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Topological critical slowing down: Variations on a toy model
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Numerical simulations of lattice quantum field theories whose continuum counterparts possess classical
solutions with nontrivial topology face a severe critical slowing down as the continuum limit is approached.
Standard Monte Carlo algorithms develop a loss of ergodicity, with the system remaining frozen in configurations
with fixed topology. We analyze the problem in a simple toy model, consisting of the path integral formulation
of a quantum mechanical particle constrained to move on a circumference. More specifically, we implement for
this toy model various techniques which have been proposed to solve or alleviate the problem for more complex
systems, like non-Abelian gauge theories, and compare them both in the regime of low temperature and in that
of very high temperature. Among the various techniques, we propose an alternative algorithm which completely
solves the freezing problem, but unfortunately is specifically tailored for this particular model and not easily
exportable to more complex systems.
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I. INTRODUCTION

Numerical Monte Carlo simulations of lattice gauge theo-
ries are currently one of the most important tools for the non-
perturbative study of quantum field theories for fundamental
interactions and condensed matter systems. The general idea of
the method is to reduce the computation of the path integral to
the sampling of a finite dimensional probability distribution, a
task that can be performed through Markov chain Monte Carlo
(MCMC).

In some cases, some hard problems are found which prevent
a full exploitation of numerical simulations. A particularly
severe problem that is sometimes encountered is the loss of
the positivity of the probability distribution, a fact generically
indicated as “sign problem.” This happens for the cases of QCD
at finite baryon density or in the presence of a θ term and in
many condensed matter models [1–3]. In some other cases, the
problem is simply the presence of long autocorrelation times,
related to some particular slow modes, leading eventually to a
loss of ergodicity and thus to a breakdown of the algorithm.
Such a behavior is common to many complex systems and it
appears, for instance, close to a phase transition [4,5].

A well known problem of the second type is related to the
presence of classical solutions with nontrivial topology. In the
continuum, the space of field configurations contributing to
the path integral divides in homotopy classes, each class being
characterized by the value of a topological invariant taking
only discrete (typically integer) values. On a discrete space-
time the concept of homotopy, which strictly speaking is lost,
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is recovered as the continuum limit is approached. Since the
typical MCMC algorithms move in the configuration space in
an approximately continuous way, close to the continuum they
become completely unable to change the topology of the field.

This problem severely affects the study of θ dependence in
QCD [6–8] and in many QCD-like models [9–12], the most
relevant case being the study of the axion potential at finite
temperature [8,13–19]. Several methods and new algorithms
have been proposed to solve or at least alleviate this problem,
however, no comparative investigation of the efficiency of these
proposals exists in the literature so far. The purpose of this
study is to make a critical comparison of the various techniques
in one of the simplest model where an analogous problem
appears: the numerical simulation of the thermal path integral
of a quantum particle constrained to move on a circumference;
we will consider both the free case and the case in which a
potential is present (quantum pendulum).

The use of such a simple model will enable us to extract
the autocorrelation time of the topological susceptibility for
several values of the lattice spacing and to study its critical
behavior as the continuum limit is approached. This behavior
(e.g., exponential or power law in 1/a) is expected to be
characteristic of the updating scheme, independently of the
specific model adopted as far as topologically stable classical
solutions exist. Let us stress that, instead, the prefactor in front
of the leading a dependence, which eventually fixes what is
the best algorithm to be chosen for a given value of a, is
likely dependent on the chosen model. However, our main
focus here is on the approach to the continuum limit: that is
prefactor independent and contains relevant information which
is expected to be model independent.

We will show that all methods proposed so far to sample
the configuration space present some residual critical slowing
down as the continuum limit is approached, even if some
of them reduce autocorrelation times by several orders of
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magnitude with respect to standard local algorithms. We will
also present an alternative algorithm, which is based on the idea
that the correct way to deal with the problem is to invent some
nonlocal move in configuration space, capable of jumping
directly from one topological sector into another one. Such
a move can be easily found in the simple model studied in
this paper and completely kills the critical slowing down of
the topological modes. The basic idea of this update scheme
seems to be applicable also to more interesting theories, like
four-dimensional (4D) non-Abelian gauge theories, however,
its actual implementation requires further studies to overcome
some technical difficulties.

The paper is organized as follows: In Sec. II we introduce the
model and we review some basic facts about the θ dependence,
while in Sec. III the discretization to be used in the simulations
is described. With Sec. IV A we start the analysis of the
different algorithms that can be used to numerically investigate
the topological properties of the model at T = 0, providing
results for the autocorrelation times obtained by using the
different approaches (standard Metropolis, tailor method, slab
method, open boundary conditions, parallel tempering). In Sec.
IV F we study instead the high-temperature limit of the model,
that presents peculiar difficulties. Finally, in Sec. V we present
our conclusions.

II. THE MODEL AND SOME OF ITS PROPERTIES

The fact that a simple unidimensional quantum mechanical
model can have some common features with four-dimensional
non-Abelian gauge theories can be at a first sight quite
surprising, however (as far as the θ dependence is concerned),
what matters is topology: for a quantum particle moving on
the circumference, the topology of the configuration space,
π1(S1) = Z; for a 4D non-Abelian quantum field theory, the
topology of the gauge group, π3(SU(N )) = Z.

Let us consider the θ = 0 case first; here and in the following
we set h̄ = 1. The thermal partition function Z of a quantum
free particle of mass m, moving along a circumference of radius
R at temperature kBT = 1/β, can be written as a sum over
energy (angular momentum) eigenstates

Z =
∞∑

n=−∞
exp

(
−β

n2

2mR2

)
, (1)

while in the path integral approach

Z =
∫

Dx(τ ) exp(−SE[x(τ )]),

SE =
∫ β

0
dτ

1

2
m

(
dx

dτ

)2

, (2)

where SE is the Euclidean action, the path integral extends over
periodic paths, x(0) = x(β ), and is characterized by the fact
that only continuous paths, even if not differentiable, contribute
to it. For that reason, analogously to what happens for the
configurations contributing to the path integral of SU(N )
non-Abelian gauge theories, paths divide in homotopy classes
(topological sectors), classified by a topological number Q ∈
π1(S1) = Z, which corresponds to the number of times the
path winds around the circumference while winding around
the Euclidean time circle.

Further insight in the origin of these common features,
including the introduction of the θ parameter, is obtained
by means of the canonical quantization approach [20,21].
The Hamiltonian Ĥ of a quantum particle moving on a
circumference commutes with the unitary operator Û that
implements the translation φ → φ + 2π , where φ is the angle
that parametrizes the position on the circumference. As a
consequence, we can use a base of common eigenvectors of
Ĥ and Û and restrict ourselves to the subspace corresponding
to the eigenvalue eiθ of Û . The same argument can be applied
to the case of 4D non-Abelian gauge theories: local gauge
invariance, in the form of the Gauss law, implies that local
gauge transformations act trivially on the whole Hilbert space,
but the theory is invariant also under transformations having
nontrivial behavior at infinity. The operator that implements
these “large” gauge transformations is the analogous of the Û

operator in the quantum mechanics example (for more details
see, e.g., Refs. [22,23]).

To see that the restriction to the θ sector of the Hilbert space
is equivalent to the introduction of a θ term in the Lagrangian
it is convenient to use the path integral formulation. We can
use the identity

∑+∞
Q=−∞ e−iQ(θ−θ ′ ) = 2πδ(θ − θ ′) to fix the

constraint Ûψ (φ, t ) = eiθψ (φ, t ), thus obtaining

θ 〈φf , tf |φi, ti〉θ

= 1

2π

∑
Q∈Z

e−iQθ

∫ φ(tf )=φf +2πQ

φ(ti )=φi

Dφ(t )

× exp

(
i

∫ tf

ti

L(φ)dt

)

= 1

2π

∫ φ(tf )=φf

φ(ti )=φi

Dφ(t ) exp

[
i

∫ tf

ti

(
L(φ) − θ

2π
φ̇

)
dt

]
,

(3)

where L(φ) is the original unconstrained Lagrangian.
The restriction can be interpreted also as a modification

of the properties of the physical states for translations φ →
φ + 2π , i.e., from standard periodic boundary conditions (b.c.)
to b.c. which are periodic up to a phase factor eiθ . There are
various ways to realize that in practice. If the particle has an
electric charge q, the introduction of a magnetic flux � piercing
the circle is equivalent to the introduction of a nonzero θ = q�.
The same happens when considering a reference frame rotating
around the axis of the circumference with angular velocity
ωp = θ/(2πmR2) (see, e.g., [24]). It should be noted that,
analogously to what happens in non-Abelian gauge theories,
a nonzero θ term modifies the Lagrangian by adding a total
derivative to it, therefore, it is completely irrelevant at the
classical level, and only plays a role at the quantum level
because of the nontrivial topology of the configuration space.

In order to simplify the notation, we introduce the variable
x defined by x = φ/(2π ) and in the following we will use a
system of units such that 4π2mR2 = 1. With these conventions
the Hamiltonian operator can be written as

Ĥ = 1
2 p̂2 + V (x), (4)

where x ∈ [0, 1], V (x) is a function of period 1, and
the wave function ψ (x) satisfies the boundary conditions
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ψ (1) = eiθψ (0); the corresponding Lagrangian is

L[x(t )] = 1
2 ẋ2 − V (x) − θẋ. (5)

The partition function Z(β, θ ) can be rewritten in the path
integral formalism by means of the Euclidean Lagrangian as
(t → −it̃)

Z(β, θ ) =
∫

Dx(t̃ ) exp

[
−

∫ β

0
LE[x(t̃ )]dt̃

]
, (6)

where the functional integration extends over all functions
x : [0, β] → [0, 1] (with the extrema 0 and 1 identified) satis-
fying the boundary condition x(0) = x(β ), and the Euclidean
Lagrangian LE is given by

LE[x(t̃ )] = 1

2

(
dx

dt̃

)2

+ V (x) + iθ
dx

dt̃
. (7)

Note that the θ term becomes imaginary after the analytical
continuation to Euclidean time because it involves a total
time derivative; this will have important consequences in the
following.

Also for generic values of θ only continuous trajectories
have a nonvanishing weight in the integral, so that paths can
be grouped into homotopy classes labeled by the number of
times a path winds around the circumference while winding
once around the Euclidean time. The integral can thus be
decomposed into a sum over the different topologies and an
integration over quantum fluctuations in each fixed topological
sector. As usual in the context of the semiclassical approx-
imation (see, e.g., Ref. [25]), it is convenient to select as
representatives of the homotopy classes the paths having the
smaller values of the Euclidean action, that correspond to the
solutions of the Euclidean equations of motions.

This model presents some interesting features even in
the noninteracting limit V (x) = 0: in this case the partition
function Z at temperature 1/β is given in the Hamiltonian
formalism by

Z(β, θ ) =
∑
n∈Z

exp

[
−β

2
(2πn + θ )2

]
. (8)

The solution of the Euclidean equation of motion having
winding number Q is

xQ(t̃ ) =
[
Q

β
t̃ + const

]
mod 1, (9)

and the corresponding Euclidean action SQ = Q2

2β
+ iθQ de-

termines the semiclassical exponential weight of the configu-
ration in the partition function [SQ is the exponent in Eq. (10)].
When the action is quadratic in the field the semiclassical
approximation is in fact exact, the integral over the fluctuations
at fixed topology is Gaussian and gives a prefactor of the form
1/

√
β, so that we finally obtain from the Lagrangian formalism

Z(β, θ ) = 1√
2πβ

∑
Q∈Z

exp

(
− 1

2β
Q2 − iQθ

)
, (10)

which could have been also obtained directly from Eq. (8)
by using the Poisson summation formula. Equation (10) gives
a dual representation of the partition function in Eq. (8), in
which the high and low T limits are exchanged. Indeed, in

Eq. (8) only a few terms of the sum are relevant at low T ,
while at high T all terms contribute and the sum can be changed
into an integral, exactly the opposite happens in the sum over
topological sectors in Eq. (10).

From the partition function we can obtain the free energy
density

f (β, θ ) = − 1

Vβ
ln Z(β, θ ) (11)

that encodes the θ dependence of the theory. Although for
the model studied in this paper V = 1 and there is no need
to differentiate between intensive and extensive quantities, we
will use the intensive lower-case letters to conform to standard
notations. Two properties of the free energy density that are
evident in the noninteracting case but are true also in more
general cases are the following:

(i) f (β, θ ) = f (β,−θ );
(ii) f (β, 0) � f (β, θ ).

It is simple to show that the first property is valid if
the potential V (x) appearing in the Lagrangian (5) satisfies
V (x) = V (1 − x) (i.e., if V is parity invariant): it is sufficient
to perform in the path integral the change of variable x(t̃ ) →
1 − x(t̃ ) and realize that this corresponds to the substitution
θ → −θ in the action. That f (β, 0) � f (β, θ ) is a simple
consequence of the fact that in Euclidean time the θ term
becomes imaginary [see Eq. (7)]: the complex exponential
induces cancellations in the path integral expression of the
partition function and thus Z(β, 0) � Z(β, θ ), a fact that,
when the θ term is interpreted in terms of a nonzero magnetic
flux, is equivalent to a diamagnetic behavior for the charged
particle on the circumference. Both these properties remain
true also in the case of 4D non-Abelian gauge theories and the
proof is basically the same; the fact that the free energy has a
minimum at θ = 0 is related to the Vafa-Witten theorem [26]
and it is at the basis of the Peccei-Quinn solution of the strong
CP problem [27,28].

For generic β values, the free energy density cannot be
written in closed form using elementary transcendental func-
tions even for the noninteracting case,1 however, there are two
notable limits in which this is possible: the very low and very
high temperature cases. In the extreme low temperature regime
β 	 1 we see from Eq. (8) that for each θ value only a single
eigenstate contributes and we obtain the expression

f (β, θ ) = 1
2 min

n∈Z
(2πn + θ )2 (12)

that is singular at θ = π , where a crossing of two energy levels
happens. Large N arguments suggest such a multibranched
θ dependence to be present also in 4D SU(N ) Yang-Mills
theories at zero temperature [31,32], with a spontaneous
breaking of the CP symmetry taking place at θ = π [33]; the
singularity at θ = π is present also in QCD for some values of
the quark masses [34–36].

In the opposite β 
 1 limit, using Eq. (10) we see that only
the modes with Q = 0,±1 have non-negligible contribution

1In fact, it can be written in terms of the Jacobi ϑ3 function and
the relation between Eqs. (8) and (10) in nothing but the fundamental
functional equation for ϑ3 [29,30].
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to the θ dependence and we obtain

f (β, θ ) = f (β, 0) − 2

β
e
− 1

2β cos θ. (13)

Such an expression is reminiscent of the dilute instanton gas
approximation in the high temperature phase of 4D non-
Abelian gauge theories [37], however, the underlying physics
is different, basically because an underlying spatial volume
which diverges in the thermodynamic limit is missing in the
simple one-dimensional (1D) model. In the present model the
cos θ term is a consequence of the fact that at most a single
“instanton” is present, while in the 4D case it is a consequence
of the fact that instantons are almost independent of each other
at high temperature. This makes the system behave “as if” a
single instanton were present, although an increasingly large
number of them are in fact present as the thermodynamic limit
is approached.

A parametrization that is commonly used to describe the θ

dependence of the free energy density in the general case is
[38]

f (β, θ ) = f (β, 0) + 1

2
χ (β )θ2

(
1 +

∞∑
n=1

b2n(β )θ2n

)
, (14)

where χ (β ) is the so-called topological susceptibility and
the coefficients b2n parametrize higher order terms in θ . As
previously noted, in the Euclidean path integral formulation the
θ term in the Lagrangian becomes imaginary; this implies that
simulations cannot be performed directly at nonvanishing real
θ values because of a sign problem that hinders the applicability
of standard importance sampling MCMC.

The most commonly used method to compute the coeffi-
cients χ and b2n appearing in Eq. (14) is thus to write them
in terms of expectation values computed at θ = 0: it is indeed
easy to verify that the first few terms are given by

χ = 〈Q2〉0

βV , b2 = −〈Q4〉0 − 3〈Q2〉2
0

12〈Q2〉0
, (15)

and in general b2n is proportional to the 2nth cumulant of the
winding number distribution at θ = 0. From Eqs. (12) and (13)
we can see that for the low and high temperature regimes of
the noninteracting theory we have, respectively,

β 	 1 : χ = 1, b2n = 0,

β 
 1 : χ = 1

β
e
− 1

2β , b2 = − 1

12
, b4 = 1

360
, . . . .

(16)

A different approach that can be used to extract these
coefficients is to perform simulations at imaginary values
of the θ parameter (analytic continuation method [39–46]).
Although this approach presents some technical advantages
with respect to the Taylor expansion method, the observed
critical slowing down close to the continuum limit is the same
in both approaches, so in this paper we will concentrate just
on simulations performed at θ = 0.

III. DISCRETIZATION

The first step to be accomplished in order to perform
numerical simulations of a model by using path integral

techniques is to write the discretized form of the Euclidean
action. For the case of the Lagrangian (7), this is quite a simple
task since it is sufficient to use finite differences instead of
derivatives. The only subtlety stems from the fact that the
theory is defined on a circumference, thus an ambiguity is
present in the definition of the distance between two points.
In order to resolve this ambiguity, we introduce the following
definition of distance (with sign) on the circumference of length
1, that correspond to the oriented shortest path between x

and y:

(x − y)mod
1

2
=

⎧⎪⎨
⎪⎩

x − y if |x − y| � 1/2,

x − y − 1 if x − y > 1/2,

x − y + 1 if x − y < −1/2.

(17)

With this definition, the discretized Euclidean action can be
written in the form

S = 1

2

∑
j

[(xj+1 − xj )mod(1/2)]2

a
+ a

∑
j

V (xj )

+ iθ
∑

j

[(xj+1 − xj )mod(1/2)], (18)

where xj ∈ [0, 1), j ∈ 0, . . . , Nt − 1, a is the lattice spacing
in the temporal direction,2 and we will almost always use
the thermal boundary conditions xNt

≡ x0. The last term in
Eq. (18) is the discretizaton of the winding number Q, that in
this simple system takes integer values also at nonvanishing
lattice spacing3 (contrary to what happens in 4D gauge theo-
ries, see, e.g., Ref. [38]). In the following, we will study the
system at θ = 0 with the potential

V (x) = �2 cos(2πx), (19)

that for � = 0 reduces to the noninteracting case, and we will
be mainly interested in the integrated autocorrelation time of
the topological susceptibility, that will be denoted simply by
τ . Another parameter that is fundamental in order to assess
the efficiency of the update methods is obviously the CPU
time required to perform a single update step. However, for
the quantum particle moving on a circumference, the compu-
tational complexity of the various update schemes investigated
is practically the same, with some caution needed only for the
cases of open boundary conditions and parallel tempering, as
will be discussed later on.

In order to estimate integrated autocorrelation times, several
procedures exist. The standard way, stemming from its very
definition, is to directly integrate the autocorrelation function:

τO = 1

2
+

∞∑
i=1

〈OkOk+i〉 − 〈O〉2

〈O2〉 − 〈O〉2
, (20)

2Notice that a is a dimensionless parameter. Indeed, without fixing
h̄ = 1 and 4π 2mR2 = 1 we would have obtained ah̄/(4π 2mR2) in
place of a, which is the dimensionless ratio between the lattice spacing
and the typical timescale of the quantum system. Therefore, with
the chosen units, a 
 1 means that the discretization scale is much
smaller than the physical time scale.

3Without the proper definition of distance given in Eq. (17), the
discretized topological charge appearing in Eq. (18) would be strictly
zero.

013308-4



TOPOLOGICAL CRITICAL SLOWING DOWN: VARIATIONS … PHYSICAL REVIEW E 98, 013308 (2018)

where O is a generic primary observable and Ok and Ok+i

denote two generic draws of the observable taken along the
Monte Carlo simulation at i Markov chain steps apart from
each other. The numerical computation of this sum requires
some care and standard methods exist to optimize the inte-
gration range, in order to minimize the final error [47,48]. We
used the Python implementation described in [49], that is freely
available under the MIT license.

However, probably the most straightforward and practical
procedure is to use the relation [4,50]

δ2
〈O〉 = 2τO

Nobs
(〈O2〉 − 〈O〉2) = 2τO [δ〈O〉]2

naive, (21)

where δ〈O〉 is the correct standard error for 〈O〉 estimated
by properly taking into account autocorrelations, Nobs is the
size of the sample, and [δ〈O〉]naive is the naive standard error
computed without taking autocorrelations into account. To use
this expression, we need the value of δ〈O〉, that can be computed
using standard blocking and resampling procedures (see, e.g.,
Refs. [4,5]). In all the cases in which both methods were
applicable, we verified that the autocorrelation times estimated
by using the two procedures were compatible with each other.4

Moreover, in all the cases we used time histories long at least
103τ for the largest values of the autocorrelation time.

In the following section, we will describe the results
obtained for the autocorrelation time of the topological suscep-
tibility using different algorithms. In all these sections, apart
from Sec. IV F, we will consider the low temperature regime
of the theory, fixing the temporal extent of the lattice to the
value aNt = 2. This corresponds to a temperature T = 1/2,
which for � = 0 and in the chosen units corresponds to
kBT /�E = 1/(2π )2, where �E is the energy gap between
the ground state and the first excited state of the free system,
so that T is indeed quite small. We verified to be deep in the
low temperature region for all the values of the parameter �

used in our simulations.

IV. COMPARISON OF DIFFERENT APPROACHES

A. Variation 1: Standard Metropolis

The first adopted algorithm was the standard Metropolis
one [51]: we used a 5 hit scheme, with sites updated in
lexicographic order and the proposed update being of the form

x → [x + (1 − 2r )�]mod(1), (22)

where r ∈ (0, 1) is a random number and � is a parameter.
By increasing the value of �, larger variations are proposed,

that could help in reducing autocorrelations, however, large
values of � have smaller acceptance rates. In order to investi-
gate the continuum limit of the autocorrelation time τ we have
to fix the dependence of the parameter � on the lattice spacing
a. Given the form of the action in Eq. (18) it is natural to

4Some caution is, however, needed in the choice of the parameter S

that enters the automatic windowing procedure of [48]: this parameter
is typically set to 1.5 but in some cases it was necessary to use values
up to 15 for the integral of the autocorrelation function to reach a
plateau around the point automatically chosen by the algorithm (for
a different approach to this problem see [7]).

150 200 250 300 350 400 450 500 550
Nt

10
2

10
3

10
4

10
5

τ

Ω2=0
Ω2=5
Ω2=10

FIG. 1. Dependence of the autocorrelation time of the topological
susceptibility on the (inverse) lattice spacing for the Metropolis update
(with � = 0.5 and aNt = 2). The dashed line is the result of a fit with
the function a0 exp(a1Nt ), from which the values a0 = 0.074(10) and
a1 = 0.0290(5) are obtained.

guess that using � ∝ √
a the acceptance rate will be constant

as a → 0 [52], and this is indeed what we numerically found.
This is, however, not a priori the optimal choice if our aim is
to reduce the autocorrelation of the topological susceptibility.
From some test runs we concluded that the dependence of τ on
� is practically negligible and that large values of� correspond
to significantly smaller autocorrelation times, despite the fact
that the acceptance rate is smaller. For this reason, we decided
to fix the value � = 0.5 in our simulation for all the lattice
spacings studied.

In Fig. 1 we display the scaling of the autocorrelation time
τ of the topological susceptibility as a function of the inverse
of the lattice spacing (remember that aNt = 2) for simulations
performed using 108 Metropolis updates with � = 0.5. The
autocorrelation time τ is well described by an exponential
function in 1/a, which is consistent with the results obtained
in CPN−1 models [9,12], Yang-Mills theories [10,11], and
QCD [6–8]. The critical slowing down of the winding number
emerges, as one approaches the continuum limit, because for
very small lattice spacing the local updates effectively become
continuum diffusive processes. However, in order to change the
value of the winding number by such a type of process, one
necessarily has to go across paths (or configurations, in the case
of a field theory) developing a discontinuity (a cut) somewhere
and thus corresponding to very large values of the action.

Let us discuss this point more in details: some examples of
topologically nontrivial paths obtained in our MC simulations
are shown in Fig. 2. From these figures it is easy to understand
that, in order to change the value of the winding number by
a local Metropolis step, it is necessary to accept an update
in which two temporally consecutive points become very far
apart from each other, i.e., |xi − xi+1| 
 0.5. This is, however,
very unlikely to happen because of the large action of this
configuration. From this very simple argument one can guess
the exponent of the exponential slowing down shown in Fig. 1
to be given roughly by

�S 
 (0.5)2

2a
= 1

4
(0.5)2Nt = 0.0625Nt, (23)
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FIG. 2. Examples of configurations corresponding to topological
charge Q = 0 (left), Q = −1 (center), Q = 2 (right) on lattices
of temporal extent Nt = 500 and T = 1/2. Simulation points are
connected by shortest distance lines on the spatial circumference.

which is indeed of the same order of magnitude of the observed
value 0.0290(5) (see Fig. 1).

We thus have a consistent picture in which the “barriers”
that prevent the changes of the winding number correspond to
the very high values of the action of the configurations one is
constrained to go through when moving from one topological
sector to the other by a local algorithm. Since a shift of the
action of each topological sector as a whole does not touch
significantly the weights of those unlikely configurations, it
does not remove the barriers. As a consequence, it is to be
expected that a naive application of the multicanonical update
[53] or similar approaches (like, e.g., metadynamics [54,55])
would not help in removing the critical slowing down, and this
is indeed what we observed.

On the other hand, the situation for these classes of update
schemes seems to be better in field theories where one has
to deal with noninteger valued definitions of the winding
number in the discretized theory since a potential based on
a real valued charge can make some distinction, at least
in principle, between different configurations belonging to
the same topological sector. Indeed, very promising results
were obtained in Ref. [56] for 2D CPN−1 models, where the
metadynamics was coupled to a discretization of the winding
number that is not strictly integer at nonvanishing lattice
spacing. Encouraging preliminary results obtained using a
conceptually related method, the density of state approach (see,
e.g., [57,58]), have been recently presented in [59].

B. Variation 2: Tailor method

In this section we are going to describe a method that is
specifically targeted at reducing the topological slowing down
for the quantum particle moving on a circumference. The idea
is similar, in some sense, to the one used in cluster updates of
spin systems (see, e.g., Ref. [5]), i.e., to make use of nonlocal
updates to improve the decorrelation.

The critical slowing down of the winding number was linked
in the previous section to the necessity of passing through
discontinuities to change the topology when using a local

x

τ

FIG. 3. An example of the tailor move: a piece of the original
path (the dotted-line one) is cut and sewed back after reversing it
(dashed-line one). As a consequence, a starting path with Q = 0 is
turned into a path with Q = −1 and the same action as before.

algorithm. However, a nonlocal update could in principle be
able to move from one sector to the other in one single step,
by crossing through the barrier in a sort of tunnel effect. To
remove the slowing down, such a step must be able to connect
paths which, while belonging to different topological sectors
(typically adjacent ones), have equal or similar actions.

One can likely invent several kinds of step like that. The one
we propose here, which is specifically devised for the � = 0
case, is based on the idea that if we take a piece of a path and
modify it in such a way that dx/dτ → −dx/dτ for each τ (a
reflection around some point will make the job) the action of
that piece will remain the same, while its contribution to the
winding will change sign. If we can cut away a piece from a
starting path, reflect it and sew it back to the uncut part with a
minimal loss of continuity in the cut regions, we will be able
to make a big step in winding number while leaving the action
almost unchanged.

Of course, this sort of path surgery technique will work
only for well chosen paths and cut points. In Fig. 3 we show
an example which clarifies the conditions: the cut piece of
path must wind a half-integer number of times n/2 around
the circumference, i.e., its end points must be diametrically
opposite to each other, so that, after reflection, it can be sewed
back to the uncut path exactly; that also means that Q will
change by an integer number, by −n in particular. Because of
this underlying pictorial representation, we have named this
technique as the “tailor method.”

The above idea can lead to a well defined microcanonical
step in the case of continuous paths. We have now to properly
implement it in the case of discrete paths, and in a way such
that detailed balance is satisfied. More in detail, the algorithm
is the following:

(1) Randomly choose a value iinit ∈ {0, . . . Nt − 1}, to
which the value xiinit of the path is associated. Because of
the periodic boundary condition in the time direction, up to
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an irrelevant shift of indices we can assume in the following
iinit = 0.

(2) Find the first value iend ∈ {1, . . . Nt − 1} such that

[xiend − (x0 + 0.5)]mod(1/2) � ε, (24)

where ε is a fixed parameter. If no such point exists, abort the
update.

(3) Propose the update consisting of the change

xi → [2x0 − xi]mod(1/2) (25)

for all i in [1, iend].
(4) Accept or reject the proposed update with a Metropolis

test.
It is easy to see that this algorithm satisfies detailed balance

and that, when the update is accepted, the winding number is
changed by �Q = ±1; moreover, when V (x) ≡ 0, the action
of the proposed configuration differs from the old one only
because of the joint at iend, so the acceptance probability is
expected to be reasonably large, at least in the noninteracting
case. Actually, in the continuum limit the acceptance will be
exactly one since the algorithm becomes microcanonical (at
least for � = 0): in some sense, this kind of update performs
at its best right in the continuum limit. Since this algorithm is
almost microcanonical, it must be obviously used together with
other more standard algorithms which can efficiently update
the action. Finally, we note that the computational burden
required for such a nonlocal update is approximately the same
as the one needed to perform a Metropolis sweep for all the
points of the lattice.

The algorithm just described could remind the reader of the
cluster algorithms defined by embedding discrete Ising-type
variable in a continuum model [60,61] and, in particular,
of the cluster algorithm described in [62] for the solid on
solid model of surface growth; there is however an important
difference. The general aim of these cluster algorithms is to
perform nonlocal updates on large scale clusters to reduce the
autocorrelation times of local observables. In our case, this is
not enough and we also have to ensure that during the update
the winding number is changed, which is not guaranteed just
by the fact that the updated region is macroscopically large. In
particular, we expect the standard stochastic way of building
up the cluster to be less efficient than the deterministic one
explained before to decorrelate topological variables.

The tailor algorithm can be extended without change to
the � �= 0 case. In this case, we expect a loss of performance
because of different effects: on one hand, the action of the path
will change after the step, because of the potential term, so that
the acceptance will diminish; on the other hand, large values of
� will suppress large scale fluctuations of the path, hence, the
probability of finding diametrically opposite points. However,
in both cases the problem is not related to the microscopic
scale, so that the scaling of the performance to the continuum
limit is expected to be equally good.

In our implementation we used ε = 0.2a and a nonlocal
update was proposed every 10 Metropolis updates (5 hits
with � = 0.5). The integrated autocorrelation time τ of the
topological susceptibility is reported in units of the elementary
updates in Fig. 4, obtained using a statistics of 107 elementary
updates (of which 106 were nonlocal tailor updates), from
which we can see that the topological slowing down problem
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FIG. 4. Dependence of the autocorrelation time of the topological
susceptibility on the (inverse) lattice spacing when using the tailor
update.

is completely resolved by using the tailor update method. A
nontrivial dependence of the autocorrelation time on the pa-
rameter � is observed, which is easy to understand based on the
discussion above. Indeed, for �2 = 0, 5, 10 the values found
for the acceptance of a tailor move have been, respectively,
α 
 0.5, 0.25, 0.12. However, the good news is that a sort of
saturation of the autocorrelation time towards the continuum
limit is observed in all cases, independently of the value of �.

Given the resolutive nature of this kind of algorithm, it
would be a blessing if an analogous one could be found for
field theories with a similar problem of autocorrelation of
topological modes, like QCD. It is important to stress that
for the specific toy model studied in this paper, it is surely
possible to find other specific algorithms that drastically reduce
or completely remove the critical slowing down: given the
simplicity of the model it would for example be reasonably
simple to implement multilevel or multigrid algorithm like
the ones described in [63–66], not to mention the possibility
of performing the sampling directly in momentum space.
However, these methods are known since quite long times
and their applicability to theories involving gauge degrees
of freedom revealed to be very limited. On the contrary, the
idea of finding a global field transformation over a region
of space-time which changes the sign of the winding density
while leaving the action unchanged is easily extendable: time
reversal could for example be used for 4D gauge theories.
What is significantly less easy, in higher dimensions, is to be
successful in finding the region of space-time which can be
cut away and then sewed back after the field transformation,
in such a way that it fits almost perfectly with the rest, so that
the global action change is negligible. For that reason, while
keep thinking about this idea is surely worth doing, let us now
turn to more conventional algorithmic improvements, which
are more easily extendable to the case of field theories.

C. Variation 3: Slab method

The idea of looking at subvolumes to estimate the topolog-
ical susceptibility is around since some time [67,68] and was
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recently suggested as a way out of the freezing problem. The
basic idea is quite simple and appealing: even if on the whole
lattice the winding number does not change, we can look at
local fluctuations and try to extract information from them.

The way in which this general idea was applied in
Refs. [69,70] is the following: if we know the probability
distribution p(Q′)V of having a winding number Q′ in the
volume V , we can obtain the probability of having winding
number Q̃ in the volume xV [with x ∈ (0, 1)] when the total
winding is frozen to the value Q as

p(Q̃)xV × p(Q − Q̃)(1−x)V . (26)

If we now assume that p(Q)V ∝ exp[−Q2/(2χV )] it can be
shown that, when Q ≡ 0 on the whole volume,

χs ≡ 〈Q2〉xV
V = χx(1 − x) (27)

and the value of χ can thus be extracted from subvolume
measurements.

The distribution of the topological charge Q can be quite
often approximated, at least as a first approximation, by a Gaus-
sian behavior, however, this is by no means guaranteed. The
accuracy of this approximation can be quantitatively assessed
by looking at the coefficients b2n defined in Eq. (14): since
they are proportional to the cumulants of the winding number
distribution, they indeed measure how close this distribution is
to a Gaussian.

For the case of the quantum particle on a circumference
we can see from Eq. (16) that, for the noninteracting case,
the distribution p(Q)V is well approximated by a continuum
Gaussian in the low temperature regime (it is exactly Gaussian
at zero temperature), while this is no more the case in the high
temperature regime. Something very similar happens also for
4D Yang-Mills theories and QCD: in the low temperature phase
the value of b2 is very small and in fact it goes to zero when
the number of color increases [31,32,34,45,46], in the high
temperature phase the same values as in Eq. (16) are expected
[8,14,37,71,72], that differ significantly from the Gaussian
ones.

For the case of the quantum mechanical particle mov-
ing on circumference at low temperature, significant non-
Gaussianities are expected also in the presence of a nonvan-
ishing external potential; for this reason in the following of
this section we will restrict to the case � = 0, in order to
use the simple expression (27). It seems reasonable that the
formalism can be extended to take into account also the first
few corrections to non-Gaussianity, parametrized, e.g., by b2

and b4, but we will not pursue this generalization in this work.
To test the slab method, we used lattice spacings small

enough that no change of the winding number was expected to
happen in the 108 updates accumulated (that Q = 0 in all the
cases was also a posteriori verified). For the update we used
the same recipe as in the standard Metropolis case, the lattice
temporal extent was fixed once again to aNt = 2 and results
corresponding to the different slab sizes (i.e.,x = 0.1, . . . , 0.9)
are completely independent from each other since they were
extracted from independent runs. It should be noted that,
while this is not the procedure that would be adopted for
computationally more intensive models, our interest here is
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FIG. 5. Fit to Eq. (27) to extract the topological susceptibility
from subvolume measurements.

just in the continuum scaling of the autocorrelation time of
topological observables measured at fixed slab size x.

In Fig. 5 we show the fits that have been used to extract χ

from χs . For all Nt values smaller than 2000, the functional
form in Eq. (27) well describes the x dependence of χs (x) and
the values of the topological susceptibility χ extracted from the
fits are compatible with the expected χ = 1 value within errors.
This is not the case for Nt = 2000, for which we obtained
the quite large χ2/d.o.f = 14/8 value and the topological
susceptibility estimate χ = 0.940(25). This could be related
to the fact that errors corresponding to the different χs (x)
determinations are for Nt = 2000 very inhomogeneous, and
a fit to all the χs (x) values at fixed common statistics is likely
not the best choice. Of course, this could become a problem
in QCD, where all the slab measures would be extracted not
from independent runs but from the same configurations, thus
having always the same statistics for all the x values. The
autocorrelation of the slab measurements is shown in Fig. 6
for the case of data corresponding to x = 0.1 and 0.3.

The behavior displayed in Fig. 6 is quite easy to understand.
Smaller slabs correspond to smaller autocorrelation times since
they are more sensitive to the local fluctuation of the density of
winding number; note, however, that, because of the thermal
boundary conditions in time and of the fixed global topology,
slices x and 1 − x are completely equivalent, the “worst case”
being thus x = 0.5.

Although we do not have data precise enough to draw firm
conclusions on the scaling behavior of the autocorrelation
times in the case of the slab method, it seems that autocor-
relation times at fixed x values are reasonably described by a
power law behavior in 1/a, with a power in the range 2–3. For
the case � = 0 at low temperature it is thus clear that the slab
method improves a lot on the standard Metropolis algorithm.

How to extend in a systematic way this method to the case
in which the probability distribution of the winding number is
non-Gaussian is surely something worth further investigation.
However, it has to be remarked that, for theories that are not
defined on a compact space, the probability distribution of the
topological charge always pointwise converges to a Gaussian
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FIG. 6. Autocorrelation of χs , defined in Eq. (27), by using the
subvolume measures; the case of x = 0.1 and 0.3 are shown for � =
0. The continuous black line is a fit of the form τ ∝ N3

t to the x = 0.1
data, while the dashed red line is a fit to the x = 0.3 data obtained by
using the functional form τ ∝ N2

t .

distribution in the thermodynamic limit.5 As a consequence, it
seems reasonable that the slab method can be safely applied
whenever one is interested just in the topological susceptibility,
provided the volume is large enough (i.e., χV 	 1).

D. Variation 4: Open boundary conditions

The fact that the winding number is an integer number is
obviously related, for the model studied in this paper, to the
thermal boundary conditions in time. Analogously, in 4D non-
Abelian gauge theories the topological charge is almost integer
on the lattice due to the thermal boundary condition in the time
direction and to the periodic boundary conditions in the space
directions, that are typically used in order to minimize finite
size effects.

Given these premises, it is natural to think that the criti-
cal slowing down of the topological susceptibility could be
alleviated by using different boundary conditions, that do
not constrain the winding number to be integer (or almost
integer). This idea was put forward in [73], where the use of
open boundary condition was suggested, and some interesting
variations on the same theme can be found in [74,75].

The use of boundary conditions different from the thermal
one in the temporal direction obviously prevents the study
of the T dependence of the system. However, we expect the
T = 0 physics to be recovered independently of the specific
boundary condition adopted, if the temporal extent of the lattice
is large enough. In this way, we move the topological slowing
down problem from the ultraviolet to the infrared: the winding
number is no more discrete and there can be a winding number
density inflow or outflow from the boundary, however, we
lose translation invariance and, to avoid contaminations from

5This fact is sometimes used in the literature to argue that the b2n

coefficients vanish, however, this is not the case: all the cumulants
grow with the volume in the thermodynamic limit and the b2n

coefficients stay constant as V → ∞.
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FIG. 7. Values of the topological susceptibility obtained with
different procedures when open boundary conditions are used: by
computing the susceptibility of the topological charge restricted to
the slice, by computing the susceptibility of the topological charge
restricted to the slice after cooling, by evaluating the integral (28).
The horizontal band represents the value obtained from simulation
with periodic boundary conditions.

surface states, we have to analyze only the part of the lattice
that is far from the boundary.

The autocorrelation time of the winding number in the bulk
region of the lattice is thus related to two different phenomena:
the inflow or outflow from the boundary and the diffusion from
the boundary to the bulk [76]. Assuming the diffusivity of the
topological charge density to be well defined in the continuum
limit, we thus expect the autocorrelation time of the topological
susceptibility in the bulk to scale as τ ∝ N2

t .
When using open boundary conditions, we want to extract

information only from the part of the lattice that is far enough
from the boundary as not to be influenced by its presence;
as a consequence, the topological susceptibility cannot be
computed simply by using Eq. (15). Making use of the
integral of the topological charge density restricted to a given
subvolume does not help either: we have to disentangle the
true contribution of the topological susceptibility from the
one of the charges that fluctuate across the boundary of
the subvolume (see Fig. 7). The best way to compute the
topological susceptibility in this case is to write it as the integral
of the two point function of the topological charge density [in
the present case the topological charge density q is simply
ẋ(t )]:

χ = lim
t→∞

∫ t

0
〈q(0)q(t ′)〉dt ′. (28)

In this equation, “0” is a point in the middle of the lattice, and
the lattice has to be large enough for the asymptotic value of
the integral to be reached before the effects of the boundary
become appreciable.

The integrand of Eq. (28) is, however, a very singular object
for t 
 0 [77,78]: even for � = 0 (at T = 0) we have in the
continuum 〈q(0)q(t )〉 = δ(t ). On the other hand, in the lattice
theory, the integral in Eq. (28) reduces to a finite sum and, for
this sum to converge to the integral in the continuum limit, the
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FIG. 8. An example of the behavior of
∫ t

0 〈q(0)q(t ′)dt ′ as a
function of t for three values of�, with t in physical units, for 1/T = 2
with open boundary conditions and Nt = 400.

integrand must be well behaved as a → 0. The usual procedure
that is used in cases like this is smoothing.

Many flavors of smoothing exist, like cooling [79–83],
smearing [84–86], or the gradient flow [87,88], but the main
idea is always to reduce the ultraviolet noise in a local way.
While the different variants use different strategies in order
to smooth the configuration (e.g., by taking local averages or
by minimizing the action), in all the cases the net effect is to
introduce a length λs and to suppress all the field fluctuations
on length scales smaller than λs . In order for the lattice sum to
converge to the integral in Eq. (28), it is important to keep λs

fixed in physical units as the lattice spacing is reduced.
All the smoothing algorithms have been shown to produce

compatible results when their parameters are properly rescaled
[89–92], so we used the computationally cheapest procedure:
cooling. In order to keep λs fixed toward the continuum limit,
we rescaled the number of iterations of the cooling procedure
according to the relation

nc = round

[
10

(
0.005

a

)2
]
, (29)

where “round” denotes the rounding to the closest integer. We
then a posteriori verified that with this prescription the two
point correlator smoothly converges to its continuum limit,
i.e., λs is indeed fixed in physical unit.

For the system studied in this paper, open boundary con-
ditions in the time direction can be easily implemented by
restricting the first summation in Eq. (18) to the values j ∈
0, . . . , Nt − 2; the algorithm used for the update was the same
adopted for the standard Metropolis update.

The typical behavior of the integral of two point correlation
function is displayed in Fig. 8, from which we see that the
integral reaches its asymptotic value around t = 0.15, 0.2, and
0.4 for �2 = 0, 5, and 10, respectively. This implies that a
lattice extent aNt = 2 is large enough also when using open
boundary conditions.

In Fig. 9 we show the scaling of the susceptibility autocorre-
lation time τ with the inverse lattice spacing for the three cases
�2 = 0, 5, 10, obtained from runs consisting of 108 complete
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FIG. 9. Integrated autocorrelation time of the topological suscep-
tibility obtained from simulations performed with open boundary
conditions (with aNt = 2). The dashed line is a fit of the � = 0 data
with the functional form a0N

2
t .

Metropolis sweep of the lattice. A fit using the expected
τ ∝ N2

t behavior is also displayed, that well describes the data
for small lattice spacing values. The use of the open boundary
condition thus reduces the exponential critical slowing down
of periodic boundary conditions to a quadratic behavior in the
inverse of the lattice spacing.

This is obviously a great improvement that, however, comes
together with some difficulties. For the case of the quantum
particle on a circumference the main difficulty is the impos-
sibility of studying the thermodynamics of the model. Such
a problem is obviously related to the simplicity of the model
and it is not present, e.g., for the case of 4D non-Abelian gauge
theories, in which one can use the open boundary conditions in
the spatial directions. While this approach should generically
work, it could present some difficulties close to a second order
phase transition.

Another source of technical difficulty is related to the
definition of the observables: while for the susceptibility it is
relatively easy to use Eq. (28), the computation along the same
lines of the higher cumulants of the winding number (needed,
e.g., to extract the values of the b2n coefficients) becomes
increasingly difficult.

As observed in Sec. III, the autocorrelation time is not
the only figure of merit to be considered to evaluate the
effectiveness of an update scheme, another important one being
the CPU time required to perform a single update. In particular,
one is typically interested in minimizing the statistical error
attainable for unit of CPU time at fixed external parameters
(e.g., fixed lattice size). For the case of open boundary con-
ditions, a comparison with the standard Metropolis update is
thus complicated by two facts:

(i) a different estimator of the topological susceptibility is
used in the two cases [i.e., Eqs. (15) and (28)];

(ii) a priori different lattice sizes have to be used in the two
cases to have similar finite size effects.

For the case studied in this paper, these two points turned
out not to be particularly important: the lattices used for the
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periodic boundary simulations were large enough to be used
without introducing appreciable systematical errors also for the
runs with open boundary conditions; moreover, the variances
of the two estimators adopted for the topological susceptibility
were about the same. However, while the critical scaling of the
autocorrelation time should be the same also for other models,
these two properties cannot be expected to hold true in general.

E. Variation 5: Parallel tempering

Tempering methods have been introduced in the context
of the Monte Carlo simulation of spin glasses, where an
exponential critical slowing down is also present, and they
are based on an extended state space approach. This allows to
mix together in a stochastically exact way slowly and quickly
decorrelating simulations.

The tempering approach was applied for the first time to
the problem of the freezing of the topological charge in [93],
where simulated tempering [94] was shown to be useful for the
case of the 2D CPN−1 model, however, a systematic study of
its effectiveness has never been undertaken since then. More
recently, tempering was used to reduce the finite size effects
associated with the open boundary conditions [75].

The version of tempering that we used is parallel tempering,
introduced in [95] and later improved in [96]. In this approach,
several simulations are performed in parallel, each one using
different values of the global parameter that triggers the
slowing down, in our case the lattice spacing. The global
distribution of the whole system is given by the product of
the distributions of the single systems. For most of the time the
different simulations evolve independently of each other, but
sometimes an exchange is proposed between the configurations
corresponding to different lattice spacing values: of course,
this implies that the same value of Nt be used for all copies,
so that different lattice spacings will also correspond to
different Nta, i.e., different temperatures. The exchange of the
configurations {xi}i∈0,...,Nt−1 and {x ′

i}i∈0,...,Nt−1, corresponding
to lattice spacings a and a′, respectively, is accepted or rejected
by a Metropolis step with acceptance probability

p{x}↔{x ′} = min

(
1,

e−S({x},a′ )−S({x ′},a)

e−S({x},a)−S({x ′},a′ )

)
, (30)

where we denoted by S({y}, ã) the value of the discretized
action in Eq. (18) computed using the configuration {y} and the
value ã of the lattice spacing (obviously θ = 0 for S to be real).
It is easily shown that the algorithm defined in this way satisfies
the detailed balance condition (see, e.g., Refs. [4,5]) and the
advantage of the method is that the exchanges drastically
reduce the autocorrelation times since “slow” simulations are
speeded up by the exchanges with the “fast” ones.

Let us assume that we are interested in simulating a lattice
spacing amin at which the standard Metropolis algorithm
decorrelates too slowly. To make use of the parallel tempering
approach, we have first of all to select a value amax at which the
Metropolis algorithm is efficient, then we need to select NPT

values of the lattice spacing ai satisfying

amin ≡ a0 < a1 < · · · < aNPT −1 ≡ amax. (31)

How to select the interpolating values ai is a nontrivial problem
since the choice of these values strongly affects the efficiency
of the algorithm.

A criterion that is commonly used to guide the choice of the
intermediate values ai is the requirement that the probability
of the exchange ai ↔ ai+1 has to be i independent. Indeed,
one can guess the autocorrelation time to be approximately
given by the time required for a given configuration to reach
the “quickly decorrelating” simulation, decorrelate, and come
back. If the acceptance probabilities for the various exchanges
ai ↔ ai+1 are all equal, the configuration will perform a ran-
dom walk between the different copies, and the autocorrelation
will be given by

τ ∝ N2
PT τmin. (32)

The missing proportionality factor is determined by the ac-
ceptance ratio of the exchange step, which fixes the diffusion
constant of the random walk: if adjacent lattice spacings are
chosen far apart from each other, the exchange will lead to a
significant increase of the global action and will be rejected
most of the times.

In general it is not easy to identify intermediate values
satisfying the previous requirements and several procedures
exist to optimize their choice (see, e.g., Refs. [97–99]). For the
case studied in this paper, however, the choice is much simpler:
if we consider for the sake of the simplicity the case � = 0,
the typical action of a configuration at lattice spacing a is of
the order of Nt�x2/a, where the typical squared displacement
�x2 of the x variable is of the order of a. If we now consider an-
other configuration sampled at lattice spacing a′ and exchange
them, the sum of the actions before the exchange will be of the
order of Nta/a + Nta

′/a′ = 2Nt , while after the exchange it
will be of the order of Nta

′/a + Nta/a′ = Nt (r + 1/r ) where
r = a′/a. The acceptance probability will thus be e−�, with
� of the order of Nt (r + 1/r − 2). As previously noted, for
the exchange to be accepted the two lattice spacings cannot be
too different from each other: � has minimum at r = 1 and
diverges to positive values for r → 0 or r → ∞. This argument
is obviously only approximate since we completely neglected
the role of fluctuations, however, it provides an indication that
the acceptance rate has to be a function of r (something that we
also verified numerically), meaning that in order to have equal
acceptances one needs to have equal ratios between adjacent
lattice spacings. The lattice spacing thus plays the same role
as the temperature in a system with temperature independent
specific heat, where it is known that the optimal choice is to use
interpolating temperatures in geometric progression (see, e.g.,
Ref. [100]). As a consequence, we used for the intermediate
lattice spacings the values

ai = Kiamin, K =
(

amax

amin

) 1
NPT −1

. (33)

To completely fix the update scheme, we still have to set
the value of NPT in Eq. (33). Of course, one would like to
have NPT as small as possible in order to reduce the number
of independent simulations and save computer time, however,
if NPT is too small, the ratio between adjacent lattice spacings
becomes too large and the acceptance probability negligible.
It is also intuitively clear that NPT will have to be larger
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and larger as amin goes to zero with Ntamin fixed, i.e., as the
system gets larger and larger in lattice units, since the action
is an extensive quantity. More precisely, it is a standard result
(see, e.g., Ref. [96]) that, for the acceptance probability of
the exchange ai ↔ ai+1 to remain constant as Nt → ∞, the
number of copies has to scale asymptotically as follows:

NPT ∝
√

Nt . (34)

In fact we found that, for the lattice sizes we used, the
previous relation is not precise enough; for that reason, to keep
the exchange acceptance probability constant as amin goes to
zero we used the empirical formula

K − 1√
amin

= C, (35)

where K is the constant appearing in Eq. (33) and the constant
C was fixed to C = 1.4 after some preliminary tests. Using
Eq. (33) we can see that the previous relation implies for NPT

the value

NPT = 1 + log(amax/amin)

log(1 + C
√

amin)
, (36)

that for amin → 0 (with amax fixed) is consistent with Eq. (34).
The largest lattice spacing was fixed in all the runs to

amax = 0.02, a value for which the autocorrelation time of the
standard Monte Carlo update is around 10, and an exchange
of the configurations corresponding to neighboring lattice
spacing values was proposed every 20 standard update sweeps.
Following Eq. (36), a number of copies going from 15 to 70
were used depending on the amin value and, in order to keep
into account the higher computational intensity of a parallel
tempering run with respect to an ordinary Monte Carlo, we
introduce the effective autocorrelation time defined by

τeff = τNPT , (37)

where τ is the integrated autocorrelation time (in units of
the elementary Metropolis update sweeps) of the topological
susceptibility obtained from the run at smallest lattice spacing
of the parallel tempering.

The numerical estimates of τeff shown in Fig. 10 are
obtained from simulations with a statistics of 107 elementary
updates (i.e., 5 × 105 parallel tempering exchange steps) for
each replica and again a great improvement with respect to
the standard Metropolis update is clear. The behavior of the
data is roughly compatible with the scaling τeff ∝ N2

t , slightly
worse than the expected τeff ∝ N

3/2
t that can be obtained from

Eqs. (32), (34), and (37). This discrepancy is easily explained
by the previous observation that our lattices are not large
enough for the asymptotic expression (34) to be trusted, indeed
the scaling form τ ∝ N2

PT is instead nicely verified, as shown
in Fig. 11.

F. Variation 6: The very high temperature case

The numerical study of the very high temperature regime
presents additional problems with respect to the low temper-
ature case: the topological susceptibility approaches zero at
high temperature, which means that the probability p(Q) of
observing the value Q of the winding number gets strongly
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FIG. 10. Effective integrated autocorrelation time of the topologi-
cal susceptibility measured using parallel tempering simulations (with
aNt = 2). The dashed line is the result of a fit of the form τeff = a0N

a1
t

and the parameter a1 turns out to be a1 ≈ 2.2.

peaked at Q = 0. Indeed, from Eq. (10) we can see that in the
� = 0 case

p(Q) = exp[−Q2/(2β )]∑
Q′∈Z exp[−Q′2/(2β )]

. (38)

As a consequence, it is very difficult to reliably estimate the
values of χ and of the b2n coefficients since unfeasibly long
runs are needed to compute the momenta 〈Qn〉.

For the simple case of the quantum particle moving on a
circumference, the high temperature problem is exacerbated
by the fact that the physical volume is fixed from the beginning
(V = 1 with our conventions). In 4D non-Abelian gauge
theories, the topological susceptibility also goes to zero in
the high temperature limit [8,13,37,72,101–103], however, the
thermodynamic limit has to be performed. As a consequence,
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FIG. 11. Dependence on NPT of the integrated autocorrelation
time τ as measured in the copies with the smaller value of the lattice
spacing in parallel tempering simulations (with aNt = 2). The scaling
Eq. (32) is well satisfied.
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for any fixed value of χ (although very small) one can find a
volume large enough to observe with a significant probability
state with Q �= 0 (i.e. χV � 1). While this is true in theory, in
practice the size of the lattices is limited by computer resources
and as a consequence also in 4D non-Abelian gauge theories,
the study of the topological properties in the high temperature
phase is particularly problematic.

The practical consequences of this problem are analogous
to those of the freezing problem, however, it has to be stressed
that these two complications have completely different origins:
freezing is a purely algorithmic sampling problem of the
Monte Carlo, while the fact that p(Q) gets strongly peaked
at zero is a physical fact related to the behavior of the
topological susceptibility. It is interesting to note that none of
the algorithms used so far in this paper are sufficient to study
the high temperature regime, where the lattice spacing is small
enough for the topological freezing to be present and χ 
 1.

In order to perform simulations in this regime, it is first of all
necessary to enhance the probability of the Q �= 0 states, and
the multicanonical approach is the best suited for this purpose.
We thus add to the Euclidean action a term corresponding to
the potential

Vm(Q) =
{− Q2

2aNtχm
|Q| < Qmax,

− Q2
max

2aNtχm
|Q| � Qmax,

(39)

where Qmax and χm are parameters of the algorithm and
this potential will enter the reweight analysis procedure. The
adopted values for these parameters are Qmax = 5 and χm = 1
[this is the optimal value for � = 0 according to Eq. (38)] and
simulations have been performed using the same procedure as
for the simple Metropolis update. No particular optimization
of the simulation parameters has been investigated since in this
section we are more interested in a proof of principle about the
feasibility, rather than in an actual optimization of the runs.

As previously noted, the use of the multicanonical ensemble
does not solve the freezing problem, so we have to use some
other algorithmic improvement on top of the multicanonical
approach. The tailor method cannot be used for this purpose
since the typical Q = 0 configurations of the path integral
Monte Carlo are almost straight at high temperature, also
when the multicanonical term (39) is present in the Euclidean
action. As a consequence, it is very unlikely to find the two
diametrically opposite points that are needed for the tailor
update to succeed.

In order to avoid the freezing problem, we thus adopted par-
allel tempering in combination with multicanonical sampling.
To verify that this approach indeed allows to efficiently perform
simulations in the high temperature region, we used a lattice
with temporal extent Nt = 200 and lattice spacings in the range
[7.5 × 10−4, 2.5 × 10−5], corresponding to T ∈ [7, 200]. We
did not perform any optimization of the parameters entering
in the parallel tempering, and in all the cases we just used
amax = 0.05 and NPT = 80.

The results obtained for the topological susceptibility (with
a statistics of 107 elementary updates for each replica) using
this approach are shown in Fig. 12 together with the theoretical
expectation for the noninteracting case (16). The presence
of a nonvanishing � is in this case completely irrelevant
and numerical simulations correctly reproduce the theoretical
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FIG. 12. Topological susceptibility in the very high temperature
case. Just the � = 0 data are plotted since the difference with the
� �= 0 data is invisible on this scale. The red line is the theoretical
expectation of Eq. (16).

predictions over 40 orders of magnitude. Although no specific
optimization of the simulation parameters has been pursued,
in all cases τeff was in the range 104–105, with a very slow
increase as the lattice spacing is decreased. For the copies
with the largest lattice spacings (corresponding to the lowest
temperatures), we tried to also add in the simulation a tailor
update step, whose effect was to reduced the autocorrelation
times by an additional factor 2–3.

V. CONCLUSIONS

In this study, we have considered a quantum mechanical
problem which furnishes one of the simplest examples of
path integral characterized by a topological classification of
the configurations, and by the possible introduction of a
topological θ term. After reviewing its main properties and
some interesting exact duality relations connecting the high
temperature and the low temperature regimes, our main focus
has been on the numerical investigation of the discretized path
integral by Monte Carlo simulations.

Indeed, a hard algorithmic problem which this humble
model shares with nobler examples, like QCD, is the emer-
gence of a critical slowing down of topological modes as
the continuum limit is approached, leading eventually to
the impossibility of properly sampling the path integral. For
that reason, we have decided to explore several algorithmic
improvements, some of them already proposed in the context of
QCD and other field theories, in order to perform a systematic
and comparative investigation of them. A summary of our
results, obtained both for the free case and in the presence
of a cos-like potential, is reported in Figs. 13 and 14.

When investigating a simplified toy model in place of a
more complex theory, one always faces the risk of saying
something which is relevant just to the toy model and not
to the original problem. We have not spent much efforts in
avoiding this risk, indeed the best algorithm we have developed
for the toy model is what we have named the “tailor method,”
which by means of clever cuts and seams of selected pieces of
configurations, achieves a direct tunneling between adjacent

013308-13



CLAUDIO BONATI AND MASSIMO D’ELIA PHYSICAL REVIEW E 98, 013308 (2018)

300 500 1000 1500 2000
Nt

10
3

10
4

10
5

10
6

τ 
   

(τ
ef

f f
or

 p
ar

. t
em

p.
)

standard
par. temp.
open b.c.
slab 10%
slab 30%

FIG. 13. Comparison of the results obtained by using different
simulation algorithms in the low temperature phase for � = 0. Results
obtained by the Tailor update are not shown in order to make the figure
more readable.

topological sectors which eliminates completely the problem
of the so-called topological barriers. We have argued that, while
the underlying symmetry concepts at the basis of the method
could be exported to more complex cases, finding the proper
cuts and seams is a significantly harder task in more than one
space-time dimension.

However, we think that some of our findings could indeed
be quite relevant also for theories like QCD. At T = 0,
the slab method, the method of open boundary conditions,
and parallel tempering provide the best results, achieving
comparable efficiency in reducing the autocorrelation time of
the topological susceptibility, greatly improving on the basic
Metropolis scheme. From our results we obviously can not
draw firm conclusions on which of these algorithms would
best perform in a realistic simulation of a Yang-Mills theory
or QCD since nonuniversal features (like, e.g., the prefactor
of the scaling laws of τ ) could be significantly different, and
the relative computational weight of the different approaches
can become different from one. However, parallel tempering
appears to be the most flexible method of this group: the slab
method is (at least in its present form) limited to the case
of a Gaussian probability distribution, while the use of open
boundary conditions could create some technical difficulties
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FIG. 14. Comparison of the results obtained by using different
simulation algorithms in the low temperature phase for �2 = 10.

close to a second order phase transition and in the computation
of the b2n coefficients.

The situation is quite different when one considers the high-
T regime. In this case, one has a new hard problem, in addition
to the freezing one, namely, the exponential suppression of
the weight of topological sectors with Q �= 0, which therefore
require exponentially large statistics in order to be properly
sampled. Some of the methods explored at low T , like the slab
method and open boundary conditions, are not available in
this case for the model studied here, because of the short time
direction and of the absence of other space-time dimensions.
The optimal strategy we have found to defeat both problems at
the same time is to make use of parallel tempering in the context
of a multicanonical simulation (metadynamics would work
equally well). We believe that this could be a good suggestion
to approach the equivalent problem one has to face in exploring
the topological properties of QCD in the very high temperature
regime, something which is very relevant in the context of
axion phenomenology [8,13–19].
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