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Supercanonical probability distributions
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The canonical probability distribution describes a system in thermal equilibrium with an infinite heat bath. When
the bath is finite the distribution is modified. These modifications can be derived by truncating a Taylor-series
expansion of the entropy of the heat bath, but their form depends on the expansion parameter chosen. We consider
two such expansions, which yield supercanonical (i.e., higher-order canonical) distributions of exponential and
power-law form. The latter is identical in form to the “Tsallis distribution,” which is therefore a valid asymptotic
approximation for an arbitrary finite heat bath, but bears no intrinsic relation to Tsallis entropy.
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The probability that a system in thermal equilibrium with an
infinite heat bath occupies microstate i is given by the canonical
distribution

pi = Z−1 exp{−βEi}, (1)

where Ei is the energy of microstate i, β = 1/Tb, Tb is the
temperature of the heat bath in energy units, and Z(β ) ≡ ∑

i

exp{−βEi} is the canonical partition function. Equation (1)
is widely regarded as the single most important formula
in statistical physics. Our purpose here is to explore the
corrections or modifications to it that arise when the heat bath
is finite. Such corrections represent an important aspect of the
thermodynamics and statistical mechanics of small systems
[1–3], which are experiencing a lively renaissance (e.g., [4–8])
stimulated in part by rapid advances in nanotechnology. Much
of the literature on finite heat baths has been narrowly focused
on the observation that simple ideal heat baths imply power-law
probability distributions of the same form as those obtained by
extremizing the Tsallis entropy [9–11]. This correspondence
has often been interpreted as evidence in support of the Tsallis
entropy, but that inference is unjustified [12].

The probability distribution for a system in thermal equilib-
rium with a finite heat bath is fundamentally given by [13–15]

pi = Wb(E0 − Ei )∑
j Wb(E0 − Ej )

, (2)

whereE0 is the total energy of the system and bath together, and
Wb(E) is the number of bath states with energies in the interval
(E,E+�E), where �E is a macroscopically small but finite
energy tolerance. Equation (2) is based on the hypothesis of
equal a priori probabilities, according to which those bath
states are presumed to be equally probable, and the further
presumption that the heat bath is sufficiently large and complex
that Wb(E) ∼= ωb(E) �E, where ωb(E) is a differentiable
continuous approximation to the true discontinuous density
of bath states [15]. If the heat bath were isolated with energy
E, its entropy Sb, temperature Tb, and heat capacity Cb would
be given by

Sb(E) = log Wb(E), (3)

1

Tb(E)
= ∂Sb

∂E
, (4)

and Cb(E) ≡ (∂Tb/∂E)−1. Note that entropy is dimensionless
when temperature is expressed in energy units, which is for-
mally equivalent to replacing Boltzmann’s constant by unity.
If the heat bath is a proper thermodynamic system, then as it
becomes infinitely large Tb(E) will approach a finite limiting
value, while E itself and Cb(E) become infinite. The latter
divergence reflects the fact that it requires infinite energy to
produce a finite change in the temperature of an infinite system.

The standard derivation of the canonical distribution from
Eq. (2) is based on the assumption that the heat bath is much
larger than the system, so that Ei � E0 and a Taylor series
expansion of Sb(E0 − Ei ) = log Wb(E0 − Ei ) in powers of
Ei can reasonably be presumed to converge rapidly [13].
Equation (1) is then an immediate consequence of truncating
this expansion at the linear term [13–15]. However, this
procedure further implies that Eq. (1) is not exact but is in
principle modified by the higher-order terms in the expansion,
at least for finite values of E0. It is instructive and enlightening
to examine the form of those modifications when the quadratic
term of order E2

i [13–16] is retained. Thus we proceed to
explore the implications of the approximation

Sb(E0 − Ei ) = Sb(E0) − β1Ei − β2E
2
i , (5)

where

β1 ≡
(

∂Sb

∂E

)
0

= 1

T 0
b

, (6)

β2 ≡ −1

2

(
∂2Sb

∂E2

)
0

= β1

2C0
bT

0
b

, (7)

subscript zero denotes evaluation at E = E0, T 0
b ≡ Tb(E0),

and C0
b ≡ Cb(E0). Combining Eqs. (2), (3), and (5), we obtain

pi = Z−1
2 exp

{−β1Ei − β2E
2
i

}
, (8)

where

Z2(β1, β2) ≡
∑

i

exp
{−β1Ei − β2E

2
i

}
. (9)

It follows from Eq. (7) that β2 vanishes for an infinite heat bath,
whereupon Z2(β1, β2) reduces to Z(β ) and Eq. (8) reduces to
Eq. (1). If higher-order terms had been retained in Eq. (5),
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they too would clearly vanish in the same limit. The canonical
distribution therefore becomes exact when the heat bath is
infinite, but not otherwise. Its universality derives from the fact
that the only bath parameter it depends upon is the temperature.

According to Eq. (8), the probabilities pi are unequal, so the
entropy S of the system must be evaluated as the Boltzmann-
Gibbs-Shannon (BGS) entropy

S = −
∑

i

pi log pi, (10)

which contrary to a common misconception is not uniquely or
inherently associated with a canonical (or any other) probabil-
ity distribution [15]. Combining Eqs. (8) and (10), we obtain

S = β1E + β2E2 + log Z2, (11)

where Q ≡ 〈Qi〉 ≡ ∑
i piQi . When β2 = 0, Eq. (11) reduces

to the standard canonical expression for the entropy S. The
quadratic term in Eq. (5) therefore introduces an additional
term β2E2 into the entropy of the system. It follows from
Eq. (9) that

∂ log Z2

∂β1
= − E, (12)

∂ log Z2

∂β2
= − E2, (13)

which combine with Eq. (11) to imply that

dS = β1 dE + β2 dE2. (14)

Note, however, that E2 is not an independent variable, because
E and E2 are both functions of E0, so dE and dE2 are both
simply proportional to dE0 and therefore to each other. Thus
dS is simply proportional to dE, so that the second law of
thermodynamics remains valid in the form dE = T dS, which
defines and determines the temperature T of the system. Thus

1

T
= dS

dE
= β1 + Rβ2 = 1

T 0
b

(
1 + R

2C0
bT

0
b

)
, (15)

where

R ≡ dE2

dE
= dE2/dE0

dE/dE0
. (16)

The parameters β1 and β2 are functions of E0 via Eqs. (6)
and (7), so T can be evaluated by substituting Eq. (9) into
Eqs. (12) and (13), differentiating the results with respect to
E0 using the chain rule, substituting the resulting expressions
for dE/dE0 and dE2/dE0 into Eq. (16) to obtain R, and
combining the result with Eq. (15). Unfortunately, the resulting
expression for T is so complicated that it does not seem useful
or enlightening. Note, however, that Eq. (15) implies that
T �= T 0

b unless the heat bath is infinite, in which case β2 → 0
and C0

b → ∞ as discussed above.
The truncated series expansion in Eq. (5) could readily be

extended to higher order if desired, but the resulting formalism
rapidly becomes so cumbersome that it seems unlikely to be
useful. It is more fruitful to observe that Ei is not the only possi-
ble variable in powers of which Sb(E0 − Ei ) might usefully be
approximated by a truncated Taylor series. As is well known,

Wb(E) in finite ideal systems, such as ideal gases or harmonic
solids, is typically proportional to Eα , where the exponent α is
on the order of the number of particles or degrees of freedom
of the system [9,13–15]. This suggests that faster convergence
might be obtained by regarding Sb(E) = log Wb(E) as a
function of log E rather than E itself. We therefore proceed
to approximate Sb(E) − Sb(E0) by a truncated Taylor series
expansion in powers of log E − log E0. Since E0 will remain
large but finite, the lowest-order correction to the canonical
distribution is obtained by truncating the expansion at the linear
term. Thus we write

Sb(E) = Sb(E0) + α(log E − log E0)

= Sb(E0) + log

(
E

E0

)α

, (17)

where

α ≡
(

∂Sb

∂ log E

)
0

= E0

(
∂Sb

∂E

)
0

= E0β1 = E0

T 0
b

(18)

and use has been made of Eq. (6). Combining Eqs. (2), (3),
(17), and (18), we obtain

pi = Ẑ−1

(
1 − β1Ei

α

)α

, (19)

where

Ẑ(α, β1) ≡
∑

j

(
1 − β1Ej

α

)α

. (20)

Aside from minor notational differences, Eq. (19) is of
precisely the same form as the so-called Tsallis distribu-
tion previously obtained by extremizing the Tsallis entropy
[17], and subsequently legitimized by the observation that it
describes a system in equilibrium with an ideal finite heat
bath for which Wb(E) has the same power-law form [9].
The present derivation shows that this distribution is actually
much more general: it is not restricted to ideal heat baths
but rather represents a first-order asymptotic approximation
to Sb(E) for an arbitrary finite heat bath with an arbitrary
quasicontinuous density of states. This derivation also provides
exact expressions for the parameters α and β1 in terms of
the caloric equation of state Tb(E) of the heat bath and the
total energy E0. Moreover, the systematic expansion procedure
on which this approximation is based could in principle be
extended to higher order to generate a sequence of increasingly
accurate controlled approximations.

The general validity of Eq. (19) as an asymptotic approx-
imation to pi for an arbitrary finite heat bath, together with
the associated exact expressions for the parameters α and β1

therein, constitute the principal result of this Rapid Commu-
nication. This result implies that the power-law probability
distribution of Eq. (19) is no less general, and indeed is quite
likely more accurate for finite E0, than the usual canonical
distribution of Eq. (1), to which Eq. (19) clearly reduces in
the limit α → ∞ or E0 → ∞. Thus, in spite of their quite
different mathematical character, Eqs. (1) and (19) are birds
of a feather; they are both based on truncating a Taylor series
expansion of Sb(E) about the point E = E0 at the linear term,
but with respect to different variables.

020103-2



SUPERCANONICAL PROBABILITY DISTRIBUTIONS PHYSICAL REVIEW E 98, 020103(R) (2018)

Unfortunately, the thermodynamic relations implied by the
power-law distribution of Eq. (19) are more complicated than
those for the exponential distribution of Eq. (8). Combining
Eqs. (10) and (19), we obtain

S = −α

〈
log

(
1 − β1Ei

α

)〉
+ log Ẑ. (21)

It follows from Eqs. (19) and (20) that

∂ log Ẑ

∂α
=

〈
log

(
1 − β1Ei

α

)〉
+ β1

α

〈
Ei

1 − β1Ei/α

〉
, (22)

∂ log Ẑ

∂β1
= −

〈
Ei

1 − β1Ei/α

〉
. (23)

Combining Eqs. (21)–(23), we obtain

S = −α
∂ log Ẑ

∂α
− β1

∂ log Ẑ

∂β1
+ log Ẑ. (24)

As before, the temperature T of the system could in principle be
evaluated as T = (dS/dE)−1, where S is given by Eq. (24), but
the result is again so complicated that it seems of dubious utility
or interest. Of course, there is no need to evaluate T in order
to make use of the probability distribution of Eq. (19); it must
simply be remembered that according to Eq. (6) the parameter
β1 is fundamentally related to the temperature T 0

b = Tb(E0) of
the heat bath evaluated at the total energy E0, and not to the
temperature T of the system itself.

As is well known, the canonical distribution of Eq. (1)
satisfies and can be derived from a principle of maximum
entropy [15,18,19], so the question naturally arises as to
whether the supercanonical distributions of Eqs. (8) and (19)
can likewise be derived from such a principle. The answer is a
qualified “yes,” but it must be kept in mind that the probability
distribution pi is fundamentally determined by Eq. (2), the
validity of which is neither derived from nor contingent on
a maximum entropy principle. On the contrary, maximum
entropy principles derive their validity from the probability

distribution, not vice versa [20], and they obviously depend
critically on both the form of the entropy and the constraints
imposed upon its maximization. The present development is
based on the BGS entropy S of Eq. (10), which we regard
as sacrosanct, but the probability distribution obtained by
maximizing it still depends upon the constraints. When the
only constraint (apart from normalization) is on the value of
the mean energy E = 〈Ei〉, the canonical distribution of Eq. (1)
results. It is easy to verify that the exponential supercanonical
distribution of Eq. (8) results when an additional constraint
is imposed on the mean-square energy E2 = 〈E2

i 〉. This is
simply the second-order special case of the maximum entropy
method of moments [21]. It is also easy to verify that the
power-law supercanonical distribution of Eq. (19) results
when S is maximized subject to a constraint on the value of
〈log(E0 − Ei )〉, but the physical significance of that unusual
constraint is not immediately obvious (cf. [22]). Of course, it is
well known that Eq. (19) can also be obtained by maximizing
the Tsallis entropy subject to a conventional constraint on
E [17]. However, the fundamental significance of that result
seems dubious, because it is straightforward to determine a
function σ (p) such that the extremization of

∑
i σ (pi ) subject

to a constraint on E will reproduce an arbitrary probability
distribution of the form pi = p(Ei ). Any monotonic function
of

∑
i σ (pi ) then defines an “entropy” with the same extremum

property. It is straightforward to confirm that the Tsallis and
Rényi entropies can be constructed from Eq. (19) in precisely
this way, but this is a mere mathematical exercise with no
physical content.

Finally, we emphasize that the deviations from the canonical
distribution that occur when the heat bath is finite do not
in any sense invalidate or necessitate modifications to or
“generalizations” of the BGS entropy of Eq. (10), as has
often been suggested by the advocates of Tsallis entropy. The
terminology “Tsallis distribution” therefore seems unfortunate
and inappropriate, since the power-law distribution of Eq. (19)
does not depend in any way on the Tsallis entropy for its general
validity or significance.
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