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Talent and experience shape competitive social hierarchies
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The hierarchy of social organization is a ubiquitous property of animal and human groups, linked to resource
allocation, collective decisions, individual health, and even to social instability. Experimental evidence shows
that both the intrinsic abilities of individuals and social reinforcement processes impact hierarchies; existing
mathematical models, however, focus on the latter. Here, we develop a rigorous model that incorporates both
features and explore their synergistic effect on stability and the structure of hierarchy. For pairwise interactions,
we show that there is a trade-off between relationship stability and having the most talented individuals in the
highest ranks. Extending this to open societies, where individuals enter and leave the population, we show that
important societal effects arise from the interaction between talent and social processes: (i) Despite a positive
global correlation between talent and rank, paradoxically, local correlation is negative, and (ii) the removal of an
individual can induce a series of rank reversals. We show that the mechanism underlying the latter is the removal
of an older individual of limited talent, who nonetheless was able to suppress the rise of younger, more talented
individuals.
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Introduction. Hierarchy is a central organizing principle
of complex systems, manifesting itself in various forms in
biological, social, and technological systems [1]. Therefore,
to understand complex systems, it is crucial to quantitatively
describe hierarchies [2–5] and to identify their origins and
benefits [6,7]. Among the various forms of hierarchy, here
we are concerned with social hierarchies emerging through
competition, including dominance and status hierarchies or
socioeconomic stratification [8,9]. Ultimately, such a hierarchy
represents a ranking of individuals based on social consensus:
A high ranking individual is expected to win a conflict against
a low ranking one. This type of organization is present in
societies ranging from insects to primates and humans [3,10–
12], and has been linked to resource allocation, individual
health, collective decisions, and social stability [7,13–15].

The prevalence of social hierarchies has motivated a long
history of theoretical research in statistical physics and math-
ematical biology [6,16–19]. The unifying theme in explaining
the emergence of hierarchies is the positive reinforcement
of differences known as the winner effect: Initially, equally
ranked individuals repeatedly participate in pairwise compe-
titions, and after an individual wins, the probability that they
win later competitions increases. Conditions for hierarchies to
emerge under this mechanism and their structure have been
thoroughly investigated [9,11,18–20].

Yet, from experiments focusing on animal groups, we
known that in addition to social reinforcement, intrinsic
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attributes also play a critical role in hierarchy formation [9,11].
The relative strength of the two effects depends on context;
however, it was observed that they both affect hierarchies
ranging from species with relatively simple social interactions,
such as cichlid fish [21], to species that form highly complex
societies, such as primates [13,22].

Despite the clear indication from experiments that both
talent and reinforcement matter, we are lacking a general
theoretical understanding of their synergistic impact [23,24].
Here, we develop a rigorous model incorporating both and
show that this captures a much richer landscape. For pairwise
interactions, we show a trade-off between relationship stability
and having more talented individuals be the high-ranked
leaders. We then extend the model to open populations, where
individuals enter and leave the group, and we characterize both
the global and the local structure of hierarchies.

Another pressing issue is to understand the response of hi-
erarchical structure to perturbation, e.g., the effect of removing
an individual. In particular, animal behavior experts must often
make strategic decisions to remove individuals from captive
societies due to health issues or in an attempt to promote
social stability, which sometimes lead to an unanticipated
reorganization of hierarchy and even societal collapse [14,25].
We show herein that if either talent or social reinforcement
dominates hierarchy formation, the associated models predict
a smooth response and no rearrangement. It is only if their
effects are equally important, that the removal of an individual
can lead to a nontrivial series of rank reversals.

Model. Our starting point is a classic model by Bonabeau
et al. that considers only social reinforcement [6]. It describes a
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group with N members, where the rank of each member is de-
termined by its ability to defeat others in pairwise competitions.
This ability is quantified by a score xi (t ), where the subscript
indexes the individuals. The scores are initially identical
[xi (t = 0) ≡ 0] and they change through two discrete-time
processes. The first is through positive feedback: In each time
step, participants are randomly paired to compete with each
other, and the winner increases its score by δ. Individual i

wins against j with probability

Qij (t ) = 1

1 + exp[−β(xi (t ) − xj (t ))]
, (1)

where β is an inverse temperaturelike parameter: For large β

the outcome of the fight is deterministic, and for β = 0 both
parties have an equal chance to win. The second process is
forgetting: The effect of a fight wears off exponentially, i.e.,
xi (t ) is reduced by μxi (t ) (0 � μ � 1) in each time step.
Describing the full process with the deterministic equation

xi (t + 1) = (1 − μ)xi (t ) + δ

N − 1

∑
j �=i

Qij (t ), (2)

it was shown that, depending on the relative strength of
reinforcement and decay, the model supports either egalitarian
(xi ≡ 0) or hierarchical (xi �≡ 0) steady state solutions [6,26].

To introduce intrinsic attributes, we offset the score of each
participant in Eq. (1) by base abilities bi and bj ,

Qij (t ) = 1

1 + exp[−β(xi (t ) + bi − xj (t ) − bj )]
. (3)

Parameter b quantifies talents that are independent of social
processes, yet are relevant to conflict outcomes, such as
strength or intelligence. This modification, although formally
simple, requires a different mathematical description and leads
to a series of nontrivial behaviors and unanticipated emergent
properties.

Two individuals. To understand the consequences of intrin-
sic differences, it is insightful to first investigate a population
of N = 2. The deterministic equation describing the steady
state is

0 = −μ�x + δ

(
2

1 + exp [−β(�x + �b)]
− 1

)
, (4)

where �x = x1 − x2 and �b = b1 − b2 � 0. Introducing di-
mensionless quantities �x̄ = β�x, �b̄ = β�b, and ε =
μ/(δβ ) leads to

0 = −ε�x̄ + 2

1 + exp[−�x̄ − �b̄]
− 1, (5)

meaning that the steady state is determined by the talent
difference and a single parameter ε measuring the relative
strength of decay to social reinforcement [27].

Systematically changing ε, we observe a transition at
εc(�b̄) separating regimes with one and two stable solu-
tions; the nature of the transition depends on the presence
of intrinsic differences. If �b̄ = 0 [Fig. 1(a), black line], we
recover the original model: For ε > εc(0) we find one solution,
representing the egalitarian state �x̄ = 0, and at εc(0) two
symmetric hierarchical solutions (�x̄1 = −�x̄2 �= 0) emerge
through a pitchfork bifurcation. If �b̄ > 0 [Fig. 1(a), red line]:
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FIG. 1. Fairness and stability (N = 2). (a) Score difference as
a function of ε, without (solid black) and with a difference in
talent (dashed and dotted red). If �b > 0, for large ε only one
hierarchical solution exists corresponding to the fair ranking, i.e.,
rank is determined by talent (dashed); and through a discontinuous
transition at εc (vertical line) a new solution emerges corresponding
to the opposite, unfair ordering (dotted). (b) The probability Q that
the dominant defeats the subordinate quantifies the stability of a
hierarchical relationship; as ε decreases, social stability increases.
Shown for the fair (dashed) and unfair (dotted) states. (c) Critical
point εc as a function of �b̄.

For ε > εc(�b̄) we again find just one solution; this solution,
however, is not egalitarian (�x̄ > 0), but it is “fair” in that the
more talented individual outranks the less talented. At εc(�b̄) a
new stable solution appears through a discontinuous transition
supporting the opposite order, which is “unfair,” meaning that
the less talented outrank the more talented. In other words,
social reinforcement can outpace intrinsic abilities. We call
the �x̄ > 0 solution “fair” and the �x̄ < 0 one “unfair,” since
high-ranked individuals tend to have better access to resources,
more impact on collective decisions, and a higher chance to
foster offspring.

Figure 1(c) shows the dependence of εc on �b̄. In general,
no closed-form solution is available; limiting cases, however,
can be worked out analytically: For small differences we find
(εc − 1/2) ∼ �b̄2/3 and for large differences εc = �b̄

−1. The
latter indicates that increasing talent difference or decreasing
reinforcement pushes the system to a regime where only the
fair solution exists. Since the fair solution intuitively benefits
society, this prompts the following question: What is the role
of social reinforcement?

To answer this question, we quantify the stability of a
dominant-subordinate relationship with Q, the probability that
the dominant wins a conflict, Q ≈ 1/2 indicates an unstable
relationship, and Q ≈ 1 a well-defined relationship. Stable
relationships reduce overall aggression and are positively
associated with individual health [15]. Figure 1(b) shows that
strong social reinforcement (high δ and thus low ε) increases
Q, revealing a fundamental trade-off between stability and fair-
ness: Stable relationships require a strong social reinforcement;
however, strong reinforcement allows for unfair hierarchical
states. A similar trade-off was experimentally observed in
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rankings of products in a marketplace competing for the
attention of consumers: Strong social reinforcement led to less
accuracy in selecting the highest-quality product, and to larger
differences in market share [28].

Open populations. So far, we have focused on the rela-
tionship of two individuals, but now we turn our attention to
larger, changing populations. We study groups of N individuals
where the talent of each individual is drawn randomly from a
distribution p(b). We initially allow the population to reach
a stable ranking. Then, in each step, we remove a random
individual and add a new member i to the bottom of the society,
i.e., xi = 0, and again allow the population to reach a stable
ranking.

For simplicity we restrict our investigation to the β → ∞
limit, in which case Qij becomes a step function. This allows
us to explicitly formulate the condition for two consecutively
ordered individuals to reverse ranks during the evolution of the
hierarchy [29],

b(k + 1) − b(k) > �x ≡ δ

μ(N − 1)
, (6)

where b(k) is the talent of the individual ranked kth (note that
k = 1 is the top and k = N is the bottom rank); and �x is
the score difference of two consecutively ranked individuals
x(k) − x(k + 1) which turns out to be independent of their
ranks [29]. Therefore, �x is the additional talent needed to
overcome the advantage of having higher rank. Parameters δ

and μ only effect the system through �x; therefore, treating
�x as a parameter completely specifies the dynamics. The
β → ∞ limit allows us to study a simplified representation of
the dynamics in Eqs. (2) and (3): We check each consecutively
ranked individual and if Eq. (6) is satisfied, we reverse their
order; we repeat this until no more pairs are reversed. In
the Supplemental Material, we derive various properties of
the hierarchy through exact combinatorics and mean-field-like
approximations [29].

The talent b of an individual represents an intrinsic ability
or a combination of abilities that influence the outcome of a
fight. In our analysis we derive a number of properties of social
hierarchies for general continuous talent distribution p(b),
including heavy-tailed distributions. Whenever specific p(b)
is necessary for calculations or simulations, we focus on the
standard normal distribution. Indeed, body size, intelligence,
and other relevant abilities are often normally distributed.

We now systematically investigate the structure of the
emergent hierarchy as a function of �x, the additional talent
difference needed to overcome rank difference. We measure
the correlation between rank and talent (τtal) and between
rank and experience (τexp) using Kendall’s tau coefficient,
where experience is the amount of time an individual has
spent in the population. For example, τtal = 1 indicates talent
completely determines rank and τtal = 0 indicates no corre-
lation. Analytical calculations and simulations show that for
large �x, rank is dominated by experience, meaning that the
only way to advance in the hierarchy is if a higher ranking
individual is removed; and for small �x rank is dominated by
talent [Fig. 2(a)]. These two limiting cases are separated by
a regime where both talent and experience matter, and theory
predicts that the crossover point, where τtal = τexp = 1/2, is
�xc ≈ 0.36 for N = 100.
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FIG. 2. Talent-rank correlation. (a) Kendall’s tau as a function
of �x. Global talent-rank (red circles) and experience-rank (green
squares) correlation shows a crossover between talent and experience
dominated limiting cases. Counterintuitively, we find that locally
talent and rank are anticorrelated (blue triangles) as shown for local
windows of increasing size w. (b) Local rank-talent anticorrelation.
In the crossover regime, the expected talent increases with rank (top
panel), yet the probability that an individual’s immediate superior is
less talented is greater than 1/2 (bottom panel). In (a) and (b), results
are shown for populations of N = 100, where continuous lines are
analytical solutions [29]. Data points are simulations of the dynamics
defined in Eq. (6), representing an average of 10 000 independent
samples and error bars provide the 95% confidence interval (CI).

The experimental measurement of τtal is challenging since
it requires exact identification of the relevant talents; deter-
mining τexp, however, is straightforward. Indeed, Tung et al.
established small captive groups of macaques by introducing
animals one by one into an enclosure and found that the
Spearman’s correlation between rank and experience is ρexp =
0.61, demonstrating that some real systems are in fact near the
crossover point [13].

In addition to global correlations, we also quantify local
orderedness by calculating τtal(w), the talent-rank correlation
averaged over a sliding window of length w. Counterintu-
itively, Fig. 2(a) shows that in the crossover regime τtal(w)
is negative, meaning that locally rank and talent are anti-
correlated. Figure 2(b) provides an additional aspect of this
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FIG. 3. Removal of a group member. In the limiting cases of talent
and experience dominated societies, removal has a trivial effect, while
in the crossover regime the removal of an individual causes rank
reversals with finite probability (top panel). The average number of
rank reversals Ndiff peaks near �xc (bottom panel). Results are shown
for populations of N = 100, where continuous lines are analytical
solutions [29]. Data points are simulations of the dynamics defined in
Eq. (6), representing an average of 50 000 time steps and error bars
provide the 95% CI.

paradox situation: The expected talent 〈b(k)〉 of an individual
ranked kth at a random time step monotonically increases with
rank, yet the probability that the (k − 1)th individual, the one
immediately outranking the kth, is less talented than the kth is
greater than 1/2.

To understand the mechanism producing the local anticor-
relation, first consider two consecutive individuals forming an
ordered pair with respect to talent, i.e., b(k) < b(k − 1). If a
new individual arrives with talent b such that b(k) + �x < b

and b(k − 1) < b < b(k − 1) + �x, it can pass the kth indi-
vidual, but cannot pass the (k − 1)th, lodging itself between
the two and creating an unordered pair. Once an unordered pair
exists, i.e., b(k) > b(k − 1), any individual passing the kth will
necessarily pass the (k − 1)th, too. Therefore, an unordered
pair will remain unordered until one of the pair is removed.
This asymmetry in creating ordered and unordered pairs is
responsible for the local anticorrelation.

Finally, we also investigate the effect of removing an
individual. We find that in the talent or experience dominated
limiting cases the system’s response is trivial and no reorgani-
zation happens. However, Fig. 3 shows that prr, the probability
that removal of an individual induces rank reversals, is nonzero
in the crossover regime. For N = 100, both prr and the average
number of these rank reversals Ndiff peak near, but not exactly
at, the crossover point �xc. For removal-induced rank reversals
to happen, at least three consecutively ranked individuals are
needed in opposite order with respect to talent, i.e., b(k + 1) >

b(k) > b(k − 1). If the condition b(k + 1) − b(k − 1) > �x

is satisfied, the removal of the kth individual allows the
(k + 1)th to pass the (k − 1)th, which can lead to a series of
rank reversals. In other words, the kth individual is not talented

enough to further advance in society, but is capable of holding
back a younger, more talented contender.

Understanding the response of hierarchies to external per-
turbation is an important issue. Particularly, the removal of
animals from primate groups can sometimes lead to large shifts
in hierarchy and instabilities endangering the group [14,25].
Here, we demonstrated that traditional models of hierarchy
formation, those only considering either intrinsic abilities or
social feedback, predict a trivial response to removal, and that
both effects have to be present simultaneously to observe rank
reversals.

So far we have focused on populations of N = 100 indi-
viduals. In the Supplemental Material, we extract the scaling
behavior of various properties for large N [29]. Local quan-
tities, such as τtal(2) and prr, scale as τtal(2) = τ

(1)
tal (2, N�x)

and prr = p(1)
rr (N�x) for small �x, and are independent of N

for large �x, i.e., τtal(2) = τ
(2)
tal (2,�x) and prr = p(2)

rr (�x).
The location of their extreme value is at the crossover of these
two regimes and in case of normal talent distribution scales as
∼(ln N )1/6/N1/3. We find universal bounds

τtal(2) � −2 ln 2 + 1,

prr � 0.294 . . . , (7)

for any continuous unbounded talent distribution, and these
bounds are reached in the large population limit. For global
talent correlation, on the other hand, we find that τtal → 1
if

√
N�x → 0 and τtal → 0 if

√
N�x → ∞. Therefore,

the crossover point where τtal = τexp = 1/2 scales as �xc ∼
1/

√
N . The average number of rank reversals Ndiff depends

on global correlations, and peaks near the crossover point
�xc. Note that in the parametrization of the model, provided
in Eq. (6), �x = δ/[μ(N − 1)], meaning that for N → ∞,
global correlation becomes talent dominated and local cor-
relation may become negative depending on the value of
N�x. Other scalings of �x are also possible through an
adjustment of δ or μ, or if individuals do not randomly select
opponents, but selectively compete with similarly ranked ones.
The properties we observed for finite hierarchies may become
more pronounced in the large population limit, for example, if

TABLE I. Structure of hierarchy in the large population limit
assuming �xNα = C. The numerical values are valid for any con-
tinuous unbounded talent distribution, while the scaling functions
are specific to the talent distribution and are calculated in the
Supplemental Material [29].

In the limit of N → ∞
τtal τexp τtal(2) prr Ndiff/N

1 < α 1 0 1 0 0

α = 1 1 0 τ
(1)
tal (2, C) p(1)

rr (C ) 0

1/2 < α < 1 1 0 −2 ln 2 + 1 0.294 . . . 0

α = 1/2 τtal(C ) 1 − τtal(C ) −2 ln 2 + 1 0.294 . . . f (C )

0 < α < 1/2 0 1 −2 ln 2 + 1 0.294 . . . 0

0 = α 0 1 τ
(2)
tal (2, C) p(2)

rr (C ) 0

α < 0 0 1 0 0 0
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N�x → ∞ but
√

N�x → 0, global correlation τtal converges
to one, while local correlation approaches its theoretical mini-
mum. In Table I, we provide a detailed enumeration of possible
behavior in the large population limit assuming �xNα = C,
where C > 0 is constant.

Discussion. We studied the synergistic effect of talent and
social reinforcement on the structure of competitive social hi-
erarchies, and we identified behaviors that cannot be observed
if either effect dominates. Although we derived our model
assuming pairwise conflicts and a winner effect, we believe
that the results can be interpreted more generally: (i) The
mechanism behind both local talent-rank anticorrelation and
removal-induced rank reversals is that to pass someone in rank
it is not enough to be more talented, but the talent difference has
to be sufficient to compensate for the advantage of being higher
ranked—a process relevant to many systems, where examples
might include rankings of scientists, bestseller lists, or sports

rankings. (ii) We introduced parameter b to capture individual
talents; however, it can be thought of as a proxy for support of
kin or as a simplified model of reputation received in exchange
for nonadversarial social interactions.

Finally, our results prompt many research questions, both
experimental and theoretical. For example, local anticorrela-
tion and removal-induced rank reversals are predictions that
are testable through experiments. Future theoretical work may
investigate sources of complexity not captured by our model,
for example, the role of aging or slow deterioration of talent,
or nonlinear hierarchies, where social tiers are occupied by
multiple individuals.
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