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Effects of collectively induced scattering of gas stream by impurity ensembles: Shock-wave
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We report on specific effects of collective scattering for a cloud of heavy impurities exposed to a gas stream.
Formation is presented of a common density perturbation and shock waves, both generated collectively by
a system of scatterers at sudden application of the stream-inducing external field. Our results demonstrate that
(i) the scattering of gas stream can be essentially amplified, due to nonlinear collective effects, upon fragmentation
of a solid obstacle into a cluster of impurities (heterogeneously fractured obstacle); (ii) a cluster of disordered
impurities can produce considerably stronger scattering accompanied by enhanced and accelerated shock wave,
as compared to a regularly ordered cluster. We also show that the final steady-state density distribution is formed
as a residual perturbation left after the shock front passage. In particular, a kinklike steady distribution profile
can be formed as a result of shock front stopping effect. The possibility of the onset of solitary diffusive density
waves, reminiscent of precursor solitons, is shown and briefly discussed.
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Introduction. Gas stream scattering by an impurity cloud
often leads to pronounced collective effects. This can be
manifested by the formation of a common perturbation “coat”
around a cloud of scatterers or common wake, localization
of gas particles (blockade effects), induced correlations, and
formation of nonequilibrium (dissipative) structures in the
ensemble of impurities. These types of phenomena are in-
trinsic in various physical systems, including examples from
hydrodynamics [1,2], dusty plasmas [3], quantum liquids,
or Bose condensates [4,5], and can exhibit unusual behav-
ior such as non-Newtonian wake-mediated forces [3,6–12],
which is characteristic of diffusive or dissipative systems.
Spatiotemporal characteristics of medium perturbations are
mostly determined by the mechanism of energy losses specific
to each particular system and by the properties of the medium
itself, e.g., nonlinearity of associated field.

A steady-state wake profile, induced by impurities under gas
flow scattering, can be considered as a residual perturbation of
gas density established after its evolution over a long time.
However, the properties and behavior of the system during its
transit to the steady regime can significantly differ from those
at steady state. For example, under abrupt activation of gas or
liquid flow (or sudden impurity displacement), the formation of
a wake around impurities can be accompanied by propagation
of a shock wave and sign change of correlation function or
dissipative force between impurities [13–15].

In this Rapid Communication, we consider the properties
of nonequilibrium formations resulting from scattering of the
gas stream by a cloud of impurities and examine the role of
collective effects, with particular attention to the formation
dynamics of common impurity wake (density perturbation
“coat”) in the case when the stream-inducing driving field is
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applied suddenly (nonadiabatically). Specifically, we analyze
the properties of spatiotemporal evolution of shock waves
generated collectively by a system of scatterers. We examine
the effects of the inner structure of impurity clusters, total drag
(friction) force, and possible shock-wave enhancement due to
collective scattering accompanied by the nonlinear blockade
effect in a gas. Note that scattering of driven gas particles was
addressed earlier (e.g., [16]) mostly for uniform (on average)
distribution of impurities throughout the entire system and in
first order of the impurity density (typically ∼10−3). Here, we
consider the stream scattering on relatively dense (�10−1) and
spatially finite clouds (clusters) of impurities.

We focus on a purely dissipative (diffusive) system and
make use of the minimal classical two-component lattice gas
model with hard-core repulsion; that is, each lattice site can
be occupied by only one particle. Despite the short range of
interparticle interaction it was shown to give rise to peculiar
nonlinear effects essentially manifested at high gas concentra-
tions. These are the dissipative pairing effects [8,17], the wake
inversion and switching of wake-mediated interaction [8,18],
formation of nonequilibrium structures [19–22], etc. As will
be shown, the nonlinear effects considerably affect collective
scattering.

The kinetics of a two-component lattice gas is described
by the standard continuity equation (see, e.g., [23,24]),
ṅα

i = ∑
j (J α

ji − J α
ij ) + δJ α

i , where α = 1, 2 labels the particle
species and nα

i = 0, 1 are the local occupation numbers of
particles at the ith site. J α

ij = να
ijn

α
i (1 − ∑

β n
β

j ) gives the
average number of jumps from site i to a neighboring site
j per time interval, να

ij is the mean frequency of these jumps.
In what follows, fluctuations of the number of jumps [24] (the
term δJ α

i ) are neglected. To describe the scattering of a particle
stream by an impurity cloud, we assume (see Refs. [8,18])
that one of the two components ui = 0, 1 describes the given
distribution of impurities and is static (ν1

ij ≡ 0), while another
one ni (t ) is mobile. The presence of a weak driving field
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FIG. 1. Enhancement of scattering intensity. Steady-state distributions of mean concentration 〈n(xi, yi )〉 [panels (a)–(e)] illustrate enhanced
scattering (blockade region growth) for a heterogeneously fractured obstacle introduced by collective behavior. A close view of the impurity
cluster inner structure for each case is shown at the top: (a) solid obstacle, (b) and (c) random clusters, (d) regular cluster, (e) uniform cluster.
R = 10.8� for (a), R = 20� for (b), and R = 40� for (c)–(e). Number of constituent single-site impurities is N = 362, n0 = 0.37, |g| = 0.5
(stream is directed along the x axis) for all calculated distributions. Corresponding density profiles 〈n(xi, yi )〉|yi=0 are presented in panel (f).
Plots (g) and (h) show the dependencies of total drag force f ≡ | f | (units of kT /�) and

√
ε on cluster density φ; R ∈ (∞ 10.8�], N = 362,

n0 = 0.2. Plot (i) shows the dependence of dispersion ε on impurity number N at n0 = 0.3; s̄ (or s) stands for the (mean) distance between
impurities; s = 4� corresponds to cluster density of φ = 0.06.

(force) G, |g| = �|G|/(2kT ) < 1 (� is the lattice constant),
leads to asymmetry of particle jumps for the mobile compo-
nent: νji ≈ ν[1 + g · (ri − rj )/�]. As in [22,25,26], we use
the mean-field approximation, ∂t 〈ni〉 = ∑

j (〈Jji〉 − 〈Jij 〉),
〈Jji〉 = νji〈nj 〉(1 − 〈nj 〉 − ui ), where 〈ni〉 = 〈n(ri )〉 ∈ [0, 1]
describes the mean occupation numbers at sites ri or the
density distribution of flowing gas particles, n0 ≡ n(|r| →
∞) being the equilibrium gas concentration (bath fraction).
In what follows, we consider the two-dimensional (2D)
case.

Collective scattering effects. We start by outlining the two
basic effects readily seen from Figs. 1(a)–1(e). Panels (a)–(c)
represent the nonequilibrium steady-state density distribution
〈n(ri )〉 produced under scattering of streaming gas particles
on the collection of point impurities arranged into the compact
impermeable obstacle, dense impurity cluster (fractured obsta-
cle), and sparse cluster, all of which consist of the same number
of impurities N . The qualitative differences in scattered field

δn(ri ) = 〈n(ri )〉 − n0 constitute the essence of the first effect:
Fragmentation of a solid obstacle into a cluster of separate
impurities can enhance the gas stream scattering. This effect
results from the collective blockade effect [8,18] which leads
to screening of the gas stream between impurities. For impurity
cluster density φ = N/πR2 < 1 (R is the cluster radius), as
Fig. 1(b) suggests, the blockade region is considerably larger
than for a compact (solid) cluster [φ = 1, Figs. 1(a) and 1(f)]
as well as a diluted one, φ � 1.

The second effect consists in enhancement of scattering
that is provoked by the inhomogeneity of impurity distribution
within a cluster [Figs 1(c)–1(e) and 1(f)]. This effect is
analogous to that of light scattering on inhomogeneities in
distribution of atoms (dipole moments) that is determined by
the fluctuation of their number density in a definite volume
or by the two-point correlation function [27–31]. As seen
from Figs 1(c)–1(e), the scattering is less efficient for a
regularly ordered cluster. Note that a disordered cluster can
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FIG. 2. Strong local fluctuations of scattered field δn(xi, yi )
inside a random impurity cluster. φ = 0.0569 (N = 362, R = 45�),
n0 = 0.2, |g| = 0.5.

provoke strong local fluctuations of scattered field δn(r) inside
a cluster1 (see Fig. 2), i.e., δn2(ri ) > n2

0. This means that
the problem of gas stream scattering on such a structure
cannot be adequately described by introducing the effective
diffusion coefficient for a cluster or its penetration index [18]
[Figs. 1(c)–1(f)]. In addition, this can lead to high-magnitude
local fluctuations of induced dissipative interaction between
impurities.2

The magnitude of scattered field δn(r) can be character-
ized by a quantity like total density dispersion ε ≡ δn2 ∝∫

δn2(r)dr. For the cluster of N infinitely distant (inde-
pendent) impurities, i.e., when their mean separation length
s̄ → ∞, the dispersion is simply ε ≈ ∑N

i=1 δn2
i ≈ Nδn2∗ ∝ N ,

where δn2∗ is dispersion for a single impurity. Figure 1(i) shows
that dependence ε(N ) for the impurity cluster can become
power law and, in particular, for the random cluster is ∝N2,
which signifies the intrinsically collective scattering.

The total drag force3 acting on the impurity cluster also
turns out to be quite sensitive to its density φ and cluster
inner structure. As Fig. 1(g) suggests, the behavior is qual-
itatively different for random and regular clusters. At early
stages of confluence, φ � 1, when collective wake-mediated
interactions come into play, the regular cluster tends to reduce
the total drag force exerted by the gas particles [Fig. 1(g)].
Conversely, the random cluster tends to increase the drag

1A similar effect of the strong local fluctuations of a scattered
field appears for electromagnetic field scattering on fractal clusters
of nanoparticles, so-called “hot spots” [32–34].

2Some properties of this interaction were previously considered for
a pair of impurities in [2,6,8].

3We exploit the drag force definition f = − ∫
S

n(r)δn(r)dr, where
n(r) is the exterior normal of inclusion surface S at the point r (see
[6–8]). For single-site inclusions we use a discretized version of this
expression [17].

force until the common blockade region ahead of impurities is
formed. The latter screens the impurity cluster as a whole from
streaming gas particles, thereby reducing the drag force. This
transformation of a common perturbation “coat” is reflected
in the enhancement peak of the total drag force exerted on the
extended inhomogeneous cluster [see Fig. 1(g)]. Upon further
increase of cluster density, the blockade region takes a more
advantageous streamlined shape, such as that shown, e.g., in
Figs. 1(c) or 1(b). That also contributes toward drag force
decrease until the value at φ = 1 (solid obstacle) is reached
[Fig. 1(g)]. At the same time, the dependence of

√
ε on random-

cluster density φ has a characteristic enhancement peak which
is absent for a regular cluster, as shown in Fig. 1(h). Thus,
collective gas scattering compounded by nonlinear effects can
exhibit a qualitatively different behavior that depends strongly
on the spatial arrangement of impurities in the cluster.

Unsteady shock-wave dynamics. We now consider the
time-dependent behavior preceding the formation of steady
density distribution. Upon sudden application of a stream-
inducing driving field, two oppositely directed (downstream
and upstream) shock waves with kinklike profiles are formed
and evolve away from an impurity cluster [see Figs. 3(a) and
3(b) for the case of a compact cluster (obstacle)]. This behavior
is common for clusters of different types shown in Figs. 1(a)–
1(e), in case they are large (R � �) and dense enough to
collectively provoke nonlinear density-coat formation (for the
latter to come into effect, we also should remain within a
certain range of values of bath fraction and driving field [35]).
The compressionlike shock wave moving upstream reflects the
growth dynamics of the dense region adjacent to the obstacle’s
surface. The rarefactionlike one in the downstream region
is responsible for the formation of a depleted tail or cavity
(localization of vacancies). The overall stationary density
profile represents the residual perturbation left after the stream
scattering by impurities at t → ∞ (steady scattering state).
The dynamics of the two shock waves is, generally, different
but obeys the common inversion property upon switching from
the n0 < 0.5 to the n0 > 0.5 domain [35].

“Stopping effect”. Let us first consider the formation of
a dense compact region in front of a cluster, resulting from
stopping the compression shock wave at n0 < 0.5. For sim-
plicity, we examine the behavior of the center-line profile
which corresponds to the central region of the shock wave
at yi = 0 [Figs. 3(a) and 3(b)] for the case of an impermeable
circular obstacle. As can be seen from Fig. 3(a), the shock
wave comes to a halt at certain standoff distance x∗

f (xf is
the front4 position): once the condition nf = n(xf , 0) = 0.5 is
reached, the motion vanishes, i.e., shock-front speed vf → 0.
This criterion holds also for nonregular clusters [see Fig. 1(f)].
The front speed asymptotically decays as vf (t ) ∝ e−γ t . The
front speed of the downstream shock wave decays according to
power law and does not undergo stopping, forming a depleted
tail (for details, see [35]).

At n0 > 0.5, there is no stopping effect for the upstream
shock wave, while it does occur for the downstream wave.

4Shock-front position xf corresponds to the inflexion point of
〈n(xi, yi )〉|yi=0. As xf takes discrete values, we use the smoothing
procedure [35] for xf (t ) and vf (t ).
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FIG. 3. Density profiles 〈n(xi, yi )〉|yi=0 around an impermeable obstacle of radius R = 10.8� at the time moments t1 < t2 < t3 < t4 and
bath fractions (a) n0 = 0.37 and (b) n0 = 0.5; |g| = 0.5. The lines at νt∞ = 5 × 104 show the steady-state profiles established after long-time
evolution; corresponding 2D density distribution for n0 = 0.37 (a) is shown in Fig. 1(a). (c) The time dependence of speed v1 [in units of �/(νt )]
of frontal shock waves propagation for clusters from Figs. 1(a)–1(e); lines are labeled to match Fig. 1.

Such “switching” is in agreement with the wake-inversion
effect [8,18,35]. At n0 = 0.5, both shock waves do not un-
dergo stopping and decay asymptotically as nf ∝ 1/2 ± At−β

[Fig. 3(b)].
Shock-front stopping criterion can be roughly estimated

within the continual approximation [8,18]. A coarse descrip-
tion of the system is given by the Burgers-type equation that
admits a kinklike solution. Far from the cluster, this equation
takes the form ∂tn = ∇2n − (g · ∇)[n(1 − n)]. The growth
of the blockade region (shock-front propagation) takes place
when inflow of the gas particles prevails over their outflow
via lateral diffusion. One may suppose that, for a large and
dense impurity cluster, accumulation dynamics in the central
region (center-line at y = 0) can be approximately described
by a quasi-one-dimensional (quasi-1D) equation. Its solution
represents a kink approaching values n−, n+ as x → ±∞
and has the form n(x, t ) = n0 − �n tanh g�n[x + vf t − x0],
�n = |n− − n+|/2 is the shock half-height, and the speed
of shock wave vf is given by vf = 2g(1/2 − nf ), where
nf = (n− + n+)/2.5 At nf → 0.5, the shock-front motion
vanishes, i.e., vf → 0. This stands for the quantitative stopping
criterion which is in agreement with the numerical results for
the center-line profile of shock wave in the 2D case [Figs. 3(a)
and 1(f)]. The quasi-1D case allows one only to estimate the
stopping condition and does not give a full description of the
2D shock wave, its lateral region, and asymptotic behaviors.

Now we consider the effects caused essentially by irregular-
ity in the distribution of impurities. The first specific property
is that the decomposition of a solid obstacle or homogeneous
impurity cluster into an inhomogeneous cluster can result in
the enhancement of shock wave—an increase in its amplitude
and front speed [see Fig. 3(c) and corresponding steady-state
profiles in Fig. 1]. The other property is what can be referred
to as the precursor effect.

At the initial stage, just after abrupt application of the
external drive, an impurity cluster is capable of generating
larger density perturbation, both “stored” within a cluster
and around it, than that held in a steady state. For this
reason, the system tends to subsequently get rid of the excess

5n± ≈ n(xf ± �) can be associated with shock height; � is the
shock-front thickness.

density perturbation that can be realized by the following two
mechanisms:

(i) The excessive portion of density perturbation “leaves”
the cluster in the form of a solitary wave traveling downstream6

at n0 < 0.5 [Fig. 4(a)] or upstream at n0 > 0.5 [Figs. 4(b) or
4(c)], which is in accordance with the wake inversion effect

6This recalls the avalanche problem for a pile of sand [36].

FIG. 4. Momentary gas distributions |δn(xi, yi )| at νt = 3.9 ×
103 illustrating the precursor propagation: bunch of gas particles (b) or
holes (a) separating from the impurity cluster. (c) The time evolution
of density profile δn(xi, νt ; yi = 0); the profile marked by an asterisk
corresponds to panel (b). Cluster density φ = 0.0461, n0 = 0.2 for
(a), n0 = 0.8 for (b) and (c), |g| = 0.5.
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FIG. 5. Time dependence of the shock-front speed and total drag
force (a) for several realizations 1–4 of a random impurity cluster.
N = 362, R = 20�, |g| = 0.5, n0 = 0.2; f and v1 are in units of
kT /l and �/(νt ), correspondingly. The front speed slowdown is
nearly exponential, ln v1 ∝ −t [see the inset in (a)]. (b) Steady-state
distributions of δn2(xi, yi ) within a cluster, realizations 4, 2.

[18]. The “ejected” bunch of gas particles (or vacancies) and
associated hump-shaped wave (or the inverse hump) have a
characteristic length scale (its half-width) commensurate with
the cluster size 2R. This precursorlike mechanism takes place
for sparse clusters, φ � 1, for which the common blockade
region ahead of scatterers is either weak or not formed.

(ii) A different mechanism comes into play for modestly
dense clusters, when the excessive perturbation is relaxed via
temporal acceleration of the shock front at the initial times.
It can be explained by considering the dynamic behavior for
several realizations of random cluster with an intermediate
value of fraction φ ≈ 10−1 [see Fig. 5]. As Fig. 5(a) suggests,
shock-front speed acceleration is sensitive to the realizations of
random cluster. This temporal acceleration is always preceded
with or accompanied by the enhancement peak of total drag
force [Fig. 5(b)], while for the cluster realization without accel-
eration effect the drag force exhibits monotonic saturation. The
temporal force enhancement signifies the presence of excess

perturbation (within a cluster) that subsequently transfers into
shock-wave acceleration. Under sudden stream activation, the
nonlinear blockade effect leads to local saturation of scalar
density field n(r, t ) attained faster than the overall perturbation
is redistributed to minimize the total drag force. This leads to
the accelerated growth of the blockade region at the initial
times.

Note, system behavior is also sensitive to the variables of
gas flow: bath fraction n0 and magnitude of driving force
G. The shock-front stopping property is consistent with the
concentration-dependent wake-inversion effect of [18]. In
the domain n0 < 0.5, the increase of n0 and/or G leads to
the enhancement of scattering and shock wave, while the
qualitative picture of scattering is not changed; so, we give
details on this study in the Supplemental Material [35].

Concluding remarks. We presented some results on the
effects of collective scattering of a gas stream on finite-sized
impurity clouds and associated shock-wave generation, both
accompanied by a nonlinear blockade effect. Based on a
numerical solution of kinetic equations for the average local
occupation numbers of lattice gas, we display the significant
role of spatial disorder of scatterers (impurities). Our results
show that scattering of gas flow on impurity cloud and shock-
wave generation can be enhanced by decomposition of a solid
obstacle into fragments or a sparse cluster of impurities. This
enhancement is more efficient for disordered clusters as com-
pared to regular ones. Note that the shock-wave amplification
effect correlates, to a certain extent, with the well-known
problem of air shock-wave interaction with a porous screen
where the effect of temporal enhancement of a reflected shock
wave was observed [37,38]. In addition, a disordered cluster
of scatterers can provoke high local fluctuations of a scattered
field inside the cluster and an avalanchelike effect at a sudden
application of the external driving field. The considered effects
reveal a close formal analogy to the classical problem of light
scattering in atomic, molecular, or nanoparticle ensembles.

The simplest hard-core lattice gas model alone leads to the
peculiar nonlinear effects mentioned above, which can be of
interest considering the kinetics of adatoms on solid surfaces
[24], surface electromigration [39], or superionic conductors
[22]. Further application of more realistic Coulomb, Yukawa,
or Lennard-Jones potentials of interparticle interaction, can
better describe particular physical systems, e.g., dusty plasmas
or colloidal dispersions (see [20,40–42]).
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