrite the variational bound as the finite-
dimensional integral

− ln Z � − ln Zs +
∫

Q(fs){E0[U (f |fs)] − Us(fs)}dfs

=
∫

Q(fs) ln

(
Q(fs)

P0(fs) e−E0[U (f |fs )]

)
dfs . (44)

E0[U (f |fs)] is the conditional expectation with respect to P0.
Since this is of the form of a relative entropy, we conclude that
the bound is minimized by the choice

Q(fs) ∝ P0(fs)e−E0[U (f |fs )] (45)

and thus Us(fs) = E0[U (f |fs)].

B. Gaussian random variables

We next specialize to a Gaussian measure P0 with zero
mean and covariance kernel K . If we assume (for notational
simplicity) that the set {f } is represented as a finite but high-
dimensional vector f and

U (f) = 1
2 f�Af − b�f (46)

is a quadratic form, we can then further simplify the conditional
expectation Eq. (45) to

E0[U (f)|fs] = 1
2 (E0[f |fs])�AE0[f |fs] − b�E0[f |f s] + C,

(47)

where

C = 1
2 tr(Cov0[f |fs]A) (48)

is a constant independent of fs . This follows from the fact
that E0[f |fs] is the optimal mean square predictor of the
vector f given fs [27], the difference f − E0[f |fs] is a random
vector which is uncorrelated to the vector fs and thus for
jointly Gaussian random variables independent of fs . Hence
the conditional covariance Cov0 of f does not depend on fs .
The explicit result for this predictor is given by

E0[f |f s] = KNsK−1
s fs , (49)

where Ks is the kernel matrix for the sparse set and KNs is the
n × m kernel matrix between the non-sparse and the sparse set.
It is now easy to generalize to the infinite-dimensional case of
the form

U (f ) = 1

2

∫
f 2(x)A(x)dx −

∫
f (x)b(x)dx, (50)

for which we get

E0[f (x)|fs] = k�
s (x)(Ks)

−1fs (51)

and thus

E0[U (f)|fs] = 1

2
f�
s K−1

s

{∫
ks(x) A(x) k�

s (x)dx

}
K−1

s fs

− f�
s K−1

s

∫
ks(x) b(x) dx. (52)

C. Sparse GP drift and diffusion estimation

Now, setting

U (f ) = − ln[L(X0:T | f )], (53)

we can derive the drift estimator for the sparse representation

analogously to Eq. (17). With definitions π j = Kj

Ns(K
j
s )

−1
and

	j = �t(π j )�D−1π j we get for the j th component of the drift
vector:

f̂ j (x) = [k(x)j ]�
(
I + 	j Kj

s

)−1
�t(π j )�(Dj )−1yj , (54)

where k(x)j = [K(x,xi)j ]�.
The corresponding expression for the variance estimator is

given by

V̂f j (x) = K(x,x) − k(x)�
(
I + 	j Kj

s

)−1
	j k(x). (55)

Notice that the inverted matrix inside the drift and variance
estimators is no longer of the size of observations n × n, but
of the size of the sparse set m × m.

While it is possible to also optimize the approximation with
respect to the set of sparse points numerically [25], we use
a simple heuristic, where we construct a histogram over the
observations and select as our sparse set S the midpoints of
all histogram hypercubes containing at least one observation.
Here, the intuition is that a sparse point in a region of high
empirical density is a good approximation to the data points
in the respective hypercube. The number of histogram bins is
determined by Sturges’ formula [28], which is implicitly based
on the range of the data. Note, that the cardinality m of the
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sparse set is not set in advance, but automatically determined
by the spatial structure of the data. This heuristic typically
leads to m � n and therefore to substantial computational
gains compared to the full GP.

In practice, using the sparse GP for the drift and diffusion
function estimation can be easily accomplished by first de-
termining a sparse set S for the relevant data set and then
substituting mean Eq. (29) and variance Eq. (30) with their
sparse GP counterpart Eqs. (54) and (55), respectively.

One exception is the estimation of the constant diffusion D,
where we have to replace the marginal distribution Eq. (32)
with a corresponding sparse approximation. Here, we follow
[25] and optimize for each component j a lower bound to the
evidence with respect to the diffusion constants:

FV (X0:T ) = log

[
N
(

yj

∣∣∣∣0,Qj

N + 1

�t
Dj

)]

− �t

2
(Dj )−1tr

(
Kj − Qj

N

)
, (56)

where Qj

N = Kj

Ns(K
j
s )−1(Kj

Ns)
� and tr(·) denotes the trace of

the matrix.

D. Performance comparison

To get a feel for the performance differences between the
standard GP and its sparse counterpart, we compare both
versions in terms of accuracy and performance on the double-
well model,

dX = 4(X − X3)dt + D1/2dWt, (57)

with constant and known variance D = 1. For the comparison,
we analyzed the performance for data sets of different sizes,
where we generated 10 data sets with �t = 0.002 for each
fixed number of observations and using the approximate MSE,

1

S

S∑
i=1

[f̂ (zi) − f (zi)]
2, (58)

as performance measure. Here f̂ (z) denotes the estimated drift
and f (z) the true drift value, evaluated on S = 100 evenly
spaced points of the sample range. We then measured the run
time and MSE of each data set based on the sparse GP and
the standard GP estimation, each with a polynomial kernel of
order p = 4. All MSE are computed for one fixed test set of
size n = 4000, which we generated from the same model with
�t = 0.5.

Table I shows the mean values of the run time and MSE
for each fixed observation number, respectively. One can see
that the sparse GP algorithm leads to a significant reduction
in computing time while exhibiting practically no loss in
estimation accuracy. As expected, the efficiency gain grows
with larger data sets and even allows us to to analyze big data
sets which are computationally infeasible for the standard GP
method.

VI. ESTIMATION FOR SPARSE OBSERVATIONS

The direct GP approach outlined above leads to wrong
estimates of the drift when observations are sparse in time.
In the sparse setting, we assume that n observations zk

.= Xτk
,

TABLE I. Results of mean run times and MSEs of the standard GP
and sparse GP algorithms for different sample sizes, run on a machine
with Intel Core i3 processor. The size of the sparse sets varied between
m = 6 and m = 19.

Sample Full GP Full GP Sparse GP Sparse GP
size runtime MSE runtime MSE

300 0.077 1.507 0.005 1.507
500 0.104 1.384 0.008 1.384
1000 0.828 1.292 0.014 1.293
2500 4.19 1.157 0.028 1.157
5000 30.18 0.973 0.056 0.973
10 000 324.5 0.592 0.162 0.593
50 000 – – 0.783 0.142

k = 1, . . . ,n are obtained at (for simplicity) regular intervals
τk = kτ , where τ � �t is much larger than the microscopic
time scale (for an example see Fig. 12). In this case, a
straightforward discretization in Eq. (5), where the sum over
microscopic times ti would be replaced by a sum over macro-
scopic times τk and �t by τ , would correspond to a discrete
time dynamical model of the form Eq. (1) again replacing �t

by τ . But this discretization is a bad approximation to the
true SDE dynamics. This is because the transition kernel over
macroscopic times τ is simply not a Gaussian for a general f

as was assumed in Eq. (17). The failure of the direct estimator
for larger time distances can be seen in Fig. 13, where the red
dashed line corresponds to the true drift of the double well
(with constant, known diffusion) and the black solid line to its
prediction based on observations with τ = 0.2. The exact like-
lihood for the sparse problem would be obtained by integrating
the probability Eq. (3) over all paths which are compatible with
the observations. Unfortunately, an analytical computation of
such functional integrals is not possible for a general drift
function f .

To deal with this problem, one treats the process Xt for times
t between consecutive observations kτ < t < (k + 1)τ as a
hidden stochastic process with a conditional path probability
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FIG. 13. Estimated drift function for the double well based on
the direct approach, where the red dashed line denotes the true drift
function and the solid black line the mean function. One can clearly
see that the larger distance between the consecutive points leads to a
wrong prediction.
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given by

p(X0:T |z,f ) ∝ p(X0:T |f )
n∏

k=1

δ(zk − Xkτ ), (59)

where z is the collection of observations zk . A Monte Carlo
approach to a full Bayesian estimation of the drift uses a Gibbs
sampling method [13] which iteratively updates SDE paths and
drift function samples. A short description of such a sampler
is given in Appendix B.

As a much more efficient estimation procedure we will
describe in the following a different iterative method based on
an approximate EM algorithm [15], in which the unobserved
complete paths are replaced by an appropriate expectation
using the probability Eq. (59).

A. EM algorithm

The EM algorithm cycles between two steps
(1) In the E-step, we compute the expected negative loga-

rithm of the complete data likelihood

L(f,p) = −Ep[ln L(X0:T |f )], (60)

where p denotes the posterior p(X0:T |z,fold) for the previous
estimate fold of the drift.

(2) In the M-Step, we recompute the most likely drift
function by the minimization

fnew = arg min
f

[L(f,p) − ln P0(f )]. (61)

On can show [15] that the EM algorithm converges to a local
maximum of the log-posterior. To compute the expectation in
the E-step, we use Eq. (5) and take the limit �t → 0 at the
end, when expectations have been computed. As f (x) is a
time-independent function, this yields

−Ep[ln L(X0:T |f )]

= lim
�t→0

1

2

∑
t

Ep[||f (Xt )||2]�t

−2Ep[(f (Xt ),Xt+�t − Xt )]

= 1

2

∫ T

0
Ep[||f (Xt )||2] − 2Ep[(f (Xt ),gt (Xt ))]dt

= 1

2

∫
||f (x)||2A(x)dx −

∫
(f (x),b(x))dx. (62)

We have defined the corresponding drift conditioned on data

gt (x) = lim
�t→0

1

�t
Ep[Xt+�t − Xt |Xt = x], (63)

as well as the functions

A(x) =
∫ T

0
qt (x)dt (64)

and

b(x) =
∫ T

0
gt (x)qt (x)dt. (65)

In contrast to Eq. (8), expectations are now over marginal
densities qt (x) of Xt computed from the conditional path
measure, not over the asymptotic stationary density. Hence, we
end up again with a simple quadratic form inf to be minimized.

Note that due to the smoothness of the kernel the prediction
of Eq. (61) can be easily differentiated analytically, a fact that
will be needed later.

However, there are two main problems for a practical
realization of this EM algorithm:

(1) We cannot compute the expectation with respect to the
conditional path measures exactly and need to find approxima-
tions applicable to arbitrary prior drift functions f (x).

(2) Although real observations are sparse, the hidden path
involves a continuum of values Xt . This will require (e.g., after
some fine discretization of time) the inversion of large matrices
in Eq. (29).

We can readily deal with the latter problem by resorting to
the sparse GP representation introduced in Sec. V.

1. Linear drift approximation: The Ornstein-Uhlenbeck bridge

In this section we will look at the first problem of computing
expectations in the E-step. For given drift f (·) and times t ∈ Ik

in the interval Ik = [k τ ; (k + 1)τ ] between two consecutive
observations, the exact marginal pt (x) of the conditional path
distribution equals the density of Xt = x conditioned on the
fact that Xkτ = zk and X(k+1)τ = zk+1. This is a so-called
diffusion bridge. Using the Markov property, this density can
be expressed by the transition densities ps(xt+s |xt ) of the
homogeneous Markov diffusion process with drift f (x) as

pt (x) ∝ p(k+1)τ−t (zk+1|x)pt−kτ (x|zk) for t ∈ Ik. (66)

As functions of t and x, the second factor fulfills a forward
Fokker-Planck equation and the first one a Kolmogorov back-
ward equation [1]. Since exact computations are not feasible for
general drift functions, we approximate the transition density
ps(x|xk) in each interval Ik by that of a homogeneous Ornstein-
Uhlenbeck process [1], where the drift f (x) is replaced by a lo-
cal linearization. Hence, we consider the approximate process

dXt = [f (zk) − 
k(Xt − zk)]dt + D
1/2
k dW (67)

with 
k = −∇f (zk) and Dk = D(zk) for t ∈ Ik . For this
process, the transition density is a multivariate Gaussian

q(k)
s (x|z) = N [x|αk + e−
ks(z − αk); Ss], (68)

where αk = zk + 
−1
k f (zk) is the stationary mean. The

covariance Ss = AsB
−1
s is calculated in terms of the matrix

exponential [
As

Bs

]
= exp

([

k Dk

0 −
�
k

]
s

)[
0

I

]
. (69)

Then we obtain the Gaussian approximation

q
(k)
t (x) = N [x|m(t); C(t)] (70)

of the marginal posterior for t ∈ Ik by multiplying the two
transition densities, where

C(t) = (
e−
�

k (tk+1−t)S−1
tk+1−t e

−
k (tk+1−t) + S−1
t−tk

)−1
,

m(t) = C(t) e−
�
k (tk+1−t)S−1

tk+1−t (zk+1 − αk

+ e−
k (tk+1−t)αk) + C(t) S−1
t−tk

× [αk + e−
k (t−tk )(zk − αk)].
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By inspecting mean and variance we see that the distribution
is in fact equivalent to a bridge between the points X = zk and
X = zk+1 and collapses to point masses at these points.

Finally, in this approximation we obtain for the conditional
drift

gt (x) = lim
�t→0

1

�t
E[Xt+�t − Xt |Xt = x,Xτ = zk+1]

= f (zk) − 
k(x − zk) + Dke
−
�

k (tk+1−t)S−1
tk+1−t

× [zk+1 − αk − e−
k (tk+1−t)(x − αk)]

as shown in Appendix C.

2. Sparse M-Step approximation

For the M-Step approximation we use the sparse GP
formalism of section V. The resulting sparse approximation
to the likelihood Eq. (62) is given by

Ls(f,q) = 1

2

∫
||E0[f (x)|fs]||2 A(x) dx

−
∫

(E0[f (x)|fs],b(x)) dx, (71)

where the conditional expectation is over the GP prior. While
the exact likelihood does not contain interactions of the form
f (x)f (x ′) for x �= x ′, we allow for couplings of the type
1
2 f��f − a�f in the effective log-likelihood.

To avoid cluttered notation, it should be noted that in
the following results for a component f j , the quantities
�s ,fs ,ks ,K−1

s ,z(x),D(x) similar to Eq. (29) depend on the
component j , but not A(x).

We easily get

E0[f (x)|fs] = k�
s (x)K−1

s fs . (72)

Hence,

Ls(f,q) = 1
2 f�

s �sf s − f�
s ys , (73)

with

�s = K−1
s

{∫
ks(x)D(x)−1 A(x) k�

s (x)dx

}
K−1

s (74)

and

ys = K−1
s

∫
D(x)−1ks(x) b(x) dx. (75)

With these results, the approximate MAP estimate is

f̄s(x) = k�
s (x)(I + �sKs)

−1ys . (76)

The integrals over x in Eqs. (74) and (75) can be computed
analytically for many kernels of interest such as polynomial
and RBF ones. However, we found it more efficient to treat
the time integration in Eqs. (64) and (65) as well as the x

integrals by sampling, where time points t are drawn uniformly
at random and x points from the multivariate Gaussian qt (x).
A related expression for the variance,

V̂s(x) = K(x,x) − k�
s (x)(I + �Ks)−1�sks(x), (77)

can only be viewed as a crude estimate, because it does
not include the impact of the GP fluctuations on the path
probabilities.

Finally, a possible approximate evidence for our model is
given by the product of the local Ornstein-Uhlenbeck transition
probabilities:

p(z) ≈ pou(z|f̂) = p(x1)
n−1∏
j=1

q(k)
τ (zk+1|zk). (78)

The expression is a product of Gaussian transition densities
and therefore of analytical form. Note that in addition to
the Ornstein-Uhlenbeck linearization, this approximation also
neglects the uncertainty of f , since the GP in the M step only
uses the expectation.

Nevertheless, in our experiments we found that the use
of the approximate evidence is a reasonable choice for the
optimization of the diffusion D(x), see Sec. VI D. However,
the optimization of the kernel hyperparameters is more prob-
lematic, since the approximate evidence depends on the drift
estimate f̂ , which itself depends on the choice of the hyperpa-
rameters through the application of the GP. Since we assume
that prior knowledge of a suitable kernel hyperparameters is
often available, we did not pursue this problem further.

B. Experiments

We created the synthetic data sets in this section by first
using the Euler method from the corresponding SDE with grid
size �dense = 0.002. Then for a data set of N observations
separated by �t � �dense, we keep every k = (�t/�dense)th
path sample value as observation, until the desired observation
number N is reached.

The EM algorithm is initialized with the sparse direct GP
estimator, which works well in practice as a reasonable first
approximation to the true system dynamics. Although the
monotonicity property of the EM algorithm is no longer satis-
fied due to the approximation in the E-step, convergence will
be assumed, once L stabilizes up to some minor fluctuations.
In our experiments convergence was typically attained after a
few (<10) iterations.

1. Performance comparison

First, we compare the estimation accuracy of the direct GP
and the EM algorithm on the double-well model with constant
known diffusion,

dX = 4(X − X3)dt + dWt, (79)

for different time discretization �t . For each time step, we
generated 20 data sets, each of size n = 4000, and computed
the MSE on a test set of size n = 2000 for each data set
and for both algorithms using the RBF kernel. As benchmark
reference, we include the estimation results of a Monte Carlo
sampler (see Appendix B). The latter one is represented
only for one data set at small and medium time intervals,
respectively, due to its long computation time. To improve
comparability, we fixed the length scale of the RBF kernel
to l = 0.62 for all data sets.

The results are given in Fig. 14. The MSE of the direct GP
grows quite rapidly for smaller intervals until it reaches an
upper bound roughly equivalent with randomly guessing the
drift function. On the other hand, the MSE for the EM algorithm
increases at a much slower rate, giving good results even for
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FIG. 14. Comparison of the MSE for different methods over
different time intervals.

data sets with bigger time distances. The estimation results for
the Gibbs sampler are independent of the discretization rate,
but take considerable time to compute: while the EM algorithm
runs for a couple of minutes, the sampler takes up to two days.

2. Double-well model with known state-dependent diffusion

As our next example we examine the double-well model
with state-dependent diffusion and larger time discretization.
Here we assume that the diffusion function D(x) is known.
Specifically, we sample n = 4000 observation at �t = 0.5 and
run the EM algorithm with a polynomial kernel of order p = 4.
The direct GP and the EM result are given in Figs. 13 and 15,
respectively. One can clearly see, that an application of EM
leads to a significantly better estimator of the drift function,
compared to the direct GP method.

3. Two-dimensional synthetic model

We now turn to a two-dimensional process with the follow-
ing dynamics:

dX = [X(1 − X2 − Y 2) − Y ]dt + dW
(1)
t , (80)

dY = [Y (1 − X2 − Y 2) + X]dt + dW
(2)
t , (81)

where the component indices are denoted by superscripts. For
this model we generated n = 10 000 observations with step
size �t = 0.2 shown in Fig. 16. The estimation in Fig. 17 uses
a polynomial kernel of order p = 4 and shows a good fit to the
true drift especially in the regions where the observations are
concentrated. Note that this is a nonequilibrium model, where
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−
10

0
5
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x)

FIG. 15. GP estimation after one iteration of the EM algorithm.
Again, the solid black and red dashed lines denote estimator and true
drift function, respectively.
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FIG. 16. Empirical density of the data set generated from the two-
dimensional synthetic model.

the drift cannot be expressed as the gradient of a potential.
Hence, the density based method of Ref. [29] cannot be applied
here.

4. Lorenz’63 model

We next analyze a stochastic version of the three-
dimensional Lorenz’63 model. It consists of the following
system of nonlinear coupled stochastic differential equations:

dX = σ (Y − X)dt + dW
(1)
t , (82)

dY = (ρX − X − XZ)dt + dW
(2)
t , (83)

dZ = (XY − βZ)dt + dW
(3)
t . (84)

Lorenz’63 is a chaotic system which was developed as a
simplified model of thermal convection in the atmosphere
[30]. The parameters θ = (σ,ρ,β) are set to the commonly
used θ = (10,28,8/3) known to induce chaotic behavior in
the system. To analyze the model we simulate n = 3000 data
points with time discretization �t = 0.2. In the inference, we
used a polynomial kernel of order p = 2 and assume that the
constant diffusion is known.

To visualize the quality of the drift estimation, we computed
it with both the direct GP and the EM algorithm. Figures 18 and
19 show simulated paths using the resulting mean estimators
as drift functions. Here, the application of EM leads to a vastly
superior estimation result compared to the direct method. As
shown in Fig. 20, the direct GP estimator path collapses to a
small region of the function space, whereas the EM trajectory

−1.5 −0.5 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
5

FIG. 17. Vector fields of the true drift depicted as gray lines and
the estimated drift as black arrows for the two-dimensional synthetic
model.
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FIG. 18. Simulated sample path of the Lorenz’63 model learned
by the direct GP algorithm.

of Fig. 21 nicely captures the true dynamics of the Lorenz’63
model, faithfully recreating the famous butterfly pattern in the
X-Z plane.

5. Cart and pole model

Next, we consider an example from the class of mechanical
systems. Our model describes the dynamics of a pole attached
to a cart moving randomly along an one-dimensional axis.
Formally, we get a system of two-dimensional differential
equations with x denoting the angle of the pendulum, and
v the angular velocity. We define the upright position of the
pendulum as X = 0. This particular cart and pole model is
frequently studied in the context of learning control policies
[31], where the goal is to move the cart in such a way as to
stabilize the pendulum in the upright position. The complete
system looks as follows:

dX = V dt, (85)

dV = −γV + mgl sin(X)

ml2
dt + d1/2dWt, (86)

where γ = 0.05 is the friction coefficient, l = 1 m and m =
1 kg are the length and mass of the pendulum, respectively,
and g = 9.81 m s−2 denotes the gravitational constant. For our
experiment, we generated N = 4000 data points (x,v) on a grid
with �t = 0.3 and known diffusion constant d = 1. Here, the
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FIG. 19. Simulated sample path of the Lorenz’63 model learned
by the EM algorithm.
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FIG. 20. Simulated path in the X-Z plane from the Lorenz’63
model learned by the direct GP algorithm.

full diffusion matrix

D =
(

0 0

0 1

)
, (87)

for both X and V is rank deficient due to its noiseless first
equation. However, we note that our EM algorithm is also
applicable to models with deterministic components, since
the E-Step in the EM algorithm remains well defined. In the
kernel function we incorporate our prior knowledge that the
pendulum angle is periodic and the velocity acts as a linear
friction term inside the system. Specifically, we define the
following multiplicative kernel for the dV equation:

K[(x,v),(x ′,v′)] = KPer(x,x ′)KPoly(v,v′), (88)

where KPer denotes the periodic kernel over the state x with
hyperparameters l = 1.21 and KPoly the polynomial kernel of
order p = 1 over the velocity V . The multiplicative kernel
structure allows for interactions between its components. Since
in this model the components are independent, we could also
use an additive kernel, which neglects interactions terms, but
we have chosen the more generally applicable variant here. For
the dX equation, we use a polynomial kernel of order p = 1,
which captures the linear relationship between X and V . If we
adapt our choice of the kernel to the specific form of the system,
we get an accurate estimate even for data points separated by
a wider time spacing (see Figs. 22 and 23).

C. External forces

We can expect a reasonably good estimation of f (x) only
in regions of x where we have enough observations. This is of
clear importance, when the system is multistable and the noise
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40

X(t)

Z
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)

FIG. 21. Simulated path in the X-Z plane from the Lorenz’63
model learned by the EM algorithm.
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FIG. 22. One-dimensional drift estimation of the second (dV )
SDE of the cart and pole model. This figure shows the drift as a
function of the position X for the fixed velocity V = 0. The solid
black line denotes the estimation and the red dashed line the true
function.

is too small to allow for a sufficient exploration of space. An
alternative method for exploration would be to add a known
external deterministic control force u(t) to the dynamics which
is designed to drive the system from one locally stable region
to another one. Hence, we assume a SDE,

dXt = [f (Xt ) + u(t)]dt + D1/2dWt . (89)

This situation is easily incorporated into our formalism. In
all likelihood terms, we replace f (Xt ) by f (Xt ) + u(t) but
keep the zero mean GP prior over functions. The changes for
the corresponding transition probabilities of the approximat-
ing time-dependent Ornstein-Uhlenbeck bridge are given in
Appendix D.

We demonstrate the concept by applying it to the double-
well model. We get

dX = [4(X − X3) + u(t)]dt + σdWt . (90)

As external force we choose a periodic control function of the
form u(t) = a sin(ωt) with parameters a = 1 and ω = 3. We
generated a data set of n = 2000 observations on a regular grid
with distance �t = 0.2 from the model with known diffusion
D1/2 = 0.5. The addition of u(t) leads to observations from
both of the wells, whereas in the uncontrolled case only one
part of the underlying state space is explored. Hence, the drift
estimation in the latter case leads to an accurate result solely
around the well at X = 1, as opposed to the controlled case,
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x = − π / 2
x = π / 2

FIG. 23. One-dimensional drift estimation of the second (dV )
SDE of the cart and pole model: Drift as a function of V for the
two horizontal positions with the top pointing to the left X = −π/2
and to the right side X = π/2. Full lines denote the drift estimation
and dashed and dotted lines the true values.
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FIG. 24. EM algorithm predictions for the uncontrolled double-
well path with the solid black line denoting the estimation and
the dashed red line the true drift. Here, the estimation of the well
around X = −1 basically equals the GP prior, since there are no
observations in this region. The shaded area can be interpreted as
the 95%-confidence bound.

where both modes are truthfully recovered (Figs. 24 and 25).
In both cases, we used a RBF kernel with τ = 1. The length
scales was set to l = 0.74 in the controlled and l = 0.53 in the
uncontrolled case.

D. Diffusion estimation

As in the dense data scenario, we look at constant and state-
dependent diffusions in turn. If D does not depend on the state,
we can proceed in analogy to the dense data case and maximize
the approximate evidence Eq. (78) with respect to the diffusion
values.

For the state-dependent case D(x) we assume a parametric
function D(x; θ ), which is specified by its parameter vector
θ . Here, we again maximize the likelihood with respect to the
corresponding θ .

For an illustration, we do not show the constant diffusion
case and instead restrict ourself to the more interesting case of
a state-dependent D(x). We sampled n = 8000 observations
at �t = 0.3 from the following process:

dX = 0.4(4 − X)dt + max[2 − (X − 4)2,0.25]dWt . (91)

The diffusion function was modelled as D(x,θ ) = θ1x
2 +

θ2x + θ3. As kernel function for the drift, we used a polynomial
kernel of order p = 1. Optimizing the evidence with respect
to θ leads to the results shown in Fig. 26. One can see that the
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FIG. 25. EM algorithm predictions for the controlled double-well
path. The solid black line is the estimated drift and the dashed red line
the true function.
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FIG. 26. Comparison of the diffusion estimation for data gener-
ated from Eq. (91). The dashed red line is the true square root D(x)1/2

of the diffusion and the solid black line the parametric estimation
based on the EM algorithm. For comparison, we include the estimate
based on the direct GP denoted by the green dashed-dotted line.

estimation gives a reasonably good fit to the true diffusion
function even with the bigger time discretization. We note
however, that the diffusion estimate is of a lower quality than
the drift estimate, since in this case the evidence is less accurate.

VII. DISCUSSION

It would be interesting to replace the ad hoc local linear
approximation of the posterior drift by a more flexible time-
dependent Gaussian model. This could be optimized in a
variational EM approximation by minimizing a free energy
in the E-step, which contains the Kullback-Leibler divergence
between the linear and true processes [20,32]. Such a method
could be extended to noisy observations and the case, where
some components of the state vector are not observed. Also,
this method could be turned into a variational Bayesian
approximation, where one optimizes posteriors over both drifts
and over state paths. The path probabilities are then influenced
by the uncertainties in the drift estimation, which would lead
to more realistic predictions of error bars.

Finally, nonparametric diffusion estimation deserves further
attention. Incorporating a fully nonparametric model of the
diffusion function D(x) in our scheme would be infeasible
in practice, since this would involve the joint estimation of n

diffusion matrices. In our preliminary experiments, we tried
a (quasi-)nonparametric approach, where we represented the
diffusion function by its value at a few supporting points
and took these as inputs for a GP regression, which we then
used as function approximation. However, our experiments
have shown that to achieve a reasonable estimation quality
we need supporting points on a relatively dense grid. The
corresponding optimization over the vector of grid points
turned out to be too inefficient, which makes the approach
impractical. Furthermore, the evidence over which we optimize
is often too inaccurate to lead to a reasonable quality.

If performance time is not at all critical, one can resort
to a Markov chain Monte Carlo (MCMC) algorithm, which
generates exact samples from the corresponding drift and dif-
fusion functions. In contrast to the EM algorithm, the sampler
evaluates the diffusion function on a dense grid and also does
not use the assumption of constant diffusion between adjacent
observations, thereby overcoming the significant estimation

errors for larger time distances. We plan to report on this in a
future publication.
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APPENDIX A: POLYNOMIAL KERNEL

A kernel is defined as function k, such that for all x,x′ ∈ X ,

k(x,x′) = 〈φ(x),φ(x′)〉
holds, where 〈· ,·〉 defines an inner product and φ(x) denotes a
map from X to a feature space F ,

φ : x → φ(x) ∈ F .

To show that the function Eq. (15) defines a valid kernel, we
assume input vectors x,x′ ∈ RD and incorporate the constant
by concatenating it with the input. Then

k(x,x′) =
(

D+1∑
d=1

xdx
′
d

)p

=
(

D+1∑
d1=1

xd1x
′
d1

)
· · ·
⎛
⎝D+1∑

dp=1

xdp
x ′

dp

⎞
⎠

=
D+1∑
d=1

· · ·
D+1∑
d=1

(
xd1 · · · xdp

)(
x ′

d1
· · · x ′

dp

)
.= 〈φP (x)φP (x′)〉.

Hence, the polynomial kernel can be written as an inner product
in the feature space induced by the map φP . Further details can
be found in Refs. [18,33].

APPENDIX B: MCMC SAMPLER

We briefly describe the Markov chain Monte Carlo
(MCMC) algorithm, which generates samples from the drift
function of a system of SDEs with known diffusion. Similar
to the EM algorithm in the main text, the drift is modeled in a
nonparametric way.

As before, our data will be a set of N observations Y =
(y1, . . . ,yN ), where yk = Xkτ . Since the time distance between
adjacent observations is taken to be large, we impute the
process between observations in interval Ik = [k τ ; (k + 1)τ ]
on a fine grid of step size � = τ/M for some suitable integer
M . The imputed path of the kth subinterval will be denoted by
Xk = {Xkτ ,Xkτ+�, . . . ,Xkτ+M�}.

If we write the complete imputed path of length MN as

X = (y0,X�, . . . ,X(M−1)�, . . . ,y1, . . . ,

X(k−1)τ+(M−1)�,yk,Xkτ+�, . . . ,yN ),

then the joint posterior distribution of the data and the drift and
diffusion function for a given set of observations is given by

p(X,f |Y,D) ∝ p0(f )
NM∏
l=1

p(Xl+1|Xl,f,D).
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Here, the density p(X,f |Y,D) is approximately normally
distributed [see Eq. (5)] on the fine grid with mean and variance
given by Eqs. (29) and (30), respectively. A straightforward
way to sample from this posterior is given by the following
Gibbs sampler:

Algorithm 1. Gibbs Sampler.

1: Initialize f (0) with the direct GP solution

2: for i = 1, . . . ,N do

3: Sample X(i) ∼ p(X|Y,f (i−1),D)

4: Sample f (i) ∼ p(f |X(i),Y)

Here, the superscripts denote the iteration. The number of
iterations for a particular model is determined by the usual
MCMC convergence diagnostics; see, for example, Ref. [34].
Since an analytic form for the imputed path distribution
p(X|Y,f,D) does not exist, we have to resort to a Metropolis-
Hasting (MH) step. As proposal distribution q, we use the
so-called modified diffusion bridge (MDB) of Ref. [35]. Here,
for each interval Ik the density of a grid point X

j+1
k from Xk

is normally distributed, conditioned on X
j

k and the interval
endpoint yk+1:

q
(
X

j+1
k

∣∣Xj

k ,yk+1,fq,Dq

)
= N

[
X

j+1
k

∣∣Xj

k + fq

(
X

j

k

)
�,Dq

(
X

j

k

)]
, (B1)

with drift and diffusion

fq

(
X

j

k

) = yk+1 − Xj

τ − j�
, Dq

(
X

j

k

) = τ − (j + 1)�

τ − j�
D
(
X

j

k

)
.

Now, since for each subinterval Ik the bridge proposal starts
in observation yk and terminates in yk+1, we can generate a
sample of the complete path p(X|Y,f,D) by sampling a MDB
proposal separately for each the N subintervals. Specifically,
for subinterval Ik we simulate a path X∗

k on the dense grid by
recursively sampling from Eq. (B1) and move from current
state Xk to X∗

k with probability

α(Xk,X∗
k) = min

⎧⎨
⎩1,

⎡
⎣M−1∏

j=1

p
(
X

∗(j+1)
k

∣∣X∗j

k ,f,D
)

p
(
X

j+1
k

∣∣Xj

k ,f,D
)
⎤
⎦

×
⎡
⎣M−2∏

j=1

q
(
X

j+1
k

∣∣Xj

k ,yk+1,fq,Dq

)
q
(
X

∗(j+1)
k

∣∣X∗j

k ,yk+1,fq,Dq

)
⎤
⎦
⎫⎬
⎭,

with probability [1 − α(Xk,X∗
k)] we retain the current path

Xk .
The sampling from the drift p(f |X,Y) is easier to ac-

complish, since under a GP prior P0 ∼ GP assumption, the
distribution p(f |Y,X) of the SDE drift corresponds to a GP
posterior and is therefore of analytic form. Since the number of
dense path observations is usually quite substantial, we resort
to the sparse version of the GP with mean and variance given
by Eqs. (54) and (55), respectively. In each iteration of the
Gibbs sampler, we simulate a new f on a fine grid over the
(slightly extended) range of the path observations X and then
interpolate these points by nonparametric regression to arrive at
an approximate drift function. The interpolation step, for which
we again resort to a sparse GP, is motivated by computational
considerations, since this way evaluating the function values
for the path can be can be done very efficiently, while also
being accurate due to the smoothness of the underlying drift.

APPENDIX C: CONDITIONAL DRIFT

Here, we give the derivation of the conditional drift term
gt (x), which occurs in the E-step of the EM algorithm:

gt (x)

= lim
�t→0

1

�t
E[Xt+�t − Xt |Xt = x,Xτ = y]

= lim
�t→0

1

�t

∫
(x ′ − x) pτ−t−�t (y|x ′)p�t (x ′|x) dx ′∫

pτ−t−�t (y|x ′)p�t (x ′|x) dx ′

= lim
�t→0

1

�t

f (x)�t + Eu[pτ−t−�t (y|x + f (x)�t + u)u]

Eu[pτ−t−�t (y|x + f (x)�t + u)]

= f (x) + D lim
�t→0

∇xEu[pτ−t−�t (y|x + f (x)�t + u)]

Eu[pτ−t−�t (y|x + f (x)�t + u)]

= f (x) + D lim
�t→0

∇x ln{Eu[pτ−t−�t (y|x + f (x)�t + u)]}
= f (x) + D∇x ln {pτ−t (y|x)}.

The second line follows from the definition of the condi-
tional density, the third line from the fact that p�t (x ′|x) =
N (x + f (x)�t ; D�t) and u ∼ N (0; σ 2�t). The fourth line is
based on the fact that for zero mean Gaussian random vectors
with covariance S, we have E[ug(u)] = SE[∇ug(u)]. Finally,
the last line is obtained by noting that the covariance of u

vanishes for �t → 0.

APPENDIX D: ORNSTEIN-UHLENBECK BRIDGE WITH EXTERNAL FORCES

If there is an additional time-dependent and known drift term u(t), e.g., a control force, in the Ornstein-Uhlenbeck model, i.e.,

dXt = [f (yk) − 
k(Xt − yk) + u(t)]dt + D
1/2
k dW,

with 
k = −∇f (yk) and Dk = D(yk), the mean of the marginal posterior is changed to

m(t) = C(t)e−
�
k (τ−u)S−1

τ−u

[
xk+1 − αk + e−
k (τ−u)αk −

∫ τ

u

e−
k (τ−v)u(t − u + v)dv

]

+ C(t)S−1
u

[
αk + e−
ku(xk − αk) +

∫ u

0
e−
k (u−v)u(t − u + v)dv

]
,
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but the covariance matrix stays the same. For the posterior drift, we get in this case

gt (x) ≈ f (xk) − 
k(x − xk) + Dke
−
�

k (τ−u)S−1
τ−u

[
xk+1 − αk − e−
k (τ−u)(x − αk) −

∫ τ

u

e−
k (τ−v)u(t − u + v)dv

]
.

For u(t) = a sin(ωt):

m(t) = C(t)e−γk(tk+1−t)S−1
tk+1−t

(
xk+1 − αk + e−γk (tk+1−t)αk − a

γ 2
k + ω2

{[γk sin(ωtk+1) − ω cos(ωtk+1)]

− e−γk (tk+1−t)[γk sin(ωt) − ω cos(ωt)]}
)

+ C(t)S−1
t−tk

(
αk + e−γk (t−tk )(xk − αk)

+ a

γ 2
k + ω2

{[γk sin(ωt) − ω cos(ωt)] − e−γk (t−tk )[γk sin(ωtk) − ω cos(ωtk)]}
)

,

gt (x) ≈ f (xk) + a sin(ωt) − γk(x − xk) + De−γk (tk+1−t)S−1
tk+1−t

(
xk+1 − αk − e−γk (tk+1−t)(x − αk)

− a

γ 2
k + ω2

{[γk sin(ωtk+1) − ω cos(ωtk+1)] − e−γk (tk+1−t)[γk sin(ωt) − ω cos(ωt)]}
)

.
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