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Fidelity susceptibility of the anisotropic XY model: The exact solution
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We derive several closed-form expressions for the fidelity susceptibility (FS) of the anisotropic XY model in the
transverse field. The basic idea lies in a partial fraction expansion of the expression so that all the terms are related
to a simple fraction or its derivative. The critical points of the model are reiterated by the FS, demonstrating its
validity for characterizing the phase transitions. Moreover, the critical exponents ν associated with the correlation
length in both critical regions are successfully extracted by the standard finite-size scaling analysis.
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I. INTRODUCTION

Quantum phase transitions (QPTs), which are driven solely
by quantum fluctuations and are characterized by drastic
changes in the ground state, are of great interest for the inter-
pretation of widespread phenomena in physics [1,2]. Over the
past few decades, numerous theoretical methods for detecting
QPTs have been introduced regarding the aspect of quantum
information sciences [3–9]. The ground-state fidelity F [10]
is one of such methods. It measures the overlap between two
wave functions of the same Hamiltonian but at different values
of the control parameter λ. As a result, a notable change in the
fidelity is expected to occur at the transition point λc even for a
finite-size system. However, the fidelity is sometimes chaotic
numerically in that it depends on the increment of the control
parameter and it vanishes exponentially with an increase of
the system size. Therefore, the fidelity susceptibility (FS) χF

[11–13], the derivation of the fidelity with respect to λ, is in-
troduced to eliminate such drawbacks and turns out to be more
powerful. Technically, the FS is nothing but the nontrivial lead-
ing quadratic term of the fidelity, so its divergence at the transi-
tion point is reminiscent of the singularity of the latter. The past
15 years have witnessed the explosive applications of fidelity
and FS to the QPT of various strongly correlated systems
[14–25], including the intricate Berezinskii-Kosterlitz-
Thouless transition [26–28] and the unconventional topologi-
cal phase transition [29–34].

Historically, the plausible evidence of the FS as a probe
for quantum criticality is revealed by the similarity between
the scaling behavior of the FS at the critical point and
that of the second derivative of the ground-state energy,
where the transverse-field Ising model (TFIM) is illustrated
as an example [35,36]. Following standard arguments in the
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scaling theory of a continuous QPT, one obtains that the
FS per site in a d-dimensional system with length L scales
as [37–39]

χF (λ)/Ld ∼ L2/ν−df (|λ − λc|L1/ν ), (1)

where ν is the critical exponent of the correlation length
and f (·) is a scaling function. It is inferred that near the
critical point the scaling expression behaves as χF (λc )/Ld ∼
Lk1 (k1 = 2/ν − d ). Alternately, one may look at χF slightly
away from the critical point at the thermodynamic limit (TDL),
where χF (λ)/Ld ∼ |λ − λc|k2 (k2 = dν − 2). Consequently,
the scaling ansatz in the system exhibiting logarithmic diver-
gences requires that the absolute value of the ratio k2/k1 is the
critical exponent ν [37–39]. The critical exponent ν is usually
calculated numerically because of the absence of analytical
expression for FS. The main obstacle lies in that no algebraic
technique is available to obtain its closed form at finite length.
A breakthrough was made on the single-parameter TFIM
by Damski and Rams in light of several elegant summation
formulas [40–42]. This method, however, is difficult to follow
and can hardly be generalized to a double-parameter XY model
where a quadratic summation is explicitly involved [10,43].
Notably, after a proper symmetry analysis, we find that the
partial fraction expansion method can be used to divide the
quadratic term into two coupled linear terms. As a result, all
the terms are related to a simple fraction or its derivative
(see Appendixes A and B) that can be treated exactly in
principle.

The remainder of the paper is organized as follows. In Sec. II
we introduce the anisotropic XY model in the transverse field
and give the expressions for the FS. In Sec. III the closed
form of the expressions are presented in detail and the critical
exponent ν is calculated analytically by the scaling ansatz.
Section IV is devoted to a summary.
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II. MODEL

We calculate analytically the FS of the one-dimensional
spin- 1

2 anisotropic XY model in the transverse field [44]

Ĥ = −
N∑

n=1

(
1 + γ

2
σx

n σ x
n+1 + 1 − γ

2
σy

n σ
y

n+1 + hσ z
n

)
, (2)

where σα
n (α = x, y, z) is the α component of the Pauli operator

acting on site n, γ is the anisotropy parameter at the xy plane,
and h is the external field in the z direction. The number of
sites N = 2N is assumed to be even for brevity and both
symbols N and N are used throughout the paper. Here a
periodic boundary condition (σN+1 = σ1) is imposed so that
Eq. (2) can be diagonalized exactly via the Jordan-Wigner
transformation. The physical ground state depends strongly on
the proper choice of momentum quantization, which results in
a positive- or negative-parity sector [45,46]. The ground state
could be determined by a competition between the vacuum
states of the two parity sectors at given parameters [45].
Interestingly, the energy gap, obtained from the two states,
shows a rather anomalous behavior [46]. For even N , it
is argued that the physical ground state lies in the positive
sector at least outside the disordered circle h2 + γ 2 = 1. In
the circle, the energy gap vanishes rapidly near γ = 0. So for
simplicity we will only consider the momentum quantization
in the positive sector hereafter. The single-particle energies
are given by �k =

√
ε2
k + γ 2 sin2 k, where εk = cos k − h,

k = (2n − 1)π/N (n = 1, 2, . . . , N) [45,46]. With cos θk =
εk/�k in mind, we have the analytic expressions for the FS
as χ (q )(h, γ ) = 1

4

∑N
n=1(∂θk/∂q )2 with q = h and γ [10].

Consequently, the explicit expressions for the FS with respect
to the two kinds of QPTs (see below) are [10]

χ (h)(h, γ ) = 1

4

∑
k>0

γ 2 sin2 k

[(cos k − h)2 + γ 2 sin2 k]2
(3)

and

χ (γ )(h, γ ) = 1

4

∑
k>0

sin2 k(cos k − h)2

[(cos k − h)2 + γ 2 sin2 k]2
. (4)

Actually, the FS defined above is none other than the diagonal
element of a more general concept, the quantum metric tensor
[47]. The expression for the remaining off-diagonal element is
shown in Appendix C.

As shown in Fig. 1, the model has a richer phase diagram
when compared with the TFIM, a special case of Eq. (2) at
γ = 1. There are four different phases in the (h, γ ) plane,
which are separated by the lines h = ±1 and by the segment
|h| < 1, γ = 0. The corresponding QPTs are referred to as
the Ising transition and the anisotropy transition, respectively.
The Ising critical lines are the boundaries between ferromag-
netic phases and paramagnetic phases, whereas the anisotropy
transition separates the ferromagnets with spins in the x and y

directions. Both Ising and anisotropy transitions share the same
critical exponent ν = 1 [48,49], and we intend to calculate
it analytically according to expressions (3) and (4) in the
following section. There are two fascinating curves in Fig. 1.
The circular curve (h2 + γ 2 = 1, dashed pink line) separates
the regions with oscillatory and nonoscillatory correlations

FIG. 1. Ground-state phase diagram of the anisotropic XY model
in the transverse field at the (h, γ ) plane. There are paramagnetic
phases with opposing orientation along the z direction when |h| > 1
and ferromagnetic phases when |h| < 1. There are two fascinating
curves in the ferromagnetic phases (see the main text) [44].

asymptotic behaviors, while the parabolic curve (γ 2 ± h = 1,
dotted cyan line) is the boundary between commensurate and
incommensurate phases [50]. It is worth mentioning that the
critical exponents at the multicritical points obey a different
universality [51] and is beyond the scope of the present paper.

III. EXACT SOLUTIONS

A. Ising transition

From Eq. (3) we can rewrite the FS for the XY model with
respect to the external magnetic field h as

χ (h)(h, γ ) = γ 2

4(1 − γ 2)2

N∑
n=1

1 − c2
n[

c2
n − 2h

1−γ 2 cn + h2+γ 2

1−γ 2

]2 , (5)

where cn = cos (2n−1)π
N . Hereafter, |γ | < 1 is assumed to avoid

possible ambiguity and we note that our main results remain
unchanged for arbitrary γ . For example, our results are still
valid for |γ | = 1 since the FS is continuous when crossing the
lines. The summation in Eq. (5) is not easy to handle directly
due to the existence of the quadratic terms. To eliminate
them, we here employ a factorization method. It can be found
that when h2 + γ 2 > 1 we can factorize φ(t ) = t2 − 2h

1−γ 2 t +
h2+γ 2

1−γ 2 = (t − λ+)(t − λ−), where λ′
υs (υ = ±) are the real

roots of the equation φ(t ) = 0 and

λυ = h + υ|γ |
√

h2 + γ 2 − 1

1 − γ 2
. (6)

The signs of the two roots λυ are the same and are consistent
with the sign of the field h. In addition, their absolute values
are both larger than 1 so long as |h| �= 1 (otherwise the smaller
one equals 1). When h2 + γ 2 < 1, however, the roots are
complex and the imaginary unit i = √−1 should be involved.
By virtue of the partial fraction expansion of the expression
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1−c2
n

(cn−λ+ )2(cn−λ− )2 , Eq. (5) is recast into the symmetric form

χ (h)(h, γ ) = 1

16(h2 + γ 2 − 1)

∑
υ=±

F (h)
υ , (7)

where

F (h)
υ = (

λ2
υ − 1

)
L′(λυ ) − 2(λυλῡ − 1)

(λυ − λῡ )
L(λυ ), (8)

with ῡ the complementary component of the branch υ

(ῡυ = −1). In Eq. (8), the complex analytic function L(α) =∑N
n=1

1
cn+α

(α ∈ C) is introduced and the odevity of it and its
derivative are utilized as well. The highlight of the paper is
that the closed form of L(α) is discovered, making it possible
to have exact expressions for FS. The mathematical details are
omitted here and are presented in Appendix A; the relation
between L′(α) and L(α) is shown in Appendix B. According
to the formula presented in Appendix A, it is useful to have
gυ = λυ + √

λ2
υ − 1 so that

gυ = h + υpυ

√
h2 + γ 2 − 1

1 − pυ |γ | , (9)

where pυ = pυ (h) is a piecewise sign function of the field h

and branch υ,

pυ =
{
υ, |h| > 1

sgn(h), |h| < 1.
(10)

The relevant correlation length near the critical point reads
ξ = 1/| ln g+| [44], indicating that it is the positive branch of
F (h)

υ (υ = 1) that gives rise to the divergence behavior of the
FS in the TDL. The explicit expression of F (h)

υ is calculated
analytically as

F (h)
υ = N 2gN

υ(
gN

υ + 1
)2 + NCυ

2

gN
υ − 1

gN
υ + 1

, (11)

with the expression

Cυ = pυ

h2 − 1

[
υγ 2h√

h2 + γ 2 − 1
− h2 + γ 2 − 1

|γ |

]
. (12)

We note here the detailed derivations are presented in the
Supplemental Material (SM) [52].

We now consider the FS at special values. When γ = 1, the
XY model is reduced to the TFIM and the FS has the form

χ (h)(h, 1) = N
16h2

×
[ NhN

(hN + 1)2
+ 1

2

(
(h2 + 1)(hN − 1)

(h2 − 1)(hN + 1)
− 1

)]
,

(13)

which agrees with the result by finite sums of hyperbolic
functions [40]. When h = hc, i.e., |h| = 1, the FS is

χ (h)(hc, γ ) =
N 2 − 3−γ 2

2γ
N

32γ 2

+
N

[(
N + 3−γ 2

2γ

)( 1+γ

1−γ

)N + 3−γ 2

2γ

]
16γ 2

[( 1+γ

1−γ

)N + 1
]2 . (14)

0.20.0
-2

0.5

-1 0.00

1.0

1 -0.22

FIG. 2. Normalized fidelity susceptibility χ (h) with respect to h.
It has a sharp extremum at the critical lines |h| = 1 where continuous
QPTs with ν = 1 occur.

The first term of Eq. (14) is the leading term, while the second
term is either exponential decay or linearly increased with the
system size N , depending on the sign of γ . In the finite-
size system, the maximal value of the FS χ (h)(h = hm, γ )
is slightly larger than that of χ (h)(h = hc, γ ), but with the
quadratic term of N unchanged. Therefore, χ (h)(hm, γ ) �
χ (h)(hc, γ ) � N

32γ 2 (N − 3−γ 2

2|γ | ). Considering only the leading
term, we have

ln

(
χ (h)(hm, γ )

N

)
= lnN − ln(32γ 2). (15)

In the TDL, the exact expression for the FS can be calculated
by the residue theorem and turns out to be [53]

χ̄ (h)(h, γ )

N = 1

16
×

{ 1
|γ |(1−h2 ) , |h| < 1

|h|γ 2

(h2−1)(h2+γ 2−1)3/2 , |h| > 1
(16)

and the scaling behavior around the critical points is

ln

(
χ̄ (h)(h, γ )

N

)
= − ln |h − hc| − ln(32γ ). (17)

It can be noticed that the absolute value of the prefactors
of Eqs. (15) and (17) are equal, indicating that the critical
component ν = 1 according to the ansatz (1). The normalized
FS χ (h)(h, γ ) with respect to h in the TDL is shown in Fig. 2.
It is found that the FS has a sharp extremum at |h| = 1
where a continuous QPT occurs. This result demonstrates
convincingly that FS can be used to characterize the quantum
critical behavior.

B. Anisotropy transition

Calculation for the FS with respect to the anisotropy
transition is similar to the Ising transition discussed above.
To begin with, we should rewrite the expression (4) as

χ (γ )(h, γ ) = 1

4(1 − γ 2)2

N∑
n=1

(
1 − c2

n

)
(cn − h)2

(cn − λ+)2(cn − λ−)2
, (18)

where the λ′
υs (υ = ±) are defined in Eq. (6). Once the

partial fraction expansion of the expression (1−c2
n )(cn−h)2

(cn−λ+ )2(cn−λ− )2 is
obtained, the FS is readily split into two symmetric forms, each
of which could be calculated according to the method shown
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in Sec. III A. So we neglect the tedious details and present the
final result

χ (γ )(h, γ ) = 1

16(h2 + γ 2 − 1)

∑
υ=±

F (γ )
υ − N

8(1 − γ 2)2
,

(19)

where

F (γ )
υ =

(
g2

υ − 1
)2

4g2
υ

[
N 2gN

υ(
gN

υ + 1
)2 + N

(
Cυ

2
+ pυ

|γ |
)

gN
υ − 1

gN
υ + 1

]
.

(20)

Here pυ , gυ , and Cυ are as defined earlier. Again, the detailed
derivations are presented in the SM [52]. It is well known
that the anisotropy transition occurs when |h| < 1, and in this
segment χ (γ )(h, γ ) reaches its maximum exactly at γ = 0.
Precisely, we have

χ (γ )(h, 0) = −N
8

+ 1

4

[ N 2gN

(gN + 1)2
+ Nh

2i
√

1 − h2

gN − 1

gN + 1

]
,

(21)

where g = h + i
√

1 − h2. Physically, χ (γ )(h, 0) is a real
expression with a vanishing imaginary part. This can be seen
clearly by parametrizing h = cos θ and θ ∈ (0, π ),

χ (γ )(h, 0) = N

4

[
N

cos2[N cos−1(h)]
+ tan[N cos−1(h)]

tan[cos−1(h)]
− 1

]
.

(22)

It can be proved that the ratio of the second term to the first
one in the large square brackets is an oscillating function
and is bounded. So the second term can be neglected in
that it contributes the leading term to a prefactor at most.
The third term also does not need to be considered for large
enough system size N . In light of the relation χ (γ )(h, γm) =
χ (γ )(h, γc ) � N 2

16 cos2[N cos−1(h)/2] , we obtain that

ln

(
χ (γ )(h, 0)

N

)
= lnN − ln

[
16 cos2 N cos−1(h)

2

]
. (23)

Similarly, the exact expression for the FS is [53]

χ̄ (γ )(h, γ )

N = 1

16

1

|γ |(1 + |γ |)2
, |h| < 1 (24)

in the TDL, indicating that the scaling behavior around the
critical points is

ln

(
χ̄ (γ )(h, γ )

N

)
= − ln |γ | − 4 ln 2. (25)

Similarly, we are safe to conclude from Eqs. (23) and (25)
that the critical exponent ν = 1 according to the ansatz (1).
In addition, the normalized FS χ (γ )(h, γ ) with respect to γ

in the TDL is shown in Fig. 3. This result also demonstrates
convincingly that FS can be used to characterize the quantum
critical behavior.

IV. CONCLUSION

We have derived several closed-form expressions for the
fidelity susceptibility of the anisotropic XY model in the

0.20.0
-2

0.5

-1 0.00

1.0

1 -0.22

FIG. 3. Normalized fidelity susceptibility χ (γ ) with respect to γ .
It has a sharp extremum at the segment |h| < 1 and γ = 0 where
continuous QPTs with ν = 1 occur.

transverse field after a symmetry analysis. The FS for the
special case γ = 1 can be recovered and is consistent with
the results obtained by Damski and Rams in light of several
elegant summation formulas [40–42] of the transverse-field
Ising model. Our method is easy to follow and promises to be
useful to other exactly solvable models, such as the XY model
with bond-alternated interaction [54] or a staggered field [55].
The correlation length critical exponent ν = 1 is calculated
analytically according to the standard finite-size scaling ansatz.
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APPENDIX A: CLOSED-FORM EXPRESSION

Lemma 1. For any nonzero (complex) variable α, the closed-
form of the summation

L(α) =
N∑

n=1

1

α + cn

, cn = cos
(2n − 1)π

N (A1)

can be expressed as

L(α) =

⎧⎪⎨
⎪⎩

N√
α2−1

βN −1
βN +1 , |α| > 1

sgn(α)N2, |α| → 1
N√

1−α2 tan[N cos−1(α)], |α| < 1,

(A2)

where N = 2N , β = α + √
α2 − 1, and sgn(·) is the sign

function.
Proof. The function L(α) is an odd function with respect to

the variable α, which can be verified immediately by noting the
symmetry relation cn = −cN+1−n. The monotonic behavior of
the function depends highly on α and we will consider the case
|α| > 1 first.
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FIG. 4. Illustration of the function L(α) for (a) the even case N =
6 and (b) the odd case N = 7. In both cases, the solid blue lines are
the curve for L(α), while the dash-dotted black lines represent the
discontinuous points.

To begin with, let ζ = e(π/N )i be the primitive 2N th root
of unity and

� = {ζ 2n−1| − N < n � N} = {ζ±(2n−1)|1 � n � N}
be the set of roots for the polynomial zN + 1 = 0. Therefore,
for any allowed integer n, cn = ω+ω−1

2 with ω = ωn = ζ 2n−1.
Employing the logarithmic derivative with respect to z of the
equality ∏

ω∈�

(z + ω) =
∏
ω∈�

(z − ω) = zN + 1,

we then arrive at the important summation identity

∑
ω∈�

z

ω + z
= N zN

zN + 1
. (A3)

Actually, it is natural for us to define the new variable β =
α + √

α2 − 1 so that α = β+β−1

2 . In light of Eq. (A3) we have

L(α) = 1

2

N∑
n=−N+1

1

α + cn

= 1

2

∑
ω∈�

1
β+β−1

2 + ω+ω−1

2

= 1

β − β−1

∑
ω∈�

(
β

ω + β
− β−1

ω + β−1

)

= N√
α2 − 1

βN − 1

βN + 1
. (A4)

If the hyperbolic functions are involved, Eq. (A4) is equivalent
to

L(α) = Nsgn(α)√
α2 − 1

tanh[N cosh−1(α)]. (A5)

The exact expression for the case |α| < 1 can be obtained
from the former in the spirit of analytic continuation or simply
by the substitution β = α + i

√
1 − α2. In this situation we

have

L(α) = N√
1 − α2

tan[N cos−1(α)]. (A6)

It should be noted that the point α = 0 is out of our consid-
eration in general since whether this point make sense or not
depends on the odevity of N . It is zero when N is even and
diverging for the odd case (see Fig. 4). More generally, there are
N discontinuous points in the range of |α| < 1, namely, αdisc =
cos 2m+1

N π , m = 0, 1, 2, . . . , N − 1. Therefore, the function
L(α) is continuous at the points |α| = 1 and its values thereof
are equal to sgn(α)N2.

Altogether, we finish the full processes of the proof. We
end this Appendix with Fig. 4, which presents the curvature of
function L(α) for even and odd N . �

APPENDIX B: DERIVATIVE RELATION

Lemma 2. For any nonzero (complex) α, the first derivative
of the function L(α) defined in Eq. (A1) is

L′(α) = ∂L(α)

∂α

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4β2

(β2−1)2

[ N 2βN

(βN +1)2 − N
2

(β2+1)(βN −1)
(β2−1)(βN +1)

]
, |α| > 1

−sgn(α)N2(16N2+9)
24 , |α| → 1

− L(α)√
1−α2

[ N
sin(N cos−1(α)) − α√

1−α2

]
, |α| < 1,

(B1)

where N = 2N , β = α + √
α2 − 1, and sgn(·) is the sign

function.

APPENDIX C: QUANTUM METRIC TENSOR

The quantum metric tensor [47] is a concept stemming from
differential geometry and information theory. It describes the
absolute value of the overlap amplitude between neighboring
ground states. Therefore, like the fidelity susceptibility, the
metric also plays a vital role in understanding the quantum
phase transition.

For the anisotropic XY model [see Eq. (2)] in the (h, γ )
parameter space, the quantum metric tensor is defined as gσσ̄ =
1
4

∑N
n=1(∂θk/∂μσ )(∂θk/∂μσ̄ ), where μ1,2 = h, γ [47]. So the

solely off-diagonal element of the tensor is

χ (hγ )(h, γ ) = γ

4

∑
k>0

sin2 k(cos k − h)

[(cos k − h)2 + γ 2 sin2 k]2
. (C1)

The method for the calculation of Eq. (C1) has been
explained in the main text. The detail is omitted here and is
presented in the SM [52]; the result is

χ (hγ )(h, γ ) = sgn(γ )

16(h2 + γ 2 − 1)

∑
υ=±

F (hγ )
υ , (C2)

where

F (hγ )
υ = g2

υ − 1

2pυgυ

[ N 2gN
υ(

gN
υ + 1

)2 + N
2

(
pυ

|γ | + Cυ

)
gN

υ − 1

gN
υ + 1

]
.

(C3)

Also, the gυ , pυ , and Cυ are defined in Eqs. (9), (10), and (12),
respectively.
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