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We present a complete theory for the full particle statistics of the positions of bulk and extremal particles in
a one-dimensional Coulomb gas (CG) with an arbitrary potential, in the typical and large deviations regimes.
Typical fluctuations are described by a universal function which depends solely on the general properties of
the external potential. The rate function controlling large deviations is, rather unexpectedly, not strictly convex
and has a discontinuous third derivative around its minimum for both extremal and bulk particles. This implies,
in turn, that the rate function cannot predict the anomalous scaling of the typical fluctuations with the system
size for bulk particles, and it may indicate the existence of an intermediate phase in this case. Moreover, its
asymptotic behavior for extremal particles differs from the predictions of the Tracy-Widom distribution. Thus
many of the paradigmatic properties of the full particle statistics of Dyson log gases do not carry over into their
one-dimensional counterparts, hence proving that one-dimensional CG belongs to a different universality class.
Our analytical expressions are thoroughly compared with Monte Carlo simulations, showing excellent agreement.
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As universality is one of the pillars of modern theoretical
physics, an important goal is to understand under which con-
ditions universal properties do emerge in strongly correlated
systems, together with their range of validity. In order to
pursue an answer to this poignant question, one uses classical
ensembles of random matrices as a mathematical laboratory
to test possible ideas, as the joint probability density of their
eigenvalues offers a correlated system which, moreover, is
simple enough to be amenable to a thorough and rigorous
mathematical treatment. This can quite generally be written
as

P (x) = CNe− β

2 (V (x)−∑
i �=j log(|xi−xj |)), (1)

with x = {xi}Ni=1, CN is a normalization constant, and V (x) is
a function depending on the particular ensemble [1,2]. Physi-
cally, Eq. (1) can be identified as the two-dimensional Coulomb
interacting system N charged particles, constrained to move
along a single direction, with an external potential V (x), the
so-called Dyson’s log gas [3]. Using path integral methods, this
Coulomb fluid picture has been used to study the asymptotic
behavior of the statistics of extreme and bulk eigenvalues in
several classical ensembles [4–19]. In particular, the statistics
of extremal eigenvalues follows a universal behavior governed
by the Tracy-Widom (TW) distribution [20,21], while the
typical fluctuations of bulk eigenvalues scale logarithmically
with the system size rather than linearly [22,23]. The main
physical reason behind these, and other findings, has been
well established by now and corresponds to abrupt changes,

or phase transitions, on the different mechanisms governing
the statistical fluctuations.

The validity of this ubiquitous statistical behavior has been
further explored in other correlated systems inspired mainly in
ensembles of random matrices by either considering noninvari-
ant ensembles [24–26] or by probing correlated systems similar
to that in Eq. (1) but with a different interparticle interaction.
An important result on the latter was considered in Ref. [27],
where it was shown that there is a discontinuity in the third
derivative of the rate function describing the large deviations
of the extremal particle in a Coulomb gas (CG) confined by
an arbitrary external central potential for any dimension, thus
pinpointing a universal third-order phase transition, according
to the Ehrenfest criterion. Moreover, in Ref. [28] it has been
shown that when the one-dimensional (1D) CG is subjected to
an external harmonic potential, the statistics of the rightmost
particle exhibits a different distribution from the TW around
its typical value. Interestingly, this system corresponds to the
so-called jellium model or the one-dimensional component
plasma [29,30], with many important applications in colloidal
suspensions and polyelectrolyte solutions [31–33], and has
been studied on distinct scenarios as many relevant quantities
can be calculated exactly [34–37]. These recent results make
clear that the study of CG with different dimensionality
may provide either a deeper understanding of their shared
universal properties or give rise to new behaviors that con-
trast the traditional, celebrated ones of random matrix theory
(RMT).
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To show that many universal features of the CG are indeed
sensitive to the physical dimensions of the system, we present
here the complete solution of the full particle statistics of
the 1D case with an arbitrary external potential, obtaining
exact expressions for both the typical or large fluctuations
regimes. To be specific, we consider a Hamiltonian of the
form

H(x) = N2
N∑

i=1

v(xi ) − Nα

1,N∑
i<j

|xi − xj |, (2)

where the choice of the powers of N ensures that we have a
nontrivial contribution in the thermodynamic limit. Clearly, to
have a confined configuration, v(x) must be a convex function,
but an upper bound on α might also be required to guarantee
that v(x) dominates over the electrostatic repulsion and an
equilibrium particle density ρeq(x) is attained [27,28,38]. As
the Hamiltonian in Eq. (2) is invariant under the permutation
of particles, we will henceforth assume that xmin ≡ x1 � x2 �
· · · � xN ≡ xmax. Then the optimal position of the ith particle
x∗

i is thus given by [39]

v′(x∗
i ) = α

N
(2i − N − 1), i = 1, . . . , N, (3)

thus in the thermodynamic limit ρeq(x) has a natural domain
x ∈ [x−, x+], with v′(x±) = ±α. Depending on the external
potential, a restriction on the values of α may be necessary
to obtain a physical solution [39]. In addition, when v(x) is
of class C3, we have that for the Hamiltonian of Eq. (2),
the typical fluctuations regime correspond to deviations of
order O(N−1), while large deviations are of order O(N0)
[27,28,38,39].

To obtain the cumulative distribution function (CDF) of the
typical fluctuations of both the extremal particles and bulk
particles (xK , 1 < K < N) around their average positions,
〈xi〉 = x∗

i , i = 1, . . . , N , we write the probability Prob[x1 <

x2 < · · · < xi < w] = Zc(w; N )/Zc(∞; N ), for a fixed but
arbitrary particle indexed according to i = cN and with
[28,39]

Zc(w; N ) = N !
∫ w

−∞
dxi

i−1∏
j=1

∫ xj+1

−∞
dxj

×
N∏

j=i+1

∫ ∞

xj−1

dxj e
−H(x). (4)

Notice that, since x1 < x2 < · · · xN , the absolute value in
Eq. (2) does not play any role and we can perform a second-
order Taylor expansion H(x) around the minimum x�

i , since
all the remaining terms of the expansion are at least of order
O(N−1) and consequently vanish in the thermodynamic limit.
Defining Wi ≡ Nui (w − x∗

i ), εj ≡ Nuj (xj − x∗
j ), �

(±)
j =

±Nuj (x∗
j±1 − x∗

j ), y (±)
j = uj∓1

uj
εj ± �

(±)
j∓1, and ui = √

v′′(x∗
i ),

the last integral can be approximated as

Zc(w; N ) ≈ N ! e−H(x∗ )

NN
∏N

j=1 uj

∫ Wi

−∞
dεie

− 1
2 ε2

i

×
⎛
⎝i−1∏

j=1

∫ y
(+)
j+1

−∞
dεj e

− 1
2 ε2

j

⎞
⎠
⎛
⎝ N∏

j=i+1

∫ ∞

y
(−)
j−1

dεj e
− 1

2 ε2
j

⎞
⎠.

(5)

Note that the first (second) multiple integral inside the paren-
theses in Eq. (5) is proportional to the CDF of the extremal
particle, being smaller (greater) than xi , but for a smaller
system of size i − 1 (N − i). This suggests that the fluctuations
of the bulk particles can be described in terms of the CDF
of the extremal ones, i.e., c = 1 and c = 0 [39]. To shorten
notation let us write Fc(Wi (w); N ) ≡ Zc(w; N )/Zc(∞; N ).
Then the statistics of xmax, whose CDF is F1(W ; N ), obeys the
following forward differential equation in the thermodynamic
limit [28,34,39]

dF1(W )

dW
= A1 e−W 2/2 F1

(
W + 2α

u+

)
, (6)

where u± = √
v′′(x∗±) and A1 is a constant which is fixed upon

imposing boundary conditions F1(W ) → 1 as W → ∞, and
F1(W ) → 0 as W → −∞. An entirely analogous analysis can
be made for the statistics of the leftmost particle, corresponding
to F0, for which the resulting probability density function
(PDF) is determined by a delayed differential equation.

The typical fluctuations for bulk particles are obtained
by choosing K = cN and considering the thermodynamic
limit while c remains finite. The corresponding CDF, denoted
Fc(W ), obeys the following forward and delayed differential
equation [39],

dFc(W )

dW
= Ac e−W 2/2 F1

(
W + 2α

uc

)
F0

(
W − 2α

uc

)
, (7)

where uc = √
v′′(x) with x such that c = ∫ x

x−
ρeq(y)dy, and

Ac can be obtained by requiring Fc(W ) to be normalized.
Equations (6) and (7) are the first of our main results, for

they provide a complete description of the full set of particles,
now indexed according to c. Second, they show that the joint
contribution of the confining potential v(x) as well as the
electrostatic interaction is captured succinctly by the constants
2α
u±

and 2α
uc

. This means that whenever two ensembles share
the same expression of v′′(x), then their typical statistical
properties are the same and, therefore, described by the
universal function Fc(W ). It is fairly straightforward to show
[39] that the asymptotic behavior of F ′

1(W ) is given by

F ′
1(W ) ∼

{
exp(−W 2/2), W → ∞,

exp
(− u+

12α
|W |3), W → −∞.

(8)

Notice that the right tail, W → ∞, is rather different from the
case of Dyson log gases governed by the asymptotic TW PDF
that decays as e− 3

2 W 3/2
[15]. Similarly, the asymptotic behavior

of the PDF for bulk particles turns out to be

F ′
c(W ) ∼ exp

(
− uc

12α
|W |3

)
, W → ±∞. (9)
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FIG. 1. Top panels: Comparison of the PDFs dFc (W )
dw

obtained by
solving numerically Eqs. (6) and (7) for different values of c (solid
curves) and MC simulations (markers) considering two potentials.
Left panel: v(x ) = x2

2 that corresponds to the classical Gaussian
ensemble. Right panel: v(x ) = 1

2 (x − a log x ), with a > 1, inspired
by the Wishart-Laguerre ensemble. A factor N in the argument of
Fc has been included to magnify the size of the fluctuations. Bottom
panels: Density of the 1D CGs using the same potentials, comparing
the MC samples (cyan histogram) with the analytic expression
for ρeq(x ) of Eq. (13) (black dashed curve). The dashed vertical
lines indicate the position for which the typical fluctuations were
calculated. We used 106 MC steps for a system of N = 500 particles.

As typically large fluctuations are expected to match atypical
small ones, Eq. (9) indicates that the rate function is not
strictly convex and therefore will be unsuitable to describe
the Gaussian-like behavior found in the case of Dyson log
gases [8,16,19,22,23]. Moreover, we will see that the rate
function has a third-order discontinuity. These results show
that the 1D CG belongs to a different universality class than
the one determined by the TW distribution. To conclude
our analysis of the typical fluctuations regime, we present
in Fig. 1 the results obtained by solving numerically the
differential equations above and a comparison with Monte
Carlo (MC) simulations using the Hamiltonian of Eq. (2) for
two paradigmatic potentials of RMT.

To study the large deviations regime for which |w − xi | =
O(1), for any i = 1, . . . , N we use the Coulomb fluid
method [4–19] to compute �(c,w) ≡ Prob[Cw = c], with
Cw = 1

N

∑N
j=1 �(w − xj ), which corresponds to the proba-

bility that exactly cN particles have positions smaller than w.

We start by writing

�(c,w) = 1

�0

∫
dxp(x)δ

(
c − 1

N

N∑
i=1

�(w − xi )

)
, (10)

with p(x) = 1
�0

e−H(x). This can be written as the following
path integral (and two integrals over variables μ and ν)
�(c,w) = 1

�0

∫
D[ρ,μ, ν]e−N3S[ρ,μ,ν] withS being the action

[39],

S[ρ,μ, ν] =
∫

dxρ(x)v(x) − α

2

∫
dxdx ′|x − x ′|ρ(x)ρ(x ′)

−μ

(
1 −

∫
dxρ(x)

)

− ν

(
c −

∫
dx�(w − x)ρ(x)

)
. (11)

Here, μ and ν are Lagrange multipliers to enforce normaliza-
tion in the density ρ and that a fraction c of particles are to the
left of w, respectively. Similarly, the normalization constant
can be written as �0 = ∫

D[ρ0, μ0]e−N3S0[ρ0,μ0] and corre-
sponds, in turn, to a CG without a wall. In the thermodynamic
limit both expressions can be evaluated by the saddle-point
method obtaining �(c,w) ∼ e−N3ψ (c,w), where

ψ (c,w) = S[ρ∗, μ∗, ν∗] − S0[ρ∗
0 , μ∗

0] (12)

is the rate function. Here, ρ∗(x) corresponds physically to
the equilibrium particle density of a system constrained to
have a fraction of particles c to the left of w, while ρ∗

0 (x)
is the unconstrained equilibrium particle density. As noted in
Refs. [16,19], the rate function ψ (c,w) has a dual role, for
it describes the large deviations of Cw, when w is taken as a
parameter or, conversely, the statistics of the ith particle when
ψ is viewed as a function of w.

Noteworthy, the stationarity conditions of S yield an in-
tegral equation that can be solved exactly for any external
potential v(x). The solution for the unconstrained system is
[39]

ρ∗
0 (x) = v′′(x)

2α
I[x− � x � x+], (13)

where I[A] is an indicator function, whose value is 1 whenever
condition A is true. The bottom panels of Fig. 1 show a
comparison of this formula with unconstrained MC samplings.

From a physical perspective, we expect the constrained
density to be similar to ρ∗

0 (x) since by placing a barrier at
w there will only be a local density rise in its vicinity. This is a
consequence of the regularity of the 1D interparticle potential
when particles overlap, in contrast with its 2D counterpart.
Hence we have that once the wall is present, there will be an
accumulation of particles next it, whose magnitude depends
on the fraction of the particles “pushed” by it, compared to the
one of the unconstrained system. The latter one, denoted as
c∗(w), is easily calculated by integrating ρ∗

0 (x) up to w. When
w ∈ [x−, x+] we have c∗(w) = v′(w)+α

2α
and the constrained

equilibrium density results into [39]

ρ∗(x) = v′′(x)

2α
(I[x− � x � a] + I[b < x � x+])

+ |c − c∗(w)|δ(w − x). (14)
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Here, the several parameters involved in Eq. (14) are defined as
follows: x0 is such that v′(x0) = α(2c − 1); when c > c∗(w)
we must take a = w and b = x0, while for c < c∗(w) we
have instead that a = x0 and b = w. For c = c∗(w), the wall
becomes ineffective, and therefore x0 = w, recovering the
unconstrained solution ρ∗

0 (x). Finally, for w < x− (w > x+)
we have that c∗ = 0 (c∗ = 1) and similar expressions for
ρ∗(x) apply. The fact that the resulting equilibrium density
has, in general, an infinitely sharp peak at w as well as a
noncompact and bounded support resembles some well-known
results for the spectral densities of RMT [4–19]. However, in
those systems the effect of introducing the wall significantly
modifies the unconstrained density and obtaining an analytical
expression for ρ∗(x) is only possible in a few exemplary cases.
Surprisingly, this is not longer true for 1D CG, where we have
found the equilibrium density for any convex potential and
any fraction of particles to the left of w. It is important to
mention that so long as v(x) is strong enough to dominate as
|x| → ∞, the equilibrium densities of Eqs. (13) and (14) are
the unique minimizers of the corresponding actions [38], while
the convexity of the potential assures that they are non-negative
functions.

Putting these results together and evaluating Eq. (12) yields
a rather simple expression for the rate function,

ψ (c,w) = |c − c∗(w)|v(w)

2
−

∫ b

a

dx
v′′(x)v(x)

4α

− μ∗ − μ∗
0 + ν∗c
2

, (15)

whenever the wall is inside the natural support w ∈ [x−, x+]
(analogous expressions for w �∈ [x−, x+] together with explicit
formulas are given in Ref. [39]). Figure 2 shows a comparison
of the analytical value of ψ (c,w) and MC estimations of
the rate function for the same two potentials used above.
Importantly, through Eq. (15) we can recover straightforwardly
the results of Refs. [27,28] for the rate functions φ

(±)
M and φ(±)

m

controlling the left and right deviations of the rightmost and
leftmost particles (see Ref. [39] for details). The left panels’
insets of Fig. 2 show the comparison of the rate functions
of extremal particles with MC simulations, while the ones in
the right panels depict a histogram obtained by MC sampling
and the analytical expression for ρ∗(x) according to Eq. (14).
In all cases, the agreement is outstanding. Thus Eq. (15)
provides a general and exact expression for the rate function
of one-dimensional CGs and it constitutes the main result of
this second part.

As it can be explicitly verified from Eq. (15), the rate
function of the 1D CG has the noticeable feature that its first
two partial derivatives vanish at c∗ and w∗, where this latter
quantity is obtained by inverting the relation defining c∗. This
is in stark contrast with the analogous result in RMT, where
the second partial derivatives are different from zero, meaning
that the fluctuations of xi around w∗ (Cw around c∗) are of
Gaussian type [22,23]. Instead, in the 1D case we found that
the third derivatives correspond to the first nonvanishing term
in the expansion of ψ (c,w) around c∗ and w∗. In fact, we have
that

Pr(xi = w) ∼ exp

(
−N3(v′′(w∗))2

12α
|w − w∗|3

)
, (16)
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FIG. 2. Left panels: Comparison between MC simulations (trian-
gular markers) of ψ (c, w) and the exact expression of Eq. (15) (solid
curves) as a function of w. The upper panel shows the results using
the harmonic potential with α = 1 and c = 0.5, while the lower one
corresponds to the Wishart-Laguerre potential with α = 0.25, a = 2,
and c = 0.75. The right (left) inset shows φM (w) [φm(w)], the rate
function for xmax (xmin). The MC estimations of φ

(−)
M (w) and φ (+)

m (w)
have been scaled as N 3, while the other rate functions were scaled as
N 2. Right panels: ψ (c,w) as a function of c, fixing w = 0.2 for the
harmonic potential (upper panel) and w = 2 for the Wishart-Laguerre
one (lower panel). The insets compare MC samples of the constrained
density ρ∗(x ) (orange histograms) with the exact formula (14) (blue
dashed curve), using c = 0.75 in all the cases.

which is straightforward to verify that it matches exactly with
the asymptotic expansion of F ′

c=iN (W ) of Eq. (9). This last
expression implies that the rate function is not analytical
around its minimum, which is flatter than a quadratic one
because of the vanishing second derivatives. We thus end up
with the unusual case of having a rate function that is not strictly
convex nor analytic near its minimum, once again differing
from the features of Dyson log gases. This is not a minor
difference indeed, for it is known [40,41] that a rate function
that is not strictly convex cannot be extended to the regime of
typical fluctuations as in the Dyson log-gas case [19]. In other
words, the 1D CG follows a weak large deviation principle,
for the rate function cannot be expanded to match smoothly
the typical fluctuations regime [40]. A similar behavior has
been found in the two-dimensional Ising system [40,42,43] as
well as for a drifted Brownian motion [44]. In Ref. [39] we
provide further evidence that ψ (c,w) does not provide the
correct description in the regime of typical fluctuations. This
unusual behavior on the statistical properties of bulk particles
may indicate the existence of an intermediate regime, as it
was recently found in the statistical properties of extremal
eigenvalues in the Ginibre ensemble [45]. As a final remark,
our results showed that the rate function for bulk particles in 1D
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CG exhibits a discontinuity in its third derivative and, while
analogous results for extremal particles seem to indicate the
presence of a phase transition, this feature does not necessarily
carry over for bulk particles as fluctuations behave in the same
way at each side of the optimal value x∗, as can be observed
in Eqs. (9) and (16). Thus a phase transition for bulk particles,
if any, must lie in another explanation.
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