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Localization of random walks to competing manifolds of distinct dimensions
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We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of
different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where
the (zero-dimensional) corner and the (one-dimensional) wall have competing localization properties. This model
applies also (as cross section) to an ideal polymer attracted to the surface or edge of a rectangular wedge in three
dimensions. More generally, we consider (d − 1)- and (d − 2)-dimensional manifolds in d-dimensional space,
where attractive interactions are (fully or marginally) relevant. The RW can then be in one of four phases where
it is localized to neither, one, or both manifolds. The four phases merge at a special multicritical point where
(away from the manifolds) the RW spreads diffusively. Extensive numerical analyses on two-dimensional RWs
confined inside or outside a rectangular wedge confirm general features expected from a continuum theory, but
also exhibit unexpected attributes, such as a reentrant localization to the corner while repelled by it.
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I. INTRODUCTION

Random walks (RWs) are ubiquitous in physics, modeling
myriad systems from diffusion to polymers [1–3]. They are
the prototype of scale invariant phenomena, spanning up to a
typical size (e.g., root mean square end to end distance) R that
scales with the number of steps N as R ∼ NνRW with νRW = 1

2
in free space. This scale invariance is potentially broken in
the presence of inhomogeneities (boundaries, obstacles, etc.)
that enhance or diminish the weight of RWs passing through
different locations. Such weighted RWs may then linger in the
vicinity of favorable locales, leading to phenomena such as
polymer adsorption to attractive surfaces [4–12], with close
analogy to localization of wave functions in quantum bound
states [13].

The behavior of polymers near repulsive and attractive
flat surfaces is well documented. In particular, the value
of the critical exponent ν, governing the divergence of the
adsorbed layer thickness ξ as the critical adsorption condition
is approached, as well as the value of the exponent γ describing
the behavior of the partition function at the transition point, are
well known for a variety of polymer and solvent types [14].
It has been noted that for nonflat but nevertheless scale-free
surfaces, such as infinite cones, pyramids, or wedges, the
critical exponent γ depends on geometric parameters such as
the apex angle of a cone, for both repulsive surfaces [15,16]
and attractive surfaces at the transition point [17]. The values
of the exponents determine the strength of the forces between
the surfaces mediated by flexible polymers. It has also been
noted [18] that localized configurations of RWs can be created
near an attractive edge between the repulsive walls of a wedge,
with an exponent ν governing the divergence of ξ that depends
on the opening angle of the wedge.
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Our theoretical studies of RWs near scale-free surfaces
were originally motivated by the probe shapes used in actual
experiments (see, e.g., Ref. [19]). Presence of additional
features on the two-dimensional surfaces of the probe, such
as one-dimensional edges and zero-dimensional tips, were
ignored in these earlier works. Here, we show that these
features can result in interesting consequences of their own.
In particular, we examine the localization of a RW (idealized
polymer) to the surface or edge of a wedge. This serves as the
prototype of the more general phase diagram, and multicritical
point, that emerges when a RW encounters (weakly) attractive
regions of different dimensions.

The paper is organized as follows: The (well-known)
localization to the flat boundary of an excluded half-space
is reviewed in Sec. II for a lattice realization of weighted
RWs. We particularly make note that at the critical weight for
delocalization, the RW spreads as in free space, a condition
that can be realized for a specific choice of weights with
arbitrary boundaries, and that is reminiscent of reflecting
boundary conditions in the continuum limit. As discussed
in Sec. III, when the boundary is folded into a rectangular
wedge (excluded quarter space), we find that the RW may
become localized to the corner, while repelled by the rest
of the boundary. This suggests a phase diagram with four
phases corresponding to bound or unbound states to corner
or edge, which is explored in Sec. IV. By considering the
continuum limit, we argue that the four phases come together at
a novel multicritical point where the polymer behaves as in free
space. We conclude with a discussion of possible theoretical
extensions and experimental realizations in Sec. V.

In order not to distract from the central narrative, various
numerical and analytical details, as well as some pertinent ref-
erences, are relegated to a number of Appendices. In particular,
Appendix A discusses lattice treatment of weighted walks,
while Appendix B recounts well-known connections between
RWs, quantum mechanics, and polymers in continuous space.

2470-0045/2018/98(2)/022108(15) 022108-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.022108&domain=pdf&date_stamp=2018-08-08
https://doi.org/10.1103/PhysRevE.98.022108


RAZ HALIFA LEVI, YACOV KANTOR, AND MEHRAN KARDAR PHYSICAL REVIEW E 98, 022108 (2018)

The latter is important as polymer adsorption provides a
possible physical realization of the mathematical results. The
discrete implementation of RWs on a square lattice, detailed
in Appendix A, is applied to the problem of an attractive
layer in Appendix C, and to an attractive rectangular wedge in
Appendix D. The distinct numerical signatures of unbounded
and localized (to edge or corner) states, as discussed in
these Appendices, allow for computation of phase diagrams
as described in Appendix E. Localization to the corner in
the limit of strong attraction to the boundary can be studied
asymptotically as a one-dimensional problem as detailed in
Appendices F and G.

II. LOCALIZATION TO A SURFACE

Let us consider RWs on a d-dimensional hypercubic lattice,
with lattice constant �. The number of walks of N steps
(without any obstacles) grows as Z0 = μN , where μ is the
coordination number (number of nearest neighbors of a site)
of a regular lattice. On a hypercubic lattice μ = 2d. This can
be generalized to walks on an inhomogeneous lattice with
non-negative weights q(r) assigned to every site, leading to
a particular N -step walk from r0 to r ≡ rN acquiring a weight
q(r0)q(r1) . . . q(rN ). The total weight of all walks from r0 and
to r will be denoted by Z (r, r0, N ). It is convenient to use the
reduced weight Z̃ (r, r0, N ) ≡ Z (r, r0, N )/Z0, which can be
computed recursively as

Z̃ (r, r0, N + 1) = q(r)

2d

∑
r′ nn of r

Z̃ (r′, r0, N ), (1)

with the starting condition Z̃ (r, r0, 0) = q(r0)δr,r0 .
We note the following two interpretations of weighted

walks: From the perspective of a diffusing particle, the coordi-
nates r0, r1, . . . r represent a time sequence of locations visited
starting from r0 in N steps. In such a model 0 < q < 1 can be
interpreted as a partially absorbing site, q = 0 a completely ab-
sorbing one, while q > 1 represents a site where particles can
proportionately increase in number. (Effectively, q represents
again along a fixed path in a medium with random amplification
and attenuation.) The reduced weight Z̃ (r, r0, N ) will then be
proportional to the mean number of particles at position r.
Alternatively, the entire walk can represent a configuration of
an ideal polymer anchored at r0, with q(r) = exp[−βV th(r)]
interpreted as the Boltzmann weight of a potential V th(r). In
this case, q > 1 models an attractive site, q < 1 represents a
repulsive potential with q = 0 corresponding to an excluded
point (hard obstacle). Consequently, Z and Z̃ should be
interpreted as regular and reduced partition functions, that are
proportional to the probability of finding the end point of a
polymer at r. In this paper we will mostly use terminology
appropriate to the polymer interpretation. Further aspects of
Eq. (1), specifically as matrix multiplication, are discussed in
Appendix A.

Figure 1(a) is an example that uses the recurrence rela-
tion (1) on a d = 2 square lattice [r = (x1, x2)] to calculate
Z̃ (r0, r, N ), for a walk anchored at (0,0), and with an excluded
half-plane, i.e., q(r) = 0 for x1 � −1. We can divide lattice
sites into “even” (“e”) and “odd” (“o”) sublattices, depending
on whether the sum of their coordinates is even or odd. Note

that Eq. (1) connects “e” sites to “o” and vice versa. Therefore,
depending on even or odd N , either “o” or “e” sites of the lattice
will have vanishing Z̃ . For clarity these “e-o” oscillations
are “smoothed out” in all figures showing Z̃ . If an attractive
layer is introduced at the boundary of the repulsive region
with q(r = (0, x2)) = w > 1, then, for sufficiently large w,
the walks become adsorbed on the boundary, as in Fig. 1(d).

In empty space, i.e., for q(r) = 1 everywhere, Eq. (1) is a
discretized diffusion equation, which for large N , disregarding
“e-o” oscillations, has a Gaussian solution

Z̃ (r, r0, N ) ∼ exp

[
−d(r − r0)2

2N

]
. (2)

In the presence of repulsive boundaries, such as hard walls with
q = 0, the solutions tend to decrease towards the walls, while
increasing for attractive potentials with q > 1. However, an ap-
propriate combination of an attractive layer of strength w and a
repulsive surface can create a neutral condition. In Appendix A
we show that such neutrality is achieved when Eq. (1) admits
a uniformN -independent solution Z̃N = Z̃N+1 = ψuni(r) = 1
at any point in space, where q(r) > 0. In particular, for a flat
layer in d = 2 the critical value is w = wc = 4

3 . For a general
flat surface of dimension D = d − 1, perpendicular to one of
main axes of d-dimensional hypercubic lattice,

wc = 2d/(2d − 1), (3)

is a well-known result from Rubin [20,21], also derived in
Appendix A. For w = wc, the wall becomes “invisible” to the
polymer. In particular, the presence of the wall does not disturb
the free space solution of Eq. (2) in the nonexcluded space, as
can be seen in the Gaussian probability density distribution
obtained in Fig. 1(c).

As discussed in detail in Ref. [18], under certain conditions,
such as with a slow variation ofV th, a continuum limit of Eq. (1)
can be obtained [22]. Rewriting Eq. (B1) from Appendix B,
the simplified continuum form is

∂Z̃
∂N

= c∇2Z̃ − U Z̃, (4)

with a dimensionless temperature-dependent potential U (r) =
βV th(r) and a lattice-dependent constant c. This equation is
reminiscent of the Schrödinger equation, with N as imaginary
time. The long “time” limit is now governed by the ground
state of the operator on the right-hand side of Eq. (4). In
Appendix B we analyze a particular case of U (r) representing
a short-range attractive potential near a (d − 1)-dimensional
repulsive wall, and compare the results with the discrete model
from Appendix A. Quantitative analysis of general properties,
as well as similarities and subtle differences between the
N -dependent solutions in continuum and discrete models, can
be found in Appendix C.

In the presence of a repulsive wall with an attractive layer
on a lattice (or attractive well in the continuum) the transition
between delocalized and adsorbed states occurs at a critical
wc > 1 (or for a sufficiently shallow, yet finite depth of of
the well in the continuum). Since both Boltzmann weight w

and the dimensionless potential U depend on the temperature
T , we can treat changes of these variables as changes in the
temperature for fixed potentials. Thus, the critical potential
will correspond to some adsorption transition temperature
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FIG. 1. Reduced partition function Z̃ (r, r0, N ) for a RW that starts at the point r0 = (0, 0) as a function of its end position r for N = 105

on a square lattice. The excluded half-space is bounded by an attractive layer characterized by Boltzmann weight w, whose value is indicated
above each picture. All plots have the same vertical scale centered at the anchoring point. Horizontal scales of (a), (b), and (c) are the same as
the vertical scale, while in (d) it is stretched for clarity. Plot (a) corresponds to unweighted exclusion of half the space (w = 1). In (b), w is just
0.033 below the localization transition point, but the plot is very similar to (a). Plot (c) shows the Gaussian distribution at the transition point.
Plot (d) shows a state for w above the critical point that is adsorbed to the boundary.

Ta , with small deviations from criticality proportional to
δT ≡ Ta − T . Below Ta , the polymer lingers in a layer of
characteristic width (localization length) ξ . (While above Ta

the polymer is not localized, a corresponding length ξ serves
as a crossover scale to the region where the attractive potential
is no longer relevant.) Close to the transition temperature, this
length diverges as ξ ∼ δT −ν , with ν = 1 for a planar surface
of dimension D = d − 1. [See Eq. (B4) in Appendix B, and
the numerical confirmation in Appendix C.] The thickness of
the adsorbed polymer layer in Fig. 1 decreases rapidly with
increased attraction, and is only a few lattice spacings thick
for w = 1.8. For w � 2 the RW is practically one dimensional
(1D) with most of the weight concentrated in the attracting
layer. We note that in the absence of the repulsive wall (no
excluded region), the critical depth is zero (i.e., wc = 1), and
localization occurs for any attractive potential. Nonetheless,
the qualitative behavior near transition remains the same.

The universality of critical behavior near the transition is
best analyzed in the continuum limit. Consider a potential
that attracts 0 � C � d coordinates of the walker to the
origin. Such an attractive manifold of dimension D = d − C

can be modeled in the continuum by a potential −U (r) =
uCδ(x1)δ(x2) . . . δ(xC ). [In d = 3 dimensions, attraction to a
surface (D = 2), line (D = 1), or point (D = 0) are described,
respectively, with C = 1, 2, or 3.] A rescaling of Eq. (4) by
r → br and N → b2N (consistent with νRW = 1

2 ) leaves the
diffusion term invariant but scales the potential to

uC → b2−CuC ⇒ d uC

d ln b
= (2 − C)uC. (5)

This scaling provides the first term in a renormalization group
(RG) flow [23–26]. A weakly attractive potential grows in

strength (forC < 2) to unity at a scale ξ ∝ u−ν
C , with the critical

exponent ν = 1/(2 − C).
Regarding the manifold dimension C as a continuous

variable, Eq. (5) shows that uC grows under scaling for C < 2,
but decays to zero for C > 2. This is a well-known result
that even weak attraction or repulsion for C < 2 is relevant,
leading to bound or scattered states. A numerical illustration
of this is presented in Fig. 1 for a lattice implementation of
random walks on a square lattice (d = 2) with an attractive line
(D = 1) of points with weight w. Superficially, it may appear
that the lattice system depicted in Fig. 1 is quite different from
the continuum potential u1δ(x), as the lattice RW is excluded
from an entire half-space with x < 0. However, this exclusion
merely serves to shift the critical value separating scattered and
localized states from w = 1 (u1 = 0) to wc = 4

3 . At the critical
point, such as depicted in Fig. 1(c), the end point of the RW
spreads diffusively (as a half Gaussian), as would be the case
for u1 = 0 in the continuum treatment.

III. LOCALIZATION TO A CORNER

Figure 2 depicts what happens when the boundary of Fig. 1
is folded to exclude quarter of the space. The shape of the
distribution of the end point of the RW is naturally modified,
but a somewhat surprising element is that at the critical value
of wc, the end point does not diffuse as a Gaussian but remains
localized to the corner [compare Figs. 1(c) and 2(c)]. A detailed
analysis confirming this feature is presented in Appendix D.

The reason for this behavior can be gleaned by examining
our implementation of the excluded points and the attractive
layer on a discrete lattice. Every point of the attractive layer on a
flat surface, depicted in Fig. 3(a), including the blue anchoring
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FIG. 2. Reduced partition function Z̃ (r, r0, N ) for a RW that starts at the corner of a repulsive wedge r0 = (0, 0) as a function of its end
position r for N = 105 on a square lattice. The excluded quarter space is bounded by an attractive layer with Boltzmann weight w. (The value
of w is indicated above each picture.) The horizontal and vertical scales are equal to each other in every plot. However, each plot has its own
scale selected for clearest view of the distribution. Plot (a) corresponds to unweighted exclusion (w = 1). While in plot (b) w is 0.033 below
the localization transition point in Fig. 1(c), the probability is only slightly distorted form that in (a). At this “transition value” of wc = 4

3 , the
density becomes rotationally symmetric, but clearly remains bounded to the corner. For the stronger value of w in plot (d), the walker while
centered at the corner is almost confined to the one-dimensional edge.

point, has three nearest nonexcluded neighbors. However, in
case of layers bounding a rectangular wedge, either from
outside [Fig. 3(b)] or from inside [Fig. 3(c)], the immediate
environment of the corner (anchoring) point is distinct, with
four or two neighbors, respectively. In Appendix D we argue
that in the situation, the mere excess or deficiency in the
number of nearest neighbors generates an effective attractive
or repulsive weight for the corners in Figs. 3(b) and 3(c),
respectively. In fact, for w � 2 the entire behavior of a RW can
be viewed a 1D walk along the edge with modified weight at
the corner point. (This correspondence to 1D walks is explored
in detail in Appendix D.)

In view of differences in the neighborhood of corner points
in different lattice implementations, it is natural to assign to
them a weight v that may differ from w. As in the case of a flat
surface, we may inquire what choice of parameters (w, v) will
create a neutral potential that admits a uniform solution ψuni(r)
to Eq. (1). In Appendix A we provide a general expression
for any lattice implementation of Eq. (A9). For the geometry
in Fig. 3(b) this “neutral condition” corresponds to (wc, vc ) =
( 4

3 , 1). Note that the critical value of w does not change since it
represents attraction along the entire wall, while the Boltzmann
weight of the corner does decrease to 1, i.e., to V th = 0, to
compensate for the effective attraction caused by extra nearest

(a) (b) (c)
FIG. 3. The excluded sites (black circles) are bounded by an

attractive layer (yellow circles) with Boltzmann weight w. The
anchoring point is indicated by a blue circle, and may in principle
be assigned a different weight v. The above examples include (a)
straight boundary, and (b) outside and (c) inside a rectangular wedge.

neighbors. Indeed, at this particular point the N -dependent
reduced partition function has a Gaussian shape as depicted in
Fig. 4. This shape is very different from the RW localized to
the corner at w = v = 4

3 , as depicted in Fig. 2(c).
For a RW anchored outside a rectangular corner, as in

Fig. 3(c) the neutral point, according to Eq. (A9), is (wc, vc ) =
( 4

3 , 2). As in the previous case, the critical value of w re-
mains unchanged. However, the critical value of v increases,
corresponding to increased attraction (more negative V th) to
compensate for effective repulsion caused by a small number
of nearest neighbors.

FIG. 4. Reduced partition function Z̃ (r, r0, N ) for a polymer
that starts at the apex r0 = (0, 0) of a rectangular wedge (with full
opening angle θ0 = 3π/2) depicted in Fig. 3(b) as a function of the
polymer end position r for N = 105 on a discrete lattice at the neutral
point (wc, vc ) = ( 4

3 , 1). Outside the wedge the distribution has an
undisturbed Gaussian shape.
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The above problem exemplifies manifolds of different di-
mensionalities (edge and corner) characterized by independent
Boltzmann weights w and v. In the continuum limit, this
system can be mimicked by a potential −U (r) = u1δ(x1) +
u2δ(x1)δ(x2), where (positive) u1 and u2 represent the potential
strengths of attraction to the wedge and corner, respectively.
Building upon Eq. (5), under RG these components (with
C = 1 and 2, respectively) will behave as

d u1

d ln b
= u1 + O

(
u2

1

)
, (6)

d u2

d ln b
= u2

2 + O(u1u2). (7)

Note that simple scaling as in Eq. (5) suggests that u2 does
not change under scaling (a marginal operator). However, as
is well known in quantum mechanics, any attractive potential
in two dimensions leads to a bound state. This implies that
a positive u2 is marginally relevant, captured by the added
positive quadratic term [whose coefficient can be set to one by
appropriate rescaling of U (r)]. While not explicitly included,
we have also anticipated that the lower dimensional potential
u2 does not affect RG of the higher dimensional potential u1,
but that the reverse is allowed.

The point u1 = u2 = 0, corresponding to free diffusion,
is thus unstable in two directions and corresponds to a
multicritical point. In the discrete implementation, this point
corresponds to (w, v) = ( 4

3 , 1) outside a rectangular wedge
and (w, v) = ( 4

3 , 2) inside a rectangular wedge. We note that
a similar special point can be achieved for any collection of
excluded points (obstacles) for the discretized RW with the
choice of qc(r) from Eq. (A9). In the continuum limit, this
corresponds to reflecting boundary conditions at the obstacles,
as noted in Ref. [18].

IV. PHASE DIAGRAMS

We undertook a detailed numerical analysis of the phase
diagrams of a RW interacting with the surfaces depicted in
Fig. 3, obtained on varying both the weight w of the sites
adjacent to the walls and the weight v of the corner and anchor
points. Technical details of the numerical approach can be
found in Appendices C, D, and E. This study produced the three
phase diagrams depicted in Figs. 5, 6, and 7, corresponding to
the geometries in Figs. 3(b), 3(a), and 3(c), respectively. These
diagrams describe the behavior of RWs at various points of the
(w, v) parameter space. In all cases, for w > wc = 4

3 the RWs
are localized at the walls, and for most values of w there is a
critical vc(w) such that for v > vc the polymer is localized to
the corner or anchor point, with no such localization for v < vc.
Thus, depending on the presence or absence of localization to
the corner or anchor site, or to the wall, there are four possible
phases. The caption of Fig. 2 explains the colors used to denote
each of the four phases in all the diagrams. In the remainder
of this section, we explain the details of the phase diagrams
for each of the three geometries depicted in Fig. 3, casting the
results in the more general perspective of phase transitions.

We first examine the phase diagram of a RW anchored to
the corner of a rectangular wedge [quarter excluded space as in
Fig. 2 and Fig. 3(b)] (see Appendix E for details). The presence

FIG. 5. Phase diagram of a RW anchored at the apex of an
excluded rectangular wedge bounded by an attractive layer weighted
by w, and a corner site weighted by v. There are four phases: I (pink),
localized to the corner but not to the wall; II (white), delocalized from
both the corner and the wall; III (light brown), localized to the corner
and the wall; IV (light green), localized to the wall but not the corner.
Red circles represent the numerically measured transition between
phases I and II, while the green circles represent the numerically
measured transition between phases III and IV; localization to the
wall, which occurs for all w > 4

3 . The brown circle represents the
multicritical point (see text). The dashed cyan line v = w corresponds
to the trajectory of simulations in Sec. III. The asymptotic behavior
of the transition between phases III and IV at large w and v, as
theoretically calculated in Appendix F, is indicated by the black
dashed line.

of two relevant operators (albeit one marginally so) results in
four possible phases coming together at a multicritical point
as indicated in Fig. 5. The simplest characterization of the
phases in this figure is whether or not there is localization
to the boundary, which occurs for all w > wc, corresponding
to u1 > 0. Integrating Eq. (6), the corresponding localization
length diverges on approaching the boundary as ξ1 ∝ u−1

1 ∝
(w − wc )−1.

The behavior of the localization length to the corner is more
complex. When u1 = 0, an attractive u2 does lead to a bound
state with a length scale ξ2. Consistent with the marginality
of u2 in Eq. (7), this length scale diverges with an essential
singularity as ln ξ2 ∼ u−1

2 upon vanishing attraction. A very
small negative u1 (repulsive) will grow to [following Eq. (6)]
u1ξ2 over this scale. We expect localization to the corner
to remain unmodified by such a repulsive wall if |u1|ξ2 	
1, suggesting a phase (or crossover) boundary of the form
ln |u1| ∝ |u2|−1. While such essential singularity is hard to pin
down, the corresponding phase boundary in Fig. 5 does indeed
approach u1 ∼ (wc − w) quite sharply as u2 ∼ (v − 1) → 0.
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FIG. 6. Phase diagram of a RW starting from a point of weight
v on a straight boundary of weight w, as depicted in Fig. 3(a). The
multicritical point is at vc = wc = 4

3 , with the resulting phases and
other notations as in the caption of Fig. 5.

On approaching the boundary between phases I and II, ξ2 di-
verges. We expect this divergence to be asymptotically similar
to that of the bound state confined by hard boundary conditions
(u1 → −∞). Such a delocalization transition was studied in

FIG. 7. Phase diagram of a RW anchored at a corner of weight
v inside a rectangular wedge with boundary points of weight w, as
depicted in Fig. 3(c). Phases and other notations are as in the caption
of Fig. 5. The theoretically expected multicritical point is at vc = 2.
The numerical results indicate that a reentrant corner localized phase
as w is increased for v < vc, persisting to v = 0 (inset).

Ref. [18]. Interestingly, the exponent governing the divergence
of ξ2 was found to vary continuously with the angle of the
confining wedge. Within region IV of the phase diagram of
Fig. 5, the RW is localized to both the edge and the corner. The
RW is thus effectively constrained to move in one dimension
(near the edge), experiencing an additional attraction to the
corner. As this attraction weakens, the RW delocalizes from the
corner, entering phase III. Taking advantage of the reduction in
dimensionality, the phase boundary between regions III and IV
can be computed asymptotically, as described in Appendix F.
As a one-dimensional bound state, the localization length to
the corner site diverges with exponent of unity on approaching
this boundary.

We also numerically computed phase diagrams for the other
two geometries depicted in Fig. 3. The case of the favored
anchored site along the straight boundary, depicted in Fig. 6,
is rather simple. The anchoring site now has the same number
of neighbors as any other site along the edge, and thus vc =
wc = 4

3 . For any w > wc, the RW is bound to the edge and is
effectively one dimensional. If the anchoring point has larger
weight than other points on the edge, it will localize the one-
dimensional RW. Thus, the III/IV phase boundary coincides
with the line v = w.

Finally, the phase diagram for the case of Fig. 3(c) (RW
confined to the inside of a rectangular wedge) is depicted
in Fig. 7. According to previous arguments, the multicritical
point should occur for vc = 2, as was found from Eq. (A9).
Remarkably, the numerical results indicate that the corner-
localized phase can persist for v < vc, all the way to v = 0. As
indicated in the inset, there is still a sliver of phase IV emerging
from the multicritical point, although its boundary plunges to
v = 0. A reentrant III/IV boundary appears for larger values
of w, and asymptotes to v = w − 1

4 , in agreement with the
arguments in Appendix G.

V. DISCUSSION

In this work we considered coexistence and competition
between localized phases of (weighted) RWs to manifolds
of distinct dimensions. Different weights to points on each
manifold can be either assigned externally, or appear as a result
of discretization leading to distinct neighborhoods. The distinct
weights can lead to attraction or repulsion that may lead to
localization or depletion in the vicinity of the corresponding
manifold. It is, however, possible to artificially assign weights
so that the manifolds become invisible to the RWs that then
perform simple diffusion. For RWs on a lattice, this is achieved
by the choice of weights q(r) = μ/μ(r), where μ(r) is the
number of neighbors of point r in a lattice of coordination
number μ. (In the continuum, a related condition is achieved
by imposing reflecting boundary conditions at the surfaces of
obstacles [18].) This choice of weights corresponds a special
point in parameter space that serves as a multicritical point for
manifolds of dimensions D = d − 1 and d − 2 studied in this
work.

As discussed in Appendix B, ideal polymers provide a
physical realization of RWs, which can be attracted or repelled
by the various objects to which they are anchored. Several
examples of polymers attached to scale invariant obstacles (as
examples of manifolds without a characteristic macroscopic
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)d()c(

(b)(a)

FIG. 8. Hard obstacles (gray) bounded by manifolds of dimension
D two (yellow), one (blue), or zero (magenta) in d = 3.

scale) are depicted in Fig. 8. The wedge in Fig. 8(a) and the
ridge in Fig. 8(b) are in close correspondence with the examples
studied in Figs. 3(b) and 3(a), respectively. For a RW, the
additional (invariant) third direction is irrelevant, while for a
realistic polymer the self-avoiding interactions are expected
to modify the phase diagram from those in Figs. 5 and 6
quantitatively, but not qualitatively. The apex of the cone in
Fig. 8(c), or the corner of a cube in Fig. 8(d) provide realizations
of manifolds of dimension D = 0. While these shapes are a
reasonably realistic depiction of tips of atomic microscopy
apparatus to which polymers can be attached, the self-avoiding
condition renders the analogy to RWs problematic at these
points. As a theoretical model, however, the cube in Fig. 8(d)
offers the possibility of exploring a phase diagram in the
presence of competing scale invariant manifolds of three
distinct dimensionalities.
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APPENDIX A: WEIGHTED RANDOM
WALKS ON LATTICES

Equation (1) admits an iterative solution to the problem of
weighted RWs on a lattice. Regarding Z̃ (r′, r0) as a column
vector, this equation is equivalent to matrix multiplication

Z̃N+1 = MZ̃N, (A1)

with matrix

M (r, r′) = q(r)

2d
δ̃r,r′ , (A2)

where δ̃r,r′ = 1 if r and r′ are neighboring sites, and 0,
otherwise. As mentioned in the main text, we can divide lattice
sites into “even” (“e”) and “odd” (“o”) sublattices, depending

on whether the sum of their coordinates is even or odd. Note
that the matrix recursion equation indicated by Eqs. (A1) and
(A2) connects “e” sites to “o” sites, while connections from
“e” to “e” or “o” to “o” are absent. By applying M to Eq. (A1)
we wind up with

Z̃N+2 = M2Z̃N, (A3)

with M2(r, r′) = q(r)
∑

r′′ q(r′′)δ̃r,r′′ δ̃r′′,r′/4d2. Every nonva-
nishing term in this matrix sums over sites that are nearest
neighbors of nearest neighbors, i.e., second neighbor sites as
well as the site itself. Obviously, the matrix M2 connects sites
of the same parity, while its “o-e” elements are zero.

Note that the matrix M2 is composed of two disconnected
submatrices. We can thus find eigenstates ψe(r), with all “o”
elements set to zero, that satisfy

λ2ψe(r) = M2(r, r′)ψe(r′). (A4)

Since all elements of the “e-e” submatrix are positive, it
follows from the Peron-Frobenius theorem [27] that the largest
modulus eigenvalue λ2 is real positive and the eigenstate is
nondegenerate. We denote this as the “ground state” and define
its energy as E0 via λ2 = e−2E0 . By applying M to Eq. (A4)
one more time we note that ψo(r) ≡ M (r, r′)ψe(r′) is also
an eigenvector with the same eigenvalue λ2, but it has only
nonvanishing “o” elements. Each eigenvalue λ2 of Eq. (A4)
corresponds to two eigenvalues ±λ of matrix M itself, with
eigenvectors ψ = ψe ± (1/λ)ψo.

In a more familiar form, the spectral structure of M in
Eq. (A2) can be understood by considering a slightly modified
matrix

M∗(r, r′) ≡
√

q(r)q(r′) δ̃r,r′/2d, (A5)

which is defined for r and r′ on the permitted sites (with q > 0),
acting on Z̃∗

N (r) ≡ Z̃N (r)/
√

q(r) and reducing Eq. (A1) to

Z̃∗
N+1 = M∗Z̃∗

N . (A6)

The real symmetric matrix M∗, composed of non-negative
terms, has a spectrum of real eigenvalues.

For numerical studies of polymers near attractive wells and
repulsive surfaces, it is convenient to discretize to a lattice. We
will consider a d-dimensional hypercubic lattice, with lattice
spacing �. Configurations of the polymer are now represented
by N -step RWs, with a potential V th assigned to every lattice
site, for a Boltzmann weight q(r) = exp(−βV th ). In free space
q = 1, while on the repulsive wall q = 0. Inside, the well
of depth V th = −V th

0 , it will have weight w = exp(βV th
0 ).

The reduced (N + 1)-step partition function is now deduced
recursively, exactly as in Eq. (1), with starting condition
Z̃ (r, r0, 0) = q(r0)δr,r0 .

Knowledge of all the eigenfunctions ψα , and their “ener-
gies” Eα corresponding to eigenvalues λα , enables reconstruc-
tion of the reduced partition function

Z̃ (r, r0, N ) =
∑

α

ψα (r)ψ∗
α (r0)e−EαN . (A7)

For simplicity of discussion, we shall consider even N and,
consequently, the above discussion will only include the even
eigenstates of M2. If the function V th represents a potential
with attractive parts, we may have bound states with discrete
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eigenvalues Eα < 0, and, if there is a gap between the ground
and the first excited state, for large N the solution will be
dominated by the ground state α = 0, as

Z̃ (r, r0, N ) ≈ ψ0(r)ψ0(r0)e−E0N . (A8)

Since Z̃ is positive, the ground-state function ψ0(r) cannot
alternate in sign and can be chosen as being non-negative
everywhere. When localized to an attractive potential, the
eigenstate ψ0(r) will be highly peaked within some distance ξ

near the potential. Since Z̃ is proportional to the probability to
find the RW end at r, this means that a “polymer” will remain
in close proximity of the attractive region.

On an infinite homogeneous lattice q(r) ≡ 1 and the eigen-
state of M corresponding to λ0 = 1 or E0 = 0, is the uniform
state ψuni(r) = 1 at all sites. This can be verified by direct
substitution of ψuni(r) to Eq. (A1) or (A3). In the presence
of boundaries with attractive layers we can consider the same
equations and the same state ψuni, but with coordinate r now
restricted only to allowed lattice sites [where q(r) > 0]. The
uniform solution will still be an eigenstate with λ = 1 provided
1 = q(r)

2d

∑
r′ nn of r 1 = q(r)μ(r)/2d, where the summation is

performed only on the permitted sites r′ neighboring any
permitted site r, and μ(r) is the number of such r′s. So, selected
critical values

q(r) = qc(r) ≡ μ/μ(r) = 2d/μ(r), (A9)

of the attraction strengths support the uniform solution as the
ground state of the system. The last part of Eq. (A9) refers
to a d-dimensional hypercubic lattice; it is preceded by the
result for a general regular lattice of coordination number μ.
In a scale-free system, such as half-plane, we also expect the
long-wavelength eigenstates to resemble those of the infinite
uniform lattice. If so, the large-N solution for Z̃N will be
given by Eq. (2). For a planar homogeneous attractive layer
of strength w on a repulsive wall, such as depicted in Fig. 1,
Eq. (A9) simply reproduces Eq. (3), which for d = 2 gives
wc = 4

3 .

APPENDIX B: CORRESPONDENCE TO POLYMERS
AND QUANTUM BOUND STATES

Random walks provide an idealized model of polymers,
with localization to an attractive potential related to the
presence of bound states for a quantum particle [28]. For a
walk (polymer) with mean squared step size �2, moving in a
slowly varying potential V th(r), replacing spatial differences
with partial derivatives, and for large N setting Z̃ (r, r0, N +
1) − Z̃ (r, r0, N ) ≈ ∂Z̃/∂N , transforms the discrete Eq. (1) to
the continuous form [22]

∂Z̃
∂N

= �2

2d
∇2Z̃ − βV thZ̃ . (B1)

The above equation is supplemented with the initial condition
Z̃ (r, r0, 0) = δd (r − r0). Equation (B1) is analogous to the
Schrödinger equation for a quantum particle in imaginary time
N . The mass m, and the potential V q, of the corresponding
quantum particle satisfy dβV th/�2 = mV q/h̄2 (see Ref. [18]
for additional details).

For quantitative analysis of a polymer in a potential “well,” it
is convenient to use dimensionless coordinates r′ = r/a where

a is the typical linear dimension of the well. In terms of the
Laplacian in dimensionless coordinates ∇′2, the dimensionless
potential V ≡ 2dβa2

�2 V th, and rescaled polymer length N ′ ≡
�2

2da2 N , the reduced partition function satisfies

∂Z̃
∂N ′ = ∇′2Z̃ − V Z̃ ≡ −H Z̃. (B2)

In what follows, we omit the prime in coordinate notation, and
measure distances relative to the width a. The eigenvalues E′

α

of H are related to those in Eq. (A7) in the same way as the
potentials.

It is well known in quantum mechanics that a purely
attractive potential in dimensions d = 1 or 2 always has at
least one bound state [29,30], while in d > 2 the presence or
absence of bound states depends on the strength and shape of
the potential. In fact, if d is viewed as a continuous variable it
can be shown [31] that the property of always having a bound
state disappears immediately above d = 2, in agreement with
the scaling analysis in Eq. (5). For the polymer, the relevant
dimension C is the difference between the space dimension
d and the dimensionality D of the attracting manifold. For
example, a three-dimensional ideal polymer is always bound
to a planar attractive layer.

The above results do not apply to potentials with both
repulsive and attractive parts. For instance, a 1D potential
representing an attractive layer on a repulsive wall,

Vwall(x) =
⎧⎨
⎩

+∞ for x � 0,

−V0 for 0 < x < 1,

0 for x � 1,

(B3)

may have one or more bound states for sufficiently large V0,
but for V0 < Uc = π2/4 does not support any [32]. Since
the dimensionless potential V0 depends both on temperature
T , as well as the strength of the actual potential V th, there
is a critical value T = Ta for the adsorption transition of
ideal polymers to a surface covered by an attractive layer.
Bound state eigenfunctions in the potential of Eq. (B3) decay
exponentially as e−qx outside the well, where q depends on
the potential depth V0. For an attractive potential V0 slightly
deeper than the critical value Uc, i.e., for small δV0 = V0 − Uc,
only one bound state will be present, with q ≈ δV0/2. For
sufficiently large N , the state of the polymer is governed by
the ground state, its spatial extent limited by the localization
length

ξ = 1/q = 2/δV0 ∼ 1/(Ta − T ), (B4)

in agreement with the scaling result of Eq. (6).
For completeness, we note that for an ideal polymer in

d dimensions, adsorption to a (d − 1)-dimensional repulsive
wall covered by an attractive layer is again described by the
potential Vwall(x1) in Eq. (B3), now depending only on the
coordinate x1 perpendicular to the surface. The eigenfunctions
of H behave as ψk‖,α = exp[ik‖ · x‖]gα (x1), where gα (x1)
is the eigenstate of the 1D problem, and the corresponding
eigenvalues (energies) are k2

‖ + Eα . While gα represents a
spectrum that is in part continuous (for Eα > 0), and (possibly)
in part discrete (for Eα < 0, if such states are present),
the spectrum of exp[ik‖ · x‖] is continuous. For a polymer
anchored to (0, x‖0), coordinates parallel to the surface spread
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FIG. 9. Mean squared end-to-end distance perpendicular to the
wall (dashed line), parallel to the wall (dotted-dashed line), and their
sum (solid line), divided by polymer length of N = 104 as a function
of the weight w of the attractive layer.

diffusively, distributed exp[− 1
2 (x‖ − x‖0)2da2/�2N ]. The co-

ordinate perpendicular to the surface behaves as in the 1D case
discussed above, becoming localized (adsorbed) in case of a
bound state.

The discrete Eq. (1) coincides with the continuum Eq. (B1)
only in the limit of a weak potential with small variations
between adjacent lattice sites. This is certainly not the case for
a typical lattice simulation in which the geometrical features
are reduced to the bare minimum, e.g., the attractive layer
represented by a single row of weight w, as in this paper. Since
the attractive layer width a now coincides with the monomer
size �, we can only expect qualitative similarity between the
solutions of Eqs. (1) and (B1). For the discrete problem of an
attractive flat layer of dimensionD = d − 1, we obtainedwc =
2d/(2d − 1) in Appendix A, in agreement with the result of
Rubin [20,21]. For a proper comparison between these discrete
values, and Uc = π2/4 found in the continuum, we will assume
that a = � and compare wc with exp(Uc/2d ). The former
produces wc = 2, 4

3 , 6
5 for d = 1, 2, 3, respectively, while

the latter produces 3.43, 1.85, 1.51, respectively. These are
remarkably close results, considering the extreme differences
between the continuous and discrete models.

APPENDIX C: ATTRACTIVE LAYER ON A FLAT SURFACE

Figure 3 depicts one flat repulsive surface, and two rect-
angular repulsive wedges, covered by an attractive layer of
weight w. While later we allow for the corner site, to which
the polymer is anchored, to have a different weight v, we
first consider the one parameter case of v = w. The expected
[20,21] localization transition at wc = 4

3 for a straight surface is
easily confirmed numerically: Fig. 9 shows the w dependence
of the components of the mean squared end-to-end distance. In
the absence of the attractive layer for w = 1, the mean squared
distance of the component parallel to the wall is R2

‖ = N/2,

10−2 10−1

w −wc

101

102

103

R
2 ⊥

N = 103

N = 4×103

N = 7×103

N = 104

Slope (-2)

FIG. 10. Logarithmic plots of the mean squared end-to-end dis-
tance perpendicular to the wall as a function of the attractive layer
weight w, for several polymer lengths N . The dashed line of slope
−2 indicates the expected critical behavior near wc for infinite N .
Finite values of N cut off the critical divergence. [For bottom to top
graphs (solid lines) N increases.]

corresponding to a 1D RW of N/2 steps along the wall.
(This relation is exact even for small N .) For large N , the
probability distribution of the component perpendicular to the
wall is expected to behave as x1 exp(−x2

1/N ). This leads to
R2

⊥ = N asymptotically as N → ∞; even for N = 104 this
value is correct up to a few percent. In the continuum limit
R2

‖ is completely independent of w. In the lattice system, the
value of R2

‖ remains unchanged in most of the range w < wc.
As w → wc, R2

⊥ drops from N to N/2, and the distribution of
the end point approaches a pure Gaussian as in Eq. (2) (with
R2

⊥ = R2
‖ = N/2). Consistent with Rubin’s prediction, at wc

the configurations of the polymer resemble those of a RW near
a reflecting boundary.

For w > wc the polymer is adsorbed to the surface, and R2
⊥

decays rapidly with increasing w. For infinite N and close to
wc, R2

⊥ is expected to diverge as (w − wc )−2. This is confirmed
in Fig. 10, while due to finite-size effects for 0 < w − wc <

1/
√

N this divergence is cut off, terminating with R2
⊥ = N at

w = wc. This cutoff is also clearly visible in Fig. 10.
Interestingly, for w > wc the value of R2

‖ begins to increase
contrary to the behavior of the continuous model: For large w,
the walk becomes confined to the attractive layer, becoming a
one-dimensional RW for w → ∞ with R2

‖ = N . This results
in a nonmonotonic behavior for the total squared end-to-end
distance R2 = R2

⊥ + R2
‖ as observed in Fig. 9.

Figure 11 depicts the dependence of the reduced partition
function Z̃tot on the polymer length N , for several values
of the weight of the attractive layer. For w = wc we expect
Z̃tot = 1, as if the wall is completely absent. For w > wc, in
the adsorbed phase, Z̃tot starts increasing with N , eventually
growing as an exponential, while for w < wc, the value of
Z̃tot decreases, eventually approaching the power-law decay
(∼N−1/2) characteristic of a repulsive surface [33]. Note the
extreme sensitivity of the large N behavior of Z̃tot to w, which
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FIG. 11. Logarithmic plots of the dependence of the total reduced
partition functions Z̃tot on the polymer length N for several values of
w close to wc = 4

3 . (For bottom to top graphs w increases.)

enables accurate numerical identification of the transition
point.

Figure 1 depicts the distribution of the end point r, pro-
portional to Z̃ (r, r0, N ), for several strengths w. Figure 1(a)
corresponds to no added weight with w = 1. As expected
for the continuum case of diffusion with adsorbing boundary
conditions, this leads to a distribution ∼x exp[−(x2 + y2)/N],
with a maximum away from the repulsive wall. As indicated
before, for such a distribution, the mean squared end-to-end
distance is R2 = 3

2N . With increasing w, at fixed N , the point
of maximum approaches the wall. However, for very large
N the distribution is expected to approach the same form as
for w = 1. Indeed, even for w = 1.3 in Fig. 1(b), which is
near the adsorption transition point, its characteristics remain
practically unchanged, resembling the purely repulsive case.
For w = wc = 4

3 the continuum analysis predicts a density
∼exp[−(x2

1 + x2
2 )/N], i.e., a simple Gaussian, as in Eq. (2),

truncated in the middle as seen in Fig. 1(c). Finally, in the
adsorbed phase the polymer forms a narrow layer along the
wall, as in Fig. 1(d) for w = 1.8. In this case, the parallel
component is again a Gaussian distributed like a 1D RW along
the boundary.

APPENDIX D: ATTRACTIVE LAYER ON A WEDGE

The wedge of full opening angle θ0 = 3π/2, discretized
as in Fig. 3(b) with v = w, leads to the polymer end-point
distribution depicted in Fig. 2. As shown in Refs. [34,35], for a
polymer that starts at r0 close to the corner point of a repulsive
wedge, for N � r2

0 and for distances r � r0,

Z̃ (r, r0, N ) ∼ r2/3e−r2/N sin(2θ ′/3), (D1)

where the angle θ ′ is measured from one of the edges. The
preexponential power law increases the mean squared end-to-
end size of the polymer to R2 = (1 + π/2θ0)N = 4

3N , slightly
larger than that of a polymer in free space [34,35]. Figure 2(a)
depicts the probability density of the end-point distribution

102 103 104 105

N
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0.8
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2 /
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w = 1.33
w = 1.34
w = 1.50
w = 2.00
w = 3.00

FIG. 12. Scaled mean squared end-to-end distance R2/N , as a
function of N , for several weights w. In the absence of an attractive
potential (w = 1) the function quickly reaches the asymptotic value
of 4

3 . For w � 1.33, the decay of R2/N with increasing N signals
localization. (For bottom to top of the leftmost parts of the graphs
w = 2.0, 1.5, 3.0, 1.34, 1.33, 1.30, and 1.0, respectively.)

for N = 105, which closely resembles the continuum (D1),
with R2/N within a few percent of 4

3 already at N = 103 (top
curve in Fig. 12). For larger w, yet below wc we expect the
same behavior for sufficiently large N . Indeed, the density
distribution in Fig. 2(b), for w = 1.3 at N = 105, is remarkably
similar to the one at w = 1. The ratio R2/N again increases
with N towards 4

3 , as seen in Fig. 12, with the second from the
top curve already reaching ≈1.24 for N = 105.

Had the lattice realization of Fig. 3(b) with v = w cor-
responded to reflecting boundary condition at w = wc, the
expected density would have been a pure Gaussian as in Eq. (2)
everywhere outside the wedge. However, while the distribution
in Fig. 2(c) is rotationally symmetric, it clearly shows a density
centered at the origin rather than spread out over distances of
order

√
N . A closer examination of the N dependence of R2,

as depicted in Fig. 13, shows that for w = wc and even slightly
below wc, R2 approaches a constant for large N . Clearly, this
differs from the expectations of a simple continuum theory
with reflecting boundary conditions [17].

For w > wc, the polymer clings to the attracting layer, the
width of the adsorbed layer decreasing as for a flat surface.
Already for w = 2, depicted in Fig. 2(d), the polymer is
only a few layers away from the surface. We numerically
measured the mean squared distance of the polymer end from
the surface (by considering separation of the points in the
fourth quadrant of Fig. 3(b) from the vertical edge), and found
that already for w = 5, R2

⊥ ≈ 0.2. For larger values of w,
R2

⊥ decreases as 1/w, as justified by the following argument:
Assuming that Z̃ = b for some b at the boundary, then the
value of Z̃ one lattice constant away is approximately b/2w.
Thus, even for moderate values of w the walk is almost one
dimensional. While a simple 1D N -step walk would spread
over the distance R2

‖ = N , our results indicate a much narrower
distribution of the end position. This is again attributable to
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FIG. 13. R2 as a function of N for several values of w slightly
below wc. While the topmost curve seems to represent a delocalized
state, the three bottom curves approach a limiting value with increas-
ing N . (For bottom to top graphs w decreases.)

an effective attraction to the corner site which has only two
nearest neighbors away from the attractive layer [Fig. 3(b)],
as opposed to a single neighbor for any other boundary site.
Therefore, we effectively have a 1D walk with one slightly
more attractive site. Since the extra attraction is coming from
the sites adjacent to the attractive layer, their relative influence
is O(1/w), and consequently the increase of wdecreases the
contrast between the corner site and other sites along the
edges.

In both the continuum and discrete cases, an attractive site
always leads to a bound state in one dimension. In Appendix F
we solve the 1D discrete problem with the origin given weight
1 + u with u > 0. The ground state behaves as exp(−|x|/ξ )
with the localization length ξ ≈ 1/u for small u [see Eq. (F3)].
The dashed line on Fig. 14 shows the probability distribution of
the end point for such a 1D polymer for u = 1

20 (an exponential
function with ξ = 20). In Appendix F we find the ground state
(stable distribution) of the polymer end point for a 2D problem
of the wedge for w � 1, and show that it corresponds to the
1D problem with 1/u = 4w [see Eq. (F12)]. The solid line
in Fig. 14 shows the normalized probability density of the
polymer end position in the 2D problem with w = 5. It is
also an exponential function with exactly the same width as
in the corresponding 1D problem. The 2D curve is slightly
lower than the corresponding 1D curve because about 5% of
the probability is outside the attractive layer (most of it adjacent
to that layer), and the sum of the probabilities along the layer
is smaller that 1.

In Fig. 15 we compare the localization length ξ , as ana-
lytically obtained for the 1D problem above as a function of
1/u, with the results for the 2D problem calculated from the
logarithmic slope of its numerical solution (as function of 4w).
Additionally, this figure includes

√
R2/2 of the 2D problem as

a function of 4w. The excellent correspondence of these results
demonstrates how closely the 2D system mimics the 1D one.
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FIG. 14. The dashed line depicts the ground state P1D of an ideal
polymer on a 1D lattice with weight 1 + u at the origin for u = 1

20 .
The solid line shows the numerically calculated distribution of the
2D random walker, attracted to the wedge with w = 5. [The graphs
show only the even points corresponding to an even number of steps
N (P1D = 0 at odd positions).]

While the relations in Appendix F become exact for w � 1,
they seem to work well even for the leftmost point in the graph
corresponding to w = 2.

It is interesting to note a nonmonotonic behavior in Fig. 12:
As w increases from 1.33 to 1.5 the graphs plunge down
more rapidly, indicating shorter localization lengths. This trend
is halted at w = 2, and reversed for w = 3, indicating a
longer localization length which continues to grow for even
larger values of w in Fig. 15. This is a manifestation of the
crossover to almost 1D behavior for w � 2 which leads to
weaker 1D localization to the corner with increasing w, from

20 40 60 80
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FIG. 15. Comparison of numerically measured correlation
lengths of a 1D walk with attractive point of weight 1 + u, as a
function of 1/u, and that of a 2D walk localized to a wedge, as a
function of 4w.
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FIG. 16. Numerically measured normalized Z̃ as a function of
distance from the corner, obtained for several values of w with the
weight of the corner site set to 1. (Z̃norm is included only at even
positions, vanishing for odd sites.) For w = 10, the function decays
exponentially with distance from the corner. For w = 100 it deviates
from a simple exponential, while for w = 1000 it closely resembles
a Gaussian, except for a slope discontinuity at the origin.

“2D-like” behavior for w � 1.5 where localization weakens
with decreasing w.

Numerical results for the ground state presented in this
section were obtained by iterating Eq. (1), rather than solving
Eq. (A4), relying on the fact that in the presence of a bound
state the distribution approaches the ground state at sufficiently
large N . For N = 105, a polymer in free space expands over
a distance of

√
N ≈ 320. When the localization length of

the ground state is ξ 	 320, there is no issue with finite N .
However, as ξ ≈ 4w, for w � 80, N = 105 no longer ensures
approach to the ground state. The probability density thus
obtained in the boundary layer, depicted in Fig. 16, does
indeed show an exponential decay with ξ = 40 for w = 10,
but strongly deviates from such for w = 100, due to finite-size
effects. Finally, for w = 1000, the walker is very weakly
bound in its ground state, with an expected localization length
of ξ = 4000. In this case the finite-N distribution does not
resemble the ground state, and looks almost as a Gaussian in
free space, with a slight deviation near the origin, where a
discontinuity in the derivative portends the expectation of a
bound state.

APPENDIX E: PHASE DIAGRAM NEAR A WEDGE

As apparent in Fig. 2(c), the polymer is localized to the cor-
ner for v = w = wc with

√
R2 ≈ 90. Moreover, even slightly

below wc, there is a finite localization length, possibly up to
w ≈ 1.32. As discussed in the text, the “neutral” condition
is only obtained by assigning the corner a weight v �= w. In
an earlier work [18] we explored the behavior of a polymer
anchored to the attractive corner site (v > 1) of a repulsive
wedge (w = 1), finding a transition to a corner-localized state

for v = vc = 2.109. In this Appendix, we discuss the more
general phase diagram in the (w, v) plane, as depicted in Fig. 5.

The model allows for four different phases depending on
whether the polymer is adsorbed (desorbed) to (from) the
corner, and adsorbed (desorbed) to (from) the edge. The
simulations presented in Appendix D were performed along
the line v = w indicated by the dashed cyan line in Fig. 5.

For w < wc the surface attraction is too weak to localize the
polymer. However, as w increases from 1 to 4

3 the critical value
vc of adsorption to the corner decreases since weaker repulsion
from the edge facilitates localization to the corner. The dotted
red line in Fig. 5 represents this localization transition to the
corner. Simulations along v = w in Appendix D indicated the
presence of a localized state until w ≈ 1.32. Thus, the red line
passes slightly to the left of w = wc. By examining the N

dependence of R2 and Z̃tot we located several transition points
between the localized and delocalized state for w < wc and
the results determined this boundary in Fig. 5.

The numerical results in Figs. 11 or 12 or 13 are almost
exact since they are determined by an exact iteration of Eq. (1),
and only minute and well controlled errors are introduced
by the finite-size corrections. The transition points in these
figures are obtained from the asymptotic behavior of various
curves beyond the “small-N” crossovers, which may continue
even to N = 105 and beyond, leading to systematic errors.
Typically, the transition point was located by keeping one of
the parameters fixed (w or v, for small- or large-slope segments
of the transition line, respectively) and changing the other
parameter in small increments. The N dependence of polymer
size or the reduced partition function was measured at each
such point (w, v). Our subjective estimate is that the systematic
errors are of the order of the size of symbols denoting the
transition points.

As discussed in the main text and in Appendix A, a neutral
point is obtained by assigning weights q(r) such that ψuni is an
eigenstate of eigenvalue λ = 1. In accordance with Eq. (A9)
for the excluded (quarter) wedge, this corresponds to (w, v) =
( 4

3 , 1). Indeed, iteration of Eq. (1) for these values leads to a
Gaussian distribution of the polymer end point as depicted in
Fig. 4. We expect this to be the terminal point of the red line
in Fig. 5, and note the almost vertical entrance of this line to
the neutral point.

For w > wc the polymer is adsorbed to the attractive wedge,
but may or may not be localized to its corner. As discussed
in Appendix F [see Eq. (F13)] for large w, the polymer will
delocalize from the corner at v ≈ w − 1

4 . This asymptote is
depicted by a black dashed line in Fig. 5. The green dotted line
depicts this transition as found by examining the numerically
calculated N dependence of R2, as well as by examining entire
distributions of end points for large N . Such distributions
are expected to be peaked at the corner in corner-localized
states, and depleted near the corner, while still clinging to
the surface, in surface-localized states. We found that for
moderate values of w (∼2) the transition appears slightly
(∼0.05) above the v = w − 1

4 asymptote. For small w we
expect the transition line to terminate at the multicritical point
(wc, vc ) = ( 4

3 , 1).
Similar analysis was performed for the other geometries in

Fig. 3. For the straight edge in Fig. 3(a), since the anchoring
point does not differ from the rest of the surface, the neutral
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point is located at (wc, vc ) = ( 4
3 , 4

3 ). At this point, the N -
dependent solution is a pure Gaussian, as in Fig. 1(c). For w <

wc the line separating states bound or unbound to the corner
is depicted by the dotted red line in Fig. 6. It passes through
the point (w, v) = (1, 3.205) found in [18], decreases with in-
creasing w, and terminates at the multicritical point (wc, vc ) =
( 4

3 , 4
3 ). For w > wc, the distribution becomes increasingly 1D

with increasing w. As long as v = w, its neighborhood is no
different from other locations along the surface. For v > w (or
v < w) the anchoring becomes more attractive (or repulsive)
leading to localization (or expulsion). Adsorption to the anchor
point for w > 4

3 at v = w is confirmed numerically at the
dotted green line in Fig. 6.

The phase diagram of a polymer confined to the inside of the
rectangular wedge, as in Fig. 3(c), proved much more difficult
to obtain numerically. When the attractive layer is absent, the
anchor point is well shielded by the repulsive surface, and a
strong attraction of v = vc = 5.776 [18] is needed for localiza-
tion. With increasing w, the red points for vc decrease, ending
at the neural point (wc, vc ) = ( 4

3 , 2) as depicted in Fig. 7. For
large w, the polymer again becomes effectively 1D, and the
corresponding 1D localization is discussed in Appendix G. The
boundary between corner-localized and delocalized states is
found to approach v = w − 1

4 [see Eq. (G7)] for large w, rather
surprisingly coinciding with the asymptotic form [Eq. (F13)]
for a polymer anchored to the corner outside a rectangular
wedge. Numerical results (green dotted line in Fig. 7) indeed
confirm this behavior. The more surprising numerical result
is the reentrant behavior observed upon increasing w. At
w ≈ 1.45 the line reaches v = 0, i.e., when the corner site
is infinitely repulsive.

APPENDIX F: QUASI-1D BEHAVIOR OUTSIDE A WEDGE

Consider an ideal polymer on a regular 1D lattice, with
the weights q(x) = 1 of all sites x �= 0, and q(0) = 1 + u.
With attraction to the origin for u > 0, the 1D problem always
supports a bound state ψ (x), which following Eq. (A4),
satisfies

λψ (x) = q(x)

2
[ψ (x + 1) + ψ (x − 1)]. (F1)

Depending on x, Eq. (F1) takes two forms

λψ (x) = 1

2
[ψ (x + 1) + ψ (x − 1)], for |x| � 1 (F2a)

λψ (0) = 1 + u

2
[ψ (1) + ψ (−1)]. (F2b)

It is easily verified that the ground state is ψ (x) = e−|x|/ξ ,
where ξ is the localization length of the bound state. Sub-
stituting this into Eqs. (F2) leads to λ = (1 + u)e−1/ξ , and
ξ = 2/ ln(1 + 2u). When the attraction is weak, for u 	 1,
the correlation length becomes

ξ ≈ 1/u. (F3)

We are not aware of a solution to Eq. (A4) for the full 2D
problem in Fig. 3(b). However, when the Boltzmann factor w is
very large, the polymer density is concentrated on the attractive
layer, and a perturbative solution is possible, as the values of
the eigenfunction on the adjacent layer are smaller by O(1/w),

and O(1/w2) on the subsequent layer. As such, we focus on the
first two layers, describing the eigenstate by it values ψa (x) on
the attracting layer, and ψb(x) in the adjacent layer, neglecting
further layers where values of the eigenvector are of order
1/w2. In this 1D problem, every layer “a” site with |x| � 1
has one neighbor in layer “b,” while the corner site (x = 0) has
two neighbors in layer “b,” and therefore is effectively slightly
more attractive than other sites. Furthermore, the Boltzmann
weight of the corner site v differs from w. [Self-consistently in
the large w limit, relevant v do not differ from w by more than
a constant, and therefore in the calculation the approximation
O(1/w2), also implies O(1/v2).] It is convenient to rescale the
eigenvalue as w

2 λ ≡ e−E , where w
2 represents the trivial shift

on an attractive layer. For |x| � 1 applying Eq. (A4) to two
layers results in

w

2
λψa (x) = w

4
[ψa (x + 1) + ψa (x − 1) + ψb(x)], (F4a)

w

2
λψb(x) = 1

4
[ψb(x + 1) + ψb(x − 1) + ψa (x)]. (F4b)

Equation (F4b) disregards the presence of the third layer, and
therefore is missing terms of order ψa (x)/w2. It connects ψs
in two layers by ψb(x) = 1

2wλ
ψa (x) + O(1/w2). Substituting

this result into Eq. (F4a) we arrive at

ψa (x)

(
λ − 1

4wλ

)
= 1

2
[ψa (x+1)+ψa (x−1)+O(1/w2)],

(F5)

which closely resembles Eq. (F2a). If we assume that the
ground state is purely exponential, i.e., ψa (x) = e−|x|/ξ , then
Eq. (F5) immediately connects λ and the localization length as

λ − 1

4wλ
= cosh(1/ξ ) + O(1/w2). (F6)

When both w and ξ are large, this relation simplifies to

λ = 1 + 1

4w
+ O

(
1

w2
,

1

ξ 2

)
. (F7)

The corner sites lead to a different set of equations

w

2
λψa (0) = v

4
[2ψa (1) + 2ψb(0)], (F8a)

w

2
λψb(0) = 1

4
{ψb(1) + ψa (0)[1 + O(1/w2)]}, (F8b)

where we noted that the solution is symmetric around the ori-
gin. From Eq. (F8b) we find ψb(0) = 1

2wλ
ψa (0) + O(1/w2),

which when substituted into Eq. (F8) yields

ψa (0)

[
λ − v

2w2λ
+ O

(
1

w2

)]
= v

w
ψa (1). (F9)

Assuming the exponential solution leads to

λ − v

2w2λ
= v

w
e−1/ξ + O(1/w2). (F10)

From Eq. (F7) with Eq. (F10) we find (at leading order)

ξ � 4w. (F11)

By comparing the values of ξ for the 1D problem in Eq. (F3)
with the similar solution in the 2D problem, we establish the
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correspondence

1

u
� 4w, (F12)

relating the strong w regime of the 2D problem to the weak
attraction limit of the 1D problem.

A finite ξ confirms the expectation that a slightly more
attractive corner leads to localization. However, by decreasing
the weight v of the corner we can effectively turn it into a
repulsive potential. By examining the relations between v, w,
λ, and ξ in the limit of large w and v, we may inquire as to
how much v should be decreased to produce ξ = ∞? We find
that this occurs for

v = w − 1

4
+ O

(
1

w

)
, (F13)

with λ as in Eq. (F7). Thus, for large w a slight decrease in v

will delocalize the state from the corner.

APPENDIX G: QUASI-1D BEHAVIOR INSIDE A WEDGE

In this Appendix we employ the same procedure as in
Appendix F to study the polymer inside a rectangular wedge as
in Fig. 3(c) for very large w. We again use a single coordinate x

measured along the boundary from the corner, and use indices
(a, b) to denote the boundary layer or the one adjacent to it.
We will assume that the eigenstate ψ in negligible beyond
these first two layers, and use the same approximations as in
Appendix F.

For |x| � 2 the eigenvalue equations are identical to
Eq. (F4), and for exponentially decaying solutions the same
relations as in Eqs. (F6) and (F7) hold. The corner site (x = 0)
neighbors two sites on the attractive boundary and has no
neighbors on the adjacent layers. Therefore, the equation for
this site is

w

2
λψa (0) = v

4
[ψa (1) + ψa (−1)], (G1)

which assuming a symmetric solution immediately yields

ψa (0) = v

λw
ψa (1). (G2)

The set of equations (F4) for |x| = 1 is now also special: While
Eq. (F4a) remains unchanged, Eq. (F4b) is modified because
the site at x = 1 at layer “b” has two neighbors belonging to
layer “a,” resulting in

w

2
λψa (1) = w

4
[ψa (0) + ψa (2) + ψb(1)], (G3a)

w

2
λψb(1) = 1

4
[2ψb(2) + 2ψa (1)]. (G3b)

Equation (G3b) connects ψs in two layers: ψb(1) =
1

wλ
ψa (1) + O(1/w2). By substituting this result into Eq. (G3a)

and using Eq. (G2), we arrive at

ψa (1)

(
λ − 1 + v

2wλ

)
= 1

2
[ψa (2) + O(1/w2)], (G4)

which, for an exponential solution, relates λ and ξ as

λ − 1 + v

2wλ
= 1

2
e−1/ξ + O(1/w2). (G5)

We begin examination of Eqs. (G5) and (F6) for the case of
v = w � 1. We use Eq. (F7) with Eq. (G5) to find to the first
order that

ξ = 4w. (G6)

Once more, decreasing the weight v of the corner can
effectively make it repulsive. Examination of the relations
between v, w, λ, and ξ in the limit of large w and v regime,
indicates that this occurs at

v = w − 1

4
+ O

(
1

w

)
. (G7)

Thus, for large w a decrease in v by the same amount as in
Eq. (F13) of Appendix F will delocalize the state from the
corner, spreading it along the attractive edge.
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