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Inertial spheroids in homogeneous, isotropic turbulence
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We study the rotational dynamics of inertial disks and rods in three-dimensional, homogeneous, isotropic
turbulence. In particular, we show how the alignment and the decorrelation timescales of such spheroids depend,
critically, on both the level of inertia and the aspect ratio of these particles. These results illustrate the effect of
inertia—which leads to a preferential sampling of the local flow geometry—on the statistics of both disks and rods
in a turbulent flow. Our results are important for a variety of natural and industrial settings where the turbulent
transport of asymmetric, spheroidal inertial particles is ubiquitous.
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The dynamics of small, heavy inertial particles in a turbulent
flow is at the heart of several problems in statistical physics,
fluid dynamics, astrophysics, and the atmospheric sciences.
This is because particles advected by a flow are ubiquitous
in nature, industry, and the laboratory. Typically, for particles
smaller than the Kolmogorov scale η of the three-dimensional
(3D) carrier (turbulent) flow, the fluid-particle interaction is
modeled as a one-way coupling via the linear Stokes drag
model [1,2]. This model, despite its many simplifications, has
been shown, over the years, to effectively mimic the turbulent
transport of small spherical particles (see, e.g., Ref. [3]). In the
last few years a significant part of the theoretical and numerical
studies of such problems has been carried out with an eye on
the problem of spherical water droplets in warm clouds [4–8].

The spherical particle approach, though valid in many cir-
cumstances, nevertheless fails when dealing with a wide class
of transport problems where it is known that the particulate
matter is rodlike or disklike. These range from the motion of
microorganisms [9,10] to ice crystals in clouds [11]. Unlike
the spherical case, such particles have an added degree of
freedom which, based on their geometry of the surrounding
flow, allows such nonspherical particles, henceforth called
spheroids, to rotate, spin, and tumble. Broadly speaking,
in a dilute suspension, the advecting fluid velocity gradient
tensor along its trajectory determines the rotational dynamics
of a given spheroid. In recent years there has been a lot
of effort to understand the various aspects of the dynamics of
spheroids in both homogeneous, isotropic turbulence as well
as in channel flows. Indeed, it is known that such particles
have complex dynamics not only in turbulent flows but in
simpler flow configurations [12] as well. Unfortunately, the
experimental measurements have been by and large restricted
to two-dimensional flows [13] with only recent time-resolved
measurements in three-dimensional turbulence [14].
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Studies of spheroids with inertia have largely been confined
to the area of turbulent channel flows [15,16] with an emphasis
on clustering and turbophoresis. Even the fewer number
of studies within the framework of homogeneous, isotropic
turbulence have tended to focus on the effect of gravity in
the settling of such spheroids [17–19] or limited to the effect
of such particles on turbulent modulation [20]. The issue of
orientation dynamics and the alignment of inertial spheroids
along specific flow directions have largely been an unexplored
regime; it is important to note that aspects of this problem
have been investigated for nonspherical tracers in turbulence
(triaxial ellipsoids) [21] and perturbatively in the Kubo number
for random flows [22].

Theoretically, there have been studies which have looked at
the orientation dynamics of rodlike particles in the absence of
inertia, i.e., rods which display a tracerlike behavior [23,24].
However, in most cases of turbulent transport these asymmet-
rical particles are inertial. In other words, a more complete
description of the rotational dynamics of such particles needs
to take into account the fact that such particles relax to the
flow velocity not instantaneously (as a tracer would) but with
a finite time lag, the so-called Stokes time τp. Furthermore, if
α, which is a measure of the ratio of the major and minor axes
of the spheroid, denotes the degree and nature of the spheroid
(with α = 1, a sphere; α � 1, an oblate; and α � 1, a rod),
the dynamics should depend not only on the Stokes number
St = τp/τη (where τη is the characteristic fluid small-scale
Kolmogorov time to be defined later) but on α as well.

We address this question in a detailed and systematic man-
ner in this Rapid Communication by using extensive numerical
simulations covering a wide range in α and St to explore the
different regimes of particle alignment and orientations in fully
developed turbulence. By using ideas of inertial effects on
spheroids [25], we thus complement and build on the work of
Pumir and Wilkinson [23] (and Parsa et al. [14]), who were the
first to study this problem but only in the case of inertialess rods.

We begin by considering a spheroid of density ρp, with a
symmetry axis of length 2c and the two equal axes of length
2a, such that the ratio α = c/a characterizes the nature of the
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TABLE I. Values of the aspect ratios α, the bare Stokes numbers
Sts, and the actual Stokes numbers St for the different sets of particles
that we have used in our simulations (see text).

α

Sts 0.1 0.5 0.9 1.0 1.1 1.5 2.0

Oblate Sphere Rod

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.015 0.067 0.247 0.1 0.106 0.129 0.152
0.5 0.075 0.34 1.24 0.5 0.53 0.65 0.76
1.0 0.15 0.67 2.47 1.0 1.064 1.29 1.52
2.0 0.30 1.34 4.94 2.0 2.13 2.58 3.04
3.0 0.45 2.01 7.41 3.0 3.19 3.87 4.56

spheroid, moving with a velocity v, and advected by a carrier
fluid with velocity u. In the most general case, the drag felt by
a nonspherical particle is characterized by its resistance tensor
K [26], and the use of quaternion algebra in recent years [27]
provides a convenient route to study the problem in its most
general setting (see, e.g., Voth and Soldati [28] and references
therein). The equations of translational motion of the center of
the spheroid r are given by the Stokes drag model,

dr
dt

= v,
dv
dt

= −ATKA

6πaα

[v − u]

τs

, (1)

where the carrier fluid velocity u above is evaluated at the
particle position r. The Stokes time for a spherical particle of
radius a is given by τs = 2ρpa2/9ρf ν, where ρf is the density
and ν is the kinematic viscosity of the carrier flow. The details
of the resistance tensor K and the orthogonal transformation
matrix A are described in Ref. [16] for prolate spheroids and
Ref. [29] for oblate spheroids. The Stokes time τp, based on
isotropic particle orientation and the inverse of the resistance
tensor, differs from the more familiar spherical case τs to take
into account the asymmetry of the particle [25],

τp =

⎧⎪⎨
⎪⎩

τs
α{π−2 tan−1 [α(1−α2 )−1/2]}

2
√

1−α2 , α < 1,

τs

α ln
[
α+√

α2−1
]

√
α2−1

, α > 1.

(2)

We see immediately that for α = 1, which corresponds to a
spherical particle since a = c, the τp = τs via the definition
above by setting α = 1. For convenience, we define a bare
Stokes number Sts = τs/τη; the actual Stokes number St will
of course depend on the value α via (2); in the spherical case
St ≡ Sts. In Table I, we list all the values of α and the Stokes
numbers that we have used in our simulations.

For asymmetric particles α �= 1, along with the translational
motion (defined above), the instantaneous orientation is vital
to understand the full dynamics of such spheroids. Intuitively,
the direction of the orientation vector p for a given spheroid,
with a given τp and α, is determined by the local flow
geometry. For a given generic complex flow, the local geometry
is determined by the fluid-velocity-gradient tensor (traceless
for incompressible flows), evaluated at the particle position
Aij = ∂ui

∂rj
. It is useful to split this fluid-velocity-gradient tensor

A = S + � into a symmetric part, the strain rate, ST = S, and
an antisymmetric part, the vorticity tensor, �T = −�. This

decomposition is especially useful to write the equation for
the orientation vector p, the so-called Jeffery equation [30],

dp
dt

= �p + α2 − 1

α2 + 1
[S p − (p · S p)p], (3)

where the strain rate and vorticity tensor are instantaneous
measurements at the (inertial) particle position.

It is important to stress that we are approximating the
particle dynamics by ignoring the inertia associated with its
rotational dynamics. Such a simplification is justified because it
has been shown that the typical relaxation timescale associated
with the rotational dynamics is an order of magnitude smaller
than the τp [25,31].

We finally turn our attention to the advecting or carrier fluid
velocity u. Since we study the spheroid in a three-dimensional,
incompressible turbulent flow, we obtain the velocity field
as a solution of the forced three-dimensional Navier-Stokes
equation,

∂u
∂t

+ u · ∇u = ν∇2u − ∇P

ρf

+ f, (4)

augmented by the incompressibility constraint ∇ · u = 0,
where P is the pressure and the forcing f drives the system
to a statistically steady state. We recall that three-dimensional
turbulent flows are characterized by the Kolmogorov

microscales for length η = ( ν3

ε
)
1/4

, time τη = ( ν
ε

)1/2, and ve-
locity uη = (νε)1/4. These definitions allow us in a unique way,
which allows a comparison between experiments, numerical
simulations, and theory, to define the Stokes number St =
τp/τη. We should also note that our model, and hence the
results, are valid only for a, c � η.

Before we discuss the various results, let us briefly outline
the numerical strategy used in our calculations. (We refer
the reader to Ref. [32] for more details.) We solve for the
fluid velocity by using the standard pseudospectral method
with N3 = 5123 collocation points and a second-order Adams-
Bashforth scheme to integrate in time. We drive the system
to a statistically steady state by using a constant, large-scale
energy injection forcing [33,34] one to reach the Taylor-scale
Reynolds number Reλ � 120.

To obtain the translational and orientation statistics, we seed
the flow (as obtained above) with (noninteracting) particles
with seven different values of 0.1 � α � 2 (including the
spherical case α = 1) and, including the tracers, six different
Stokes numbers 0.0 � Sts � 3.0; we use Np = 50 000 parti-
cles for each α − St combination. We also run our simulations
for several large-eddy-turnover times to rule out transient
effects and obtain well-converged statistics. The trajectories
of individual particles are integrated by using a trilinear
interpolation scheme [35] to obtain the fluid velocity at the
particle position. We set up an initial condition for the spheroids
such that their orientation vector initially (t = 0) points along
the x̂ direction.

We begin by examining the alignment of the spheroids
as a function of the Stokes number and the aspect ratio. A
convenient measure of the flow geometry is to exploit the basis
of the symmetric tensor S and the antisymmetric tensor �.
Given the nature of the strain rate matrix, it is trivial to see that
it allows three eigenvalues λ1 � λ2 � λ3 which correspond
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FIG. 1. Representative plots of the probability density function of the alignment of the orientation vector p with e1 (black circle ◦), e2 (pink
cross ×), e3 (blue inverted triangle �), and ew (red asterisk ∗) for (a) α = 0.1 (oblate), (b) α = 0.5, (c) α = 1.5, and (d) α = 2.0 (rod). These
measurements are made for particles with a bare Stokes numbers Sts = 1.0. (In Table I, the actual Stokes numbers corresponding to the different
particles are listed.)

to a set of three orthonormal eigenvector bases Sei = λiei .
The vorticity tensor is constructed from the vorticity vector ω

yielding a unit vector eω corresponding to the magnitude of the
vorticity ω.

We characterize the alignment of the spheroids by calcu-
lating the probability distribution function of the cosine of
the angle between their orientation vector with the different
eigenvectors of the flow field. The equation of motion for the
orientation vector suggests that p ought to align preferentially
with the principle axis of the strain rate matrix e1. Surprisingly,
however, it was shown by Pumir and Wilkinson [23] that
measurements for tracers are inconsistent with this naive
conclusion. In Fig. 2(a) we confirm this conclusion from our
numerical simulations. Given the plausible explanation for this
phenomenon [23], it is important to examine the effect of finite
Stokes numbers. This is especially important because inertial
spheroids will sample, preferentially, straining regions of the
flow.

In Fig. 1, we show representative plots of this prob-
ability distribution function, namely, P (|p · ei |) vs |p · ei |,
where i = 1, 2, 3, and ω, for different values of α (for the same
bare Stokes number of unity), calculated at times longer than
the initial transient phase (see Fig. 1 in Ref. [23]). Unlike the
tracer case, we see a very different behavior. For inertial oblates
[Figs. 1(a) and 1(b)], the spheroid tends to preferentially align
with the principle axis of the strain rate matrix, as we should
expect from the equation of motion for the orientation vector.
This behavior is in contrast to rods (α > 1) as shown in

Figs. 1(c) and 1(d), where the alignment is most strongly with
the vorticity direction eω, as has been known for tracers [21].
This behavior for rods is completely consistent with what is
known for tracer rods [23] and illustrated in Fig. 2(a). However,
unlike the St = 0 case, for finite inertia, rods tend to align
to a greater degree with the nonmajor axes of the strain rate
matrix, namely, e2 and e3. Indeed, this effect is enhanced for
a given rod (α = 2.0) with increasing inertia. In Fig. 2 we
show representative plots of the probability density function
for a rod with increasing values of the Stokes number from
Figs. 2(a) to 2(d). We clearly see that as the Stokes number
increases, rods tend to align more and more with the axis e3

and, eventually, for the largest Stokes number considered here
[St = 4.56, Fig. 2(d)], the alignment is strongest with e3 instead
of eω [Fig. 2(a)]. For small inertia, rods tend to align with eω;
however, with increasing translational inertia, these spheroids
start preferentially sampling strain-dominated regions. Hence,
as the Stokes number increases, the rods start dealigning with
eω and aligning with the most contracting eigenvector e3 (as
clearly seen in our measurements) because the vorticity is
normal to the most contracting direction [36].

Our results suggest, unsurprisingly, that the dynamics of
oblates, spheres, and rods are qualitatively different from each
other. Indeed, for spherical particles, we expect that for all
Stokes numbers, the orientation vector should rotate randomly,
yielding, on average, 〈|p · ei |〉 = 0.5 and 〈|p · ei |2〉 = 0.33.
This reasoning breaks down in the case of spheroids; indeed,
in the limiting case of tracer rods (St = 0 and α → ∞), the

FIG. 2. Representative plots of the probability density function of the alignment of the orientation vector p of a rod (α = 2.0) with e1

(black circle ◦), e2 (pink cross ×), e3 (blue inverted triangle �), and ew (red asterisk ∗) for (a) St = 0.0, (b) St = 0.152, (c) St = 0.76, and (d)
St = 4.56.

021101-3



AMAL ROY, ANUPAM GUPTA, AND SAMRIDDHI SANKAR RAY PHYSICAL REVIEW E 98, 021101(R) (2018)

FIG. 3. Plots of (a) 〈|p · ei |〉 and (b) 〈|p · ei |2〉 vs α for Sts = 0 (red open circles), Sts = 0.1 (blue upward-pointing triangles), Sts = 0.5
(magenta squares), Sts = 1.0 (black asterisks), Sts = 1.5 (gray diamonds), Sts = 2.0 (green downward-pointing triangles). The solid and dashed
lines are for e1 and eω, respectively. The insets show the representative plots of the same quantities, at Sts = 1, for e1 (red open circles), e2 (blue
triangles), e3 (black squares), and eω (magenta asterisks).

actual values of these measures are quite far from the spherical
case [23]. In order to systematically study the mean orientation
of inertial spheroids, we measure 〈|p · ei |〉 and 〈|p · ei |2〉. In
Figs. 3(a) and 3(b), we show plots of 〈|p · ei |〉 and 〈|p · ei |2〉,
respectively, for e1 and eω, as a function of the aspect ratio α

for a few representative values of the Stokes numbers. For both
these measures, the alignment with respect to the principle
axis of the strain rate matrix is close to 1 in the limit α → 0
and decreases monotonically and approaches 0 as α � 1. This
behavior is exactly opposite to the mean alignment with respect
to the vorticity eigendirection where both these measures
increase monotonically with α and saturate, asymptotically,
as α � 1. We note that in the limiting spherical case α = 1,
〈|p · e1|〉=〈|p · eω|〉=0.5 and 〈|p · e1|2〉=〈|p · eω|2〉 = 0.33,
as suggested earlier. Furthermore, we observe that 〈|p · eω|〉
and 〈|p · eω|2〉 do not change with St for disks whereas they
decrease monotonically with St for rods. On the other hand,
for the case e1 these measures increase monotonically with St
for disks; for the rods, however, this value first decreases with
St, reaches a minimum at St = 0.5, and then increases with
St. Finally, we note that the mean values for the alignment

with e2 and e3 are following the same trend as e1, as shown in
the insets of Fig. 3.

Although it is still difficult in an experiment to accurately
measure the different eigenvectors along the Lagrangian trajec-
tory of an spheroid—as we have done above—a surrogate mea-
surement is the autocorrelation functions C ≡ 〈(p(t ) · p(0))〉,
Cabs ≡ 〈|p(t ) · p(0)|〉, and C2 ≡ 〈|p(t ) · p(0)|2〉, which decay
exponentially at short times. At long times, these correla-
tions are asymptotes to values close to 0, 0.5, and 0.33,
respectively, as discussed above. We measure such correlation
functions and extract the characteristic decay time scales τ1,
τ2, and τ3 associated with each of these correlation functions.
In Fig. 4 we show representative plots of τ1 [Fig. 4(a)] and τ2

[Fig. 4(b)], normalized by the Kolmogorov timescale τη, as a
function of the aspect ratio α for a few representative values of
the Stokes numbers. These results are consistent for the case of
oblates studied (for similar inertia and aspect ratios) by Jucha
et al. [19] as well as converging to the rod and tracer limits
reported in Ref. [23].

Our measurements show a monotonic increase with the
aspect ratio α with a mild, but nontrivial, dependence on the

FIG. 4. Plot of characteristic decay times, normalized by τη, of the correlation functions (a) 〈p(t ) · p(0)〉 and (b) 〈|p(t ) · p(0)|〉 vs α for
different Sts. The color codes are the same as in Fig. 3. The top-left insets show the correlation function decay for a fixed Sts = 1.0 and changing
α from α = 0.1 (magenta dashed line), α = 0.5 (red triangles), α = 1.0 (cyan dashed-dotted line), α = 1.5 (black open circles), and α = 2.0
(blue solid line). The bottom-right insets show the correlation function decay for a fixed α = 2.0 and different Sts (same color code as the main
plot). In the y axis of the insets of the left panel, C = 〈p(t ) · p(0)〉, and the right panel, Cabs = 〈|p(t ) · p(0)|〉 − 0.5.
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level of inertia. For α = 0.1 (disks), τ1 increases monotonically
with an increase in St, but for the largest simulated α = 2 case,
first τ1 increases, reaches a maximum at St = 1, and saturates
with increasing St. We note that the maximum characteristic
time for α = 2 (rods) reaches at St = 1, which corresponds
to the case where maximum clustering starts to happen in
turbulent flow.

For spherical particles, α = 1, the second term on the
right-hand side of Eq. (3) is absent by definition. Hence for
spherical particles, the characteristic timescale is set by �.
However, assuming the term [S p − (p · S p) p] to be positive
definite, a naive interpretation of Eq. (3) suggests that for
α < 1, the timescales for disks ought to be less than those for
spheres; similarly for α > 1, the timescales for rods should be
larger than those for spheres. This interpretation is consistent
with the numerical results reported in Fig. 4. More pertinently,
the statistics of alignment (discussed above) suggests that, for
example, for disks, inertia leads to the orientation vector being
orthogonal, preferentially, to the vorticity of the flows which
lie in the plane of the disk, and hence, to a faster rotation of
the orientation vector. Such an argument suggests that oblates
rotate faster than rods, resulting in a smaller decorrelation time
for oblates than for rods. With increasing inertia, however,
there is a preferential sampling of strain-dominated regions by
particles of all shapes. Hence this leads, inevitably, to a smaller
rotation rate and hence a larger decorrelation time. Indeed, our
measurements (Fig. 4) show this to be the case. For the extremal
values ofα, namely,α = 0.1 andα = 2.0, the maximum values
of St are 0.45 and 4.56, respectively. Hence we find that the
decorrelation times for oblates are monotonically increasing in
time with the Stokes number, whereas for rods the saturation
behavior is consistent with the fact that significant clustering

starts to take place after St > 1. It is important to stress that
these arguments are far from rigorous but seem to be consistent
with our observations.

The rotational dynamics of small, but nonspherical, par-
ticles in turbulent flows is an important problem in many
areas of fluid mechanics. In recent years, because of all the
reasons mentioned earlier, there has been a lot of work in this
area. However, by and large most numerical and theoretical
efforts have tended to ignore the effect of inertia—and hence
preferential sampling of the fluid velocity—on the alignment
properties of such particles. Furthermore, even for the tracer
case most studies have typically concentrated on the problem
of rods. In this Rapid Communication, we have therefore
systematically studied this problem by including the effects of
inertia, for a large interval of aspect ratios spanning both disks
and rods, to elucidate the statistics of the directional vector with
respect to the geometry of the advecting flow. Our results show
that the case of tracer rods, studied earlier, is a special case
of spheroids and does not easily generalize for finite Stokes
numbers or for disks. An important implication of our results
lies in the modeling of asymmetrical microorganisms and the
emergence of collective behavior (under suitable interactions)
in a flow [37].
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