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We identify active phase separation as a generic demixing phenomenon in nonequilibrium systems with con-
servation constraints. Examples range from cell polarization to cell populations communicating via chemotaxis,
and from self-propelled particle communities to mussels in ecology. We show that system-spanning properties
of active phase separation in nonequilibrium systems near onset are described by the classical Cahn-Hilliard
(CH) model. This result is rather surprising since the CH equation is famous as a model for phase separation at
thermal equilibrium. We introduce a general reduction scheme to establish a unique mathematical link between
the generic CH equation and system-specific models for active phase separation. This approach is exemplarily
applied to a model for polarization of cells and a model for chemotactic cell communities. For cell polarization,
we also estimate the validity range of the CH model.
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Demixing phenomena in active, nonequilibrium systems
currently attract great attention. Examples include cell polar-
ization [1–12], chemotactically communicating cells [13–17],
self-propelled particles [18–21], active matter models [22],
mixtures of particles with different mobilities [23–26], models
of ion-channel densities [27], or mussels in ecology [28]. All
of these examples have three properties in common: First,
they resemble classic equilibrium phase separation. Second,
in contrast to classic phase separation, these are nonequilib-
rium transitions. Third, they are all subject to conservation
constraints. Since these demixing phenomena take place in
nonequilibrium systems, we call them active phase separa-
tion. Their (local) driving mechanisms are as different as
the systems themselves. But do these systems nevertheless
share fundamental properties described by a generic model?
Here we provide a universal framework for the cross-system
characteristics of a class of active phase separation phenomena.

A conceptual parallel to this idea are self-organized patterns
in nature. Stripe, hexagonal, or traveling wave patterns are
driven by mechanisms that are also as diverse as the systems
in which they form [29–34]. Nevertheless, periodic patterns
in these different nonequilibrium systems share well-known
generic properties [33,34]. They are covered by unconserved
order-parameter fields that describe the slowly varying am-
plitude(s) [envelope(s)]. Even though stripe patterns occur
in very different systems, the envelope obeys the same fun-
damental (nonlinear) Ginzburg-Landau equation [33,34]. It
can be derived from basic equations and provides the key
to understanding the generic properties of stripe patterns
[30,34–36].

In this work, we formulate a similar approach for active
phase separation in nonequilibrium systems. We present a
reduction scheme generalized to conserved order parame-
ters. At leading order, we thereby obtain the Cahn-Hilliard
model [37,38] as the generic model for active phase separation
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in nonequilibrium systems. So far, it has typically been used to
model liquid-liquid demixing in thermal equilibrium [37,38].
However, we show here that it also describes the system-
spanning properties of phase separation in nonequilibrium.
Thus, we manage to capture the essence of active phase
separation in very different systems in one universal equation.
At the same time we expose the underlying similarities between
phase separation in and out of equilibrium. The reduction
scheme we present here provides a direct mathematical link
between the Cahn-Hilliard (CH) model and system-specific
models. It also provides the criteria to identify candidates for
this class of active phase separation. Our approach is explicitly
demonstrated for two representative examples from living
matter: a continuum model for cell polarization and a model
for chemotactic cell communities.

Cell polarization is central to processes as diverse as
cell motility, differentiation, and cell division [1–10]. The
polarized cell has two distinct regions similar to the two
phases of a separated liquid-liquid mixture. However, cell
polarization in living systems is a nonequilibrium phenomenon
driven by dissipative processes. The molecules that trigger
cell polarization are conserved on the timescales of the self-
organization. Models for cell polarization usually involve the
nonlinear dynamics of several coupled concentration fields
for regulating molecules (see, e.g., [4]). However, minimal
models with only two concentration fields for the membrane-
cytosol exchange already cover essential properties [5–10].
One concentration field ũ(r, t ) thereby represents molecules
bound to the membrane. The other concentration field ṽ(r, t )
describes molecules in the cytosol. Here, we use

f̃ (ũ, ṽ) = −bũ + (ũ + ṽ)2 − (ũ + ṽ)3 (1)

for the membrane to cytosol exchange in the one-dimensional
equations for the fields ũ and ṽ:

∂t ũ = Du∂
2
x ũ + f̃ (ũ, ṽ), (2a)

∂t ṽ = Dv∂
2
x ṽ − f̃ (ũ, ṽ) (model P ). (2b)
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Both fields are coupled via the conservation condition

M = 1

L

∫ L

0
[ũ(x) + ṽ(x)]dx. (3)

Another variant of a nonequilibrium phase separation process
is clustering of chemotactically communicating cells. They
play, for instance, a central role on the route to multicellular
fruiting bodies [39]. Here the number of cells is conserved on
the timescale of the clustering, but the chemical density field
for the cell-cell communication is not [13–17]. We describe a
system of chemotactically communicating cells by an extended
Keller-Segel model [13–16] with cell density ρ̃(r, t ) and signal
molecule density c̃(r, t ):

∂t ρ̃ = ∂2
x ρ̃ − s∂x

(
ρ̃

1 + βρ̃
∂x c̃

)
, (4a)

∂t c̃ = Dc∂
2
x c̃ + ρ̃ − c̃ (model C). (4b)

Model P in Eqs. (1) and model C in Eqs. (4) have spatially
homogeneous solutions uh, vh or ρh, ch, respectively. These
become unstable beyond critical values of the respective con-
trol parameters Dv and s. Immediately above these thresholds,
a generic equation can in both cases describe the resulting
active phase separation. In the following steps we develop this
equation for the conserved order-parameter field.

For both models, we separate the inhomogeneous parts
from the basic state, writing ũ = uh + u(x, t ), etc. We first
consider the instability of the homogeneous states with respect
to small perturbations. The linear equations in u, v are then
solved by the ansatz u, v = ū, v̄ exp(σ t + iqx) (or for ρ

and c, respectively). We consider the case when one of two
eigenvalues σ1,2 is always negative close to the onset of phase
separation. The other eigenvalue, expanded with respect to
powers of q2, is of the form

σ = G2q
2 − G4q

4 + O(q6) (5)

with G4 > 0. The leading order coefficients G
(P )
2 or G

(C)
2

include the control parameters Dv and s for models P and
C, respectively. The homogeneous solutions become linearly
unstable for G2 > 0. G2 = 0 thus defines the critical values of
the control parameters:

Dc
v = Dufv/fu, sc = (ρ0h)−1, (6)

where fu,v = ∂u,vf and h = (1 + βρ0)−1. As a measure for
the distance from the onset of phase separation, we choose the
dimensionless control parameter ε, where

Dv = Dc
v (1 + ε), s = sc(1 + ε). (7)

Next, we consider the basic equations [cf. Eqs. (2) and (4)] in
the range of small ε, i.e., G2 ∝ ε. With G4 = O(1) the growth
rate σ becomes positive in a range of small q2 ∝ ε and is of the
order σ ∝ ε2. Therefore, we introduce the “slow” spatial scale
X = √

εx and the timescale T = ε2t , which is slower than
for periodic patterns [34]. The nonlinear analysis demands the
introduction of an additional slow timescale, T3 = ε3/2t [40].
This leads to the operator replacements

∂x → √
ε∂X, ∂t → ε3/2∂T3 + ε2∂T . (8)

In compact matrix form, Eqs. (2) and (4) are

∂tw = Lw + N, (9)

with the respective vectors w = (u, v) and w = (ρ, c). The
right-hand side includes a linear part Lw and the nonlinear
part N. For both models we expand w in orders of ε1/2:

w = ε1/2w1 + εw2 + ε3/2w3 + O(ε2), (10)

leading to

L = L0 + (εL1 + ε2L2)∂2
X + O(ε3), (11)

N = εN2 + ε3/2N3 + ε2N4 + ε5/2N5 + O(ε3). (12)

Inserting the new scalings and expansions into Eq. (9) requires
a sorting of the basic equations up to two orders higher in ε1/2

than for common spatial patterns [34]:

ε1/2 : L0w1 = 0, (13a)

ε : L0w2 = −N2, (13b)

ε3/2 : L0w3 = −L1∂
2
Xw1 − N3, (13c)

ε2 : L0w4 = ∂T3 w1 − L1∂
2
Xw2 − N4, (13d)

ε5/2 : L0w5 = ∂T3 w2 + ∂T w1 − L1∂
2
Xw3

− L2∂
2
Xw1 − N5. (13e)

For model P , we find at order ε1/2 [41]

w1 = Ã(X, T )

(
fv

−fu

)
. (14)

Note that in contrast to the Ginzburg-Landau equation for
stripes, Ã(X, T ) in our case is not the envelope of an underyling
small-scale structure. An iterative solution of the hierarchy,
Eqs. (13), leads to a dynamical equation for Ã via Fredholm
alternatives at orders ε2 and ε5/2 [34]. After returning to
the original coordinates x and t , and rescaling the amplitude
A = √

εÃ, it takes the following form:

∂tA = −∂2
x

[
α1εA + α2∂

2
xA − α3A

2 − α4A
3
]
. (15)

This is the Cahn-Hilliard model in one dimension [37] with
a quadratic nonlinearity ∝A2 (where α1, α2, α4 > 0). It cor-
responds to nonsymmetric mixtures of two liquids at thermal
equilibrium. Equation (15) covers the approximate dispersion
relation of the full model in Eq. (5) and nonlinearities up to third
order inA. The derivation of the CH equation via the introduced
reduction scheme automatically provides a mathematical link
to the model for cell polarization in Eqs. (2). That is, the
coefficients αi are expressed by the parameters of the full
model:

α1 = Dufv/b, α2 = D2
ufv/(bfu), (16a)

α3 = Dub(3M − 1)/fu, α4 = Dub
2/fu, (16b)

with fu = −3M2 + 2M − b and fv = −3M2 + 2M .
By application of the reduction scheme, the chemotaxis

model C reduces to a similar equation for the density variation
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FIG. 1. Steady-state profiles A(x ) in the symmetric case (M =
1/3): Comparison of model P , Eqs. (2) (solid lines), to the corre-
sponding solutions of the reduced CH model, Eq. (15) (dashed lines),
for two values of the control parameter ε = 0.01, 0.04.

ρ, but with different coefficients [41]:

∂tρ = −∂2
x

[
ερ + Dc∂

2
xρ + 1

2 sch
2ρ2 − 1

3 scβh3ρ3
]
. (17)

Note that the chemical signal c follows the cell density
adiabatically.

The reduced models, Eqs. (15) and (17), capture the dynam-
ics of the respective slow mode of phase separation [34]. Both
CH models follow potential dynamics [38] even though the
full Eqs. (2) and (4) do not. These qualities are a direct parallel
to stripe patterns and their representation via the universal
Ginzburg-Landau equation [30,34–36]. Thus, similar to the
amplitude equation for stripes, we expect the CH model to play
a generic role for active phase separation. Note that the reduced
CH models, Eqs. (15) and (17), describe the behavior of a
conserved order parameter—a reflection of the conservation
constraints placed upon the original models P and C. The
reduced models certainly cover the behavior of the full system
near the (supercritical or weakly subcritical) bifurcation point.
But in which parameter range further from the onset of phase
separation does this agreement prevail? We will explore this
by comparison of stationary solutions for the cell polarization
model [cf. Eqs. (2)] and its approximation by the CH model in
Eq. (15). We first study the special case M = 1/3, i.e., α3 = 0
and ± symmetry of Eq. (15). This corresponds to the classic
CH model [37]. For this case we compare in Fig. 1 steady-state
solutions of the full model P to those of the related CH model
for two different control parameter values ε (see Supplemental
Material [41] for details on simulation methods). Due to the
± symmetry in Eq. (15), the maximum and minimum of
these profiles have the same absolute value. According to
the conservation condition, the two phases with increased or
decreased concentration each occupy half the system. With
respect to both properties, the CH model covers the behavior
of the full model. With increasing ε, the plateau values of
the steady-state profiles increase and the coherence length
decreases. Consequently, the profiles in Fig. 1 evolve toward
a more steplike form. Note that in Figs. 1–5, the amplitude for
the full model is calculated from the field v. The amplitude
for u resembles the amplitude A from Eq. (15) even more
closely.

FIG. 2. Plateau values of the steady-state solutions in the symmet-
ric case (M = 1/3): Comparison of model P , Eqs. (2) (solid line), to
the corresponding values of the reduced CH model, Eq. (15) (dashed
line), as a function of the control parameter ε.

Figure 2 shows the plateau values of the steady-state
solutions as a function of ε. It thereby illustrates the validity
range of the CH model—including the perfect agreement at
onset, and the expected increasing deviations with increasing
ε. Figure 2 also illustrates that the transition to active phase
separation in the symmetric case occurs in a supercritical
bifurcation. Note that the finite system size shifts the onset
of phase separation to a positive value εc = α2π

2/(L2α1)
(=0.00296 for the chosen parameters).

For M �= 1/3, the quadratic term in Eq. (15) is finite. This
leads to asymmetric phase separation, where the concentration
deviates asymmetrically from its mean value. An example of
this scenario is shown in Fig. 3 for M = 0.3. This corresponds
to a small asymmetry parameter α3/

√
α4 � 0.055. In this

case, Eq. (15) captures the behavior of the full model very
well. A comparison between the CH equation and the full
model as a function of ε is presented in Fig. 4. In the
presence of A2, the bifurcation from the homogeneous state

FIG. 3. Similar as in Fig. 1, but in the asymmetric case (M = 0.3),
i.e., with theA2 contribution in Eq. (15). Steady-state profiles of model
P , Eqs. (2) (solid lines), compared to the corresponding solutions of
the reduced CH model, Eq. (15) (dashed lines), for two values of the
control parameter ε = −0.03, 0.04.
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FIG. 4. Similar as in Fig. 2, but in the asymmetric case (M =
0.3). Upper and modulus of the lower plateau values of model P ,
Eqs. (2) (solid lines), compared to the corresponding values of the
reduced CH model, Eq. (15) (dashed lines), as a function of the control
parameter ε.

to phase separation is subcritical. That is, we find a jump
from A = 0 to finite plateau values. Moreover, we observe the
phase-separated state already for subcritical control parameter
values. If the asymmetry parameter α3/

√
α4 is of O(

√
ε), both

nonlinear terms in Eq. (15) are of the same order. As Fig. 5
shows, the reduced CH model is a good representation of the
full model up to these moderate asymmetries. For stronger
asymmetries, however, the full model may deviate strongly
from its approximation [41]. That is, the full model may exhibit
either for strong asymmetries or for large values of ε its own
nongeneric “dialect” of active phase separation.

In this work, we identify a generic, system-spanning be-
havior for a number of very different demixing phenomena
in active and living systems—a class of active phase sep-
aration. We have shown that this nonequilibrium transition
is at leading order described by the CH equation [37,38]—
the same equation that usually describes phase separation at
thermal equilibrium. All models in this class have three central

FIG. 5. Upper and modulus of the lower plateau values of the
full (dashed lines) vs reduced model (solid lines) as a function of the
asymmetry parameter M at a fixed control parameter value ε = 0.01.

properties in common: First, the slow mode growing out of a
homogeneous basic state is conserved. Second, the slow mode
follows the dispersion relation in Eq. (5). Third, nonlinearities
up to third order in the order-parameter fields are sufficient near
onset of active phase separation. These conditions ensure the
correct signs of the coefficients αi in the CH equation, Eq. (15).
Furthermore, we introduced a perturbative reduction scheme
that allows a direct derivation of the CH equation from system-
specific nonequilibrium models. With this mathematical link,
we can also determine the system-specific values of the coef-
ficients in the CH model. This even allows for a quantitative
comparison between the CH model and the original model
equations. Note that the derived CH model follows potential
dynamics [38], even though the system-specific equations—
as the starting point of the reduction—are nonpotential
systems.

We verified our generic approach by applying it explicitly to
two active matter systems: a minimal model of cell polarization
and a model for clustering in chemotactic cell communities.
We found a convincing validity range of the generic CH
equation as a representation of a cell polarization model
near onset. Beyond the system-specific validity range of the
CH model further interesting individual “dialects” of active
phase separation may come into play. These include, for
instance, the effects of higher-order nonlinearities covered by
the full system-specific models. The so-called “active model
B,” for example, was recently introduced for modeling the
nonequilibrium phenomenon “motility-induced phase sepa-
ration’ (MIPS) by a single mean field [42,43]. It includes
the higher-order nonlinearity �[∇A(r)]2 ∝ ε3. This additional
contribution renders the active model B nonintegrable [42] (see
Supplemental Material [41] for a more detailed discussion of
integrability with higher-order nonlinearities). However, this
higher-order contribution becomes negligible near the onset of
active phase separation, i.e., the validity range of the generic
CH model. For some systems, fluctuations may also become
relevant—especially for the coarsening dynamics in low spatial
dimensions. This is similar to coarsening in equilibrium phase
separation [38].

Our work also suggests the universality of phase separation
processes—whether in or out of equilibrium. Their shared
characteristics at leading order are reflected in the joint rep-
resentation by the CH model. Our insights justify the recent
usage of the CH equation as a phenomenological model for the
clustering phenomenon observed for mussels [28] and further
nonequilibrium demixing phenomena.

We expect our generic reduction to the CH model to work
for further systems showing active phase separation. These
include active colloids [18,21,43], active matter systems [22],
or ion channels [27]. We anticipate these systems to also
show the fingerprints of the class of active phase separation
we introduced here for systems with a conserved order pa-
rameter. In this sense, our results are a conceptual parallel
to the Ginzburg-Landau equation for an unconserved order
parameter [30,34–36], which captures the essence of nonequi-
librium stripe patterns near onset and also follows potential
dynamics.

Our generic approach is a starting point for further inves-
tigations of nonequilibrium phenomena in systems with con-
served quantities. Possible generalizations are order-parameter
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models that also cover systems with more general dispersion
relations than in Eq. (5) (see, e.g., Refs. [44,45]) or oscillatory
phase separation phenomena.
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are gratefully acknowledged.

[1] D. S. Johnston and J. Ahringer, Cell 141, 757 (2010).
[2] B. J. Thompson, Development 140, 13 (2013).
[3] N. W. Goehring and S. W. Grill, Trends Cell Biol. 23, 72 (2013).
[4] A. Jilkine, A. F. M. Marée, and L. Edelstein-Keshet, Bull. Math.

Biol. 69, 1943 (2007).
[5] M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki, and

S. Kuroda, PLoS Comput. Biol. 3, e108 (2007).
[6] Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Biophys. J. 94,

3684 (2008).
[7] A. B. Goryachev and A. V. Pokhilko, FEBS Lett. 582, 1437

(2008).
[8] A. Jilkine and L. Edelstein-Keshet, PLoS Comput. Biol. 7,

e1001121 (2011).
[9] B. Rubinstein, B. D. Slaughter, and R. Li, Phys. Biol. 9, 045006

(2012).
[10] P. K. Trong, E. M. Nicola, N. W. Goehring, K. V. Kumar, and

S. W. Grill, New J. Phys. 16, 065009 (2014).
[11] S. Alonso and M. Bär, Phys. Biol. 7, 046012 (2010).
[12] N. W. Goehring, P. K. Trong, J. S. Bois, D. Chowdhury, E. M.

Nicola, A. A. Hyman, and S. W. Grill, Science 334, 1137
(2011).

[13] E. F. Keller and L. A. Segel, J. Theor. Biol. 26, 399 (1970).
[14] E. F. Keller and L. A. Segel, J. Theor. Biol. 30, 225 (1971).
[15] M. J. Tindall, P. K. Maini, S. L. Porter, and J. P. Armitage, Bull.

Math. Biol. 70, 1570 (2008).
[16] T. Hillen and K. J. Painter, J. Math. Biol. 58, 183 (2009).
[17] M. Meyer, L. Schimansky-Geier, and P. Romanczuk, Phys. Rev.

E 89, 022711 (2014).
[18] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.

Chaikin, Science 339, 936 (2013).
[19] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and

T. Speck, Phys. Rev. Lett. 110, 238301 (2013).
[20] J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and

M. E. Cates, Phys. Rev. Lett. 111, 145702 (2013).
[21] T. Speck, J. Bialké, A. M. Menzel, and H. Löwen, Phys. Rev.

Lett. 112, 218304 (2014).
[22] J. S. Bois, F. Jülicher, and S. W. Grill, Phys. Rev. Lett. 106,

028103 (2011).
[23] A. Y. Grosberg and J. F. Joanny, Phys. Rev. E 92, 032118 (2015).
[24] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates,

Phys. Rev. Lett. 114, 018301 (2015).

[25] S. N. Weber, C. A. Weber, and E. Frey, Phys. Rev. Lett. 116,
058301 (2016).

[26] J. Smrek and K. Kremer, Phys. Rev. Lett. 118, 098002 (2017).
[27] P. Fromherz and B. Kaiser, Europhys. Lett. 15, 313 (1991).
[28] Q.-X. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P. M. J.

Herman, M. Rietkerk, and J. van de Koppel, Proc. Natl. Acad.
Sci. USA 110, 11905 (2013).

[29] P. Ball, The Self-Made Tapestry: Pattern Formation in Nature
(Oxford University Press, Oxford, 1998).

[30] M. C. Cross and H. Greenside, Pattern Formation and Dynamics
in Nonequilibrium Systems (Cambridge University Press,
Cambridge, 2009).

[31] S. Kondo and T. Miura, Science 329, 1616 (2010).
[32] E. Meron, Nonlinear Physics of Ecosystems (CRC Press, Boca

Raton, FL, 2015).
[33] I. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[34] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[35] A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969).
[36] L. A. Segel, J. Fluid Mech. 38, 203 (1969).
[37] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[38] A. J. Bray, Adv. Phys. 43, 357 (1994).
[39] L. Wolpert, Principles of Development (Oxford University Press,

Oxford, 2002).
[40] The introduction of two timescales is a mathematical necessity to

solve the following hierarchy of Eqs. (13). There the solvability
condition in the order ε2 demands the introduction of an
additional timescale T3. In the final Eqs. (15) and (17), this
timescale leads to the additional quadratic term compared to
the classical Cahn-Hillard model.

[41] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.98.020603 for more detailed calculations,
simulation methods, and discussions about strong asymmetries
and higher-order nonlinearities.

[42] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.
Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351 (2013).

[43] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter Phys.
6, 219 (2015).

[44] S. M. Murray and V. Sourjik, Nat. Phys. 13, 1006 (2017).
[45] F. Meng, D. Matsunaga, and R. Golestanian, Phys. Rev. Lett.

120, 188101 (2018).

020603-5

https://doi.org/10.1016/j.cell.2010.05.011
https://doi.org/10.1016/j.cell.2010.05.011
https://doi.org/10.1016/j.cell.2010.05.011
https://doi.org/10.1016/j.cell.2010.05.011
https://doi.org/10.1242/dev.083634
https://doi.org/10.1242/dev.083634
https://doi.org/10.1242/dev.083634
https://doi.org/10.1242/dev.083634
https://doi.org/10.1016/j.tcb.2012.10.009
https://doi.org/10.1016/j.tcb.2012.10.009
https://doi.org/10.1016/j.tcb.2012.10.009
https://doi.org/10.1016/j.tcb.2012.10.009
https://doi.org/10.1007/s11538-007-9200-6
https://doi.org/10.1007/s11538-007-9200-6
https://doi.org/10.1007/s11538-007-9200-6
https://doi.org/10.1007/s11538-007-9200-6
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1529/biophysj.107.120824
https://doi.org/10.1529/biophysj.107.120824
https://doi.org/10.1529/biophysj.107.120824
https://doi.org/10.1529/biophysj.107.120824
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1088/1478-3975/9/4/045006
https://doi.org/10.1088/1478-3975/9/4/045006
https://doi.org/10.1088/1478-3975/9/4/045006
https://doi.org/10.1088/1478-3975/9/4/045006
https://doi.org/10.1088/1367-2630/16/6/065009
https://doi.org/10.1088/1367-2630/16/6/065009
https://doi.org/10.1088/1367-2630/16/6/065009
https://doi.org/10.1088/1367-2630/16/6/065009
https://doi.org/10.1088/1478-3975/7/4/046012
https://doi.org/10.1088/1478-3975/7/4/046012
https://doi.org/10.1088/1478-3975/7/4/046012
https://doi.org/10.1088/1478-3975/7/4/046012
https://doi.org/10.1126/science.1208619
https://doi.org/10.1126/science.1208619
https://doi.org/10.1126/science.1208619
https://doi.org/10.1126/science.1208619
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1016/0022-5193(71)90050-6
https://doi.org/10.1016/0022-5193(71)90050-6
https://doi.org/10.1016/0022-5193(71)90050-6
https://doi.org/10.1016/0022-5193(71)90050-6
https://doi.org/10.1007/s11538-008-9322-5
https://doi.org/10.1007/s11538-008-9322-5
https://doi.org/10.1007/s11538-008-9322-5
https://doi.org/10.1007/s11538-008-9322-5
https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1007/s00285-008-0201-3
https://doi.org/10.1103/PhysRevE.89.022711
https://doi.org/10.1103/PhysRevE.89.022711
https://doi.org/10.1103/PhysRevE.89.022711
https://doi.org/10.1103/PhysRevE.89.022711
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.106.028103
https://doi.org/10.1103/PhysRevLett.106.028103
https://doi.org/10.1103/PhysRevLett.106.028103
https://doi.org/10.1103/PhysRevLett.106.028103
https://doi.org/10.1103/PhysRevE.92.032118
https://doi.org/10.1103/PhysRevE.92.032118
https://doi.org/10.1103/PhysRevE.92.032118
https://doi.org/10.1103/PhysRevE.92.032118
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.116.058301
https://doi.org/10.1103/PhysRevLett.116.058301
https://doi.org/10.1103/PhysRevLett.116.058301
https://doi.org/10.1103/PhysRevLett.116.058301
https://doi.org/10.1103/PhysRevLett.118.098002
https://doi.org/10.1103/PhysRevLett.118.098002
https://doi.org/10.1103/PhysRevLett.118.098002
https://doi.org/10.1103/PhysRevLett.118.098002
https://doi.org/10.1209/0295-5075/15/3/014
https://doi.org/10.1209/0295-5075/15/3/014
https://doi.org/10.1209/0295-5075/15/3/014
https://doi.org/10.1209/0295-5075/15/3/014
https://doi.org/10.1073/pnas.1222339110
https://doi.org/10.1073/pnas.1222339110
https://doi.org/10.1073/pnas.1222339110
https://doi.org/10.1073/pnas.1222339110
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1126/science.1179047
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1017/S0022112069000176
https://doi.org/10.1017/S0022112069000127
https://doi.org/10.1017/S0022112069000127
https://doi.org/10.1017/S0022112069000127
https://doi.org/10.1017/S0022112069000127
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
http://link.aps.org/supplemental/10.1103/PhysRevE.98.020603
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1038/nphys4155
https://doi.org/10.1038/nphys4155
https://doi.org/10.1038/nphys4155
https://doi.org/10.1038/nphys4155
https://doi.org/10.1103/PhysRevLett.120.188101
https://doi.org/10.1103/PhysRevLett.120.188101
https://doi.org/10.1103/PhysRevLett.120.188101
https://doi.org/10.1103/PhysRevLett.120.188101



