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The quantitative characterization of the microstructure of random heterogeneous media in d-dimensional
Euclidean spaceRd via a variety of n-point correlation functions is of great importance, since the respective infinite
set determines the effective physical properties of the media. In particular, surface-surface Fss and surface-void Fsv

correlation functions (obtainable from radiation scattering experiments) contain crucial interfacial information
that enables one to estimate transport properties of the media (e.g., the mean survival time and fluid permeability)
and complements the information content of the conventional two-point correlation function. However, the
current technical difficulty involved in sampling surface correlation functions has been a stumbling block in
their widespread use. We first present a concise derivation of the small-r behaviors of these functions, which are
linked to the mean curvature of the system. Then we demonstrate that one can reduce the computational complexity
of the problem, without sacrificing accuracy, by extracting the necessary interfacial information from a cut of the
d-dimensional statistically homogeneous and isotropic system with an infinitely long line. Accordingly, we devise
algorithms based on this idea and test them for two-phase media in continuous and discrete spaces. Specifically
for the exact benchmark model of overlapping spheres, we find excellent agreement between numerical and exact
results. We compute surface correlation functions and corresponding local surface-area variances for a variety
of other model microstructures, including hard spheres in equilibrium, decorated “stealthy” patterns, as well as
snapshots of evolving pattern formation processes (e.g., spinodal decomposition). It is demonstrated that the
precise determination of surface correlation functions provides a powerful means to characterize a wide class of
complex multiphase microstructures.
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I. INTRODUCTION

Random heterogeneous media are ubiquitous and arise
in many applications in physics, materials science, biology,
and geophysics. Examples of such media include composites
[1], porous materials [2–4], biological tissues [5,6], and even
cosmological structures [7]. The quantitative characterization
of the structure via higher-order correlation functions of these
complex media is of importance in many fields [1,8]. In
general, an infinite set of correlation functions are required to
exactly determine the effective physical properties of the media
[1–3]. However, such complete structural information about
the medium is generally not available and hence one must settle
for reduced information in the form of lower-order correlation
functions. The study of these descriptors has proved fruitful
and new applications involving these descriptors are constantly
coming up, including in reconstructions using state-of-the-art
techniques such as neural networks [9,10].

There are a variety of two-point structural descriptors,
including the two-point correlation function S2 [11,12], two-
point cluster function C2 [13], surface-surface correlation
function Fss [14], and surface-void correlation function Fsv
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[14], as well as the pore-size density function P (δ) [1], that
are practically accessible via computer simulations or imaging
techniques. Among them, the most well-known descriptor is
the standard two-point correlation function S2, which can be
obtained from scattering experiments [15,16]. This quantity
has been employed to characterize the microstructure and
physical properties of heterogeneous materials [1], reconstruct
the microstructure of heterogeneous materials [11,12], and
recently, to quantify the hyperuniformity of two-phase systems
[17–19]. Although knowledge of the two-point correlation
function S2 has proved to be extremely useful, the corre-
sponding correlation functions that characterize the interface of
two-phase media such as the specific surface s, surface-surface
correlation function Fss(r), and surface-void correlation func-
tion Fsv(r), which contain crucial structural information, have
received considerably less attention, especially Fss and Fsv.
This is due partly to the fact that these surface correlation
functions are not as easy to sample as S2, which we remedy in
this paper, as described in Sec. IV.

While the two-point correlation function S2(r) contains
important structural information, it is usually insufficient to
determine both the structure and physical properties of hetero-
geneous media [1,13,20]. It has been shown that supplementing
S2 with surface correlation functions can lead to improved
reconstructions of two-phase media [1,21,22].
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FIG. 1. (a) A schematic two-phase medium showing the surface-surface correlation function Fss(r), surface-void correlation function
Fsv(r), and void-void correlation function Fvv(r) [or S2(r)], where the blue phase is the “solid” phase. (b) Corresponding schematic showing
the scattering of radiation by a two-phase medium, where the blue phase indicates the bulk and the red region indicates the interface.

These surface correlation functions determine rigorous
upper bounds on the fluid permeability k of porous media
and mean survival time τ associated with diffusion-controlled
reactions among traps. These two-point “interfacial-surface”
bounds have been shown to be much sharper than the so-
called two-point “void” bound involving S2 alone, reflecting
the importance of surface correlation functions. For isotropic
media in three-dimensional Euclidean space, these involve the
following two key integrals:

I1 =
∫ ∞

0

[
φ2

1

s2
Fss(r) − 2φ1

s
Fsv(r) + Fvv(r)

]
rdr, (1)

I2 =
∫ ∞

0

[
Fvv(r) − φ2

1

]
rdr. (2)

where Fvv is just another way to write S2 for the void phase if
we focus on porous media, i.e., Fvv ≡ S2, and φ1 is the volume
fraction of the void phase. A schematic plot of the correlation
functions is shown in Fig. 1(a). For statistically isotropic media,
the two-point “interfacial-surface” upper bound for the fluid
permeability is given by [1]

k � 2
3I1, (3)

while the two-point “void” bound is

k � 2

3φ2
2

I2, (4)

where φ2 is the volume fraction of the solid phase. Similarly,
the analogous bounds on the mean survival time are given by
[1]

τ � I1

φ1D
, (5)

and

τ � I2

φ1φ
2
2D

, (6)

where D is the diffusion coefficient of the reactant. The fact
that the key integrals in these bounds on the fluid permeability
are the same as those for the mean survival time is more than

a coincidence. Indeed, k is rigorously bounded from above in
terms of τ for general media [23].

Moreover, two-point correlation functions determine local
volume-fraction and local surface-area fluctuations as mea-
sured by the relevant variances. These variances enable one
to generalize the concept of hyperuniformity [17], which was
originally conceived in the context of point configurations,
namely, it refers to the anomalous suppression of density
fluctuations on large length scales [24,25]. Notably, it is
proven that sphere packings will inherit the hyperuniformity
of the underlying point pattern [17]. The local volume-fraction
variance σ 2

V
(R) within a spherical observation window of

radius R in d-dimensional Euclidean space Rd is given by
[26]

σ 2
V

(R) = 1

v1(R)

∫
Rd

χ
V
(r)α(r; R)dr, (7)

where

χ
V
(r) = Fvv(r) − φ2

1 (8)

is the autocovariance function associated with S2(r), and v1(R)
is the volume of a d-dimensional sphere of radius R, and
α(r; R) is the scaled intersection volume, the ratio of the
intersection volume of two spherical windows of radius R

whose centers are separated by a distance r to the volume
of a spherical window. A two-phase system is hyperuniform
with respect to volume-fraction variances if σ 2

V
(R) decreases

more rapidly than R−d for large R [17], or equivalently

lim
|k|→0

χ̃
V
(k) = 0, (9)

where χ̃
V
(k) is the Fourier transform of χ

V
(r). Similarly, the

local surface-area variance σ 2
S

(R) has been defined by [26]

σ 2
S

(R) = 1

s2v1(R)

∫
Rd

χ
S
(r)α(r; R)dr, (10)

where

χ
S
(r) = Fss(r) − s2 (11)

is the autocovariance function associated with Fss(r). A two-
phase system is hyperuniform with respect to surface-area
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variances if σ 2
S

(R) decreases more rapidly than R−d for large
R [17], or equivalently

lim
|k|→0

χ̃
S
(k) = 0, (12)

where χ̃
S
(k) is the Fourier transform of χ

S
(r). It has been

suggested that surface-area fluctuations are more sensitive
microstructural measures for heterogeneous media than corre-
sponding volume-fraction fluctuations in some cases [17,18].
Results obtained in this paper further support this conclusion.

Similar to the two-point correlation function S2, surface
correlation functions can be related to and obtained from
the scattering intensity as well [27,28]. In the most general case
that involves scattering from both the bulk and the surface [see
Fig. 1(b) for a schematic plot], the scattering intensity can be
written as

I (k) = c1F̃(S2) + c2F̃(Fss) + c3F̃(Fsv), (13)

where c1, c2, c3 are certain coefficients. When the scattering
from the surface is comparable to the bulk, one must consider
all these three terms to determine the scattering intensity,
while if only bulk or surface scattering is dominant, then one
should only care about the corresponding correlation function,
this interpretation can potentially provide a general way to
understand hyperuniformity in two-phase media.

The rest of the paper is organized as follows: in Sec. II,
we provide necessary definitions and background. In Sec. III,
we present a concise and simple derivation of the small-r
behavior of the two-point surface correlation function, which
involves the mean curvature of the entire system. In Sec. IV,
we introduce and describe a general algorithm that enables the
efficient computation of Fss and Fsv. We verify the accuracy
of our algorithm by applying it to overlapping spheres for
which we have exact results [1]. In Sec. V, we show how
to apply the algorithm to treat digitized two-phase media,
which is of practical importance. Using Gaussian random
fields as an example, we will demonstrate that the image
resolution and some drop-out in sampling are crucial in order to
obtain reliable results. In Sec. VI we explicitly show results of
overlapping spheres, hard spheres in equilibrium and decorated
stealthy point patterns. In Sec. VII we explicitly show results
of patterns from spinodal decomposition and patterns from
the Swift-Hohenberg equation. Using these examples, we
demonstrate how surface correlation functions will be very
useful for microstructural characterization and can be superior
to S2 in certain cases. Finally, in Sec. VIII, we make concluding
remarks and discuss the implications of our findings.

II. BACKGROUND AND DEFINITIONS

A two-phase random medium is a domain of space V ⊆ Rd

that is partitioned into two disjoint regions that make up V: a
phase 1 regionV1 of volume fraction φ1 and a phase 2 regionV2

of volume fraction φ2 [1]. The phase indicator function I (i)(x)
for a given realization is defined as

I (i)(x) =
{

1, x ∈ Vi ,

0, x /∈ Vi .
(14)

For statistically homogeneous media, the volume fraction for
phase i

φi = 〈I (i)(x)〉 (15)

is a constant. The two-point correlation function is defined as

S
(i)
2 (x1,x2) = 〈I (i)(x1)I (i)(x2)〉. (16)

For homogeneous media, this quantity only depends on the
relative displacement vector r ≡ x2 − x1. The two-point cor-
relation function simplifies as S2(x1,x2) = S2(r). If the system
is also statistically isotropic, then S2(r) depends only on the
radial distance r = |r|.

The interface indicator function is defined as [1]

M(x) = |∇I (1)(x)| = |∇I (2)(x)|. (17)

The specific surface is the expected area of the interface per unit
volume, and for homogeneous media it is simply the ensemble
average of the interface indicator function, i.e.,

s = 〈M(x)〉. (18)

The surface-surface correlation function measures the correla-
tion between two points on the interface, and for homogeneous
media is defined as

Fss(r) = 〈M(x)M(x + r)〉. (19)

The surface-void correlation function measures the correlation
between one point on the interface and the other in the void
phase, and for homogeneous media is defined as

Fsv(r) = 〈M(x)I (void)(x + r)〉. (20)

Higher-order surface correlation functions are similarly de-
fined [1], but the focus in this paper will be the two-point
varieties.

Closed-form expressions for the two-point surface correla-
tion functions are very limited. The most notable one is for
the model of overlapping spheres [1,8], which is generated
by circumscribing spheres of radius a around each point in a
Poisson point process with density ρ. The space interior to the
spheres is the solid phase and the space exterior is the void
phase [1]. For statistically homogeneous overlapping spheres
in three dimensions, we have

Fss(r) = S2(r)

{
9η2

a2

[
1 −

(
1

2
− r

4a

)

(2a − r)

]2

+ 3η

2ra

(2a − r)

}
,

(21)

and

Fsv(r) = 3η

a

[
1 −

(
1

2
− r

4a

)

(2a − r)

]
S2(r), (22)

where r = |r| is a radial distance, η = ρv1(a) is a reduced
density and 
(x) is the Heaviside step function. Here,

S2(r) = exp

(−ηv2(r; a)

v1(a)

)
(23)

is the two-point correlation function for the “void” phase.
These relations were first given by Doi [29].
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Using the canonical function Hn [1], Torquato derived the
following expressions for surface correlation functions for hard
spheres:

Fss(r) = s

2r

(2a − r) + s2 + ρ2δ ⊗ δ ⊗ h (24)

and

Fsv(r) = s − s

2

(
1 − r

2a

)

(2a − r) − sη − ρ2m ⊗ δ ⊗ h,

(25)

where s = dη/a is the specific surface, δ is the radial Dirac δ

function, and m is the sphere indicator function. The quantity
h(r) is the total correlation function defined as h(r) = g2(r) −
1, where g2(r) is the pair correlation function, and ⊗ denotes
the convolution of two functions.

The impenetrability constraint alone is not sufficient to
specify the hard-sphere model; a hard-sphere system can
be in equilibrium or be derived from an infinite number of
nonequilibrium ensembles [1]. The pair correlation function is
generally not known for nontrivial hard-sphere models for all
densities, an exception being the “ghost” random sequential
addition packing model [30]. For d = 3, Torquato used the
Percus-Yevick approximation and the Verlet-Weis correction
to evaluate these functions for statistically isotropic systems of
hard spheres in equilibrium [14]. These are useful benchmark
results that will be used in Sec VI. To date, numerical evalu-
ations of the surface correlation functions have been limited
to hard spheres in equilibrium [14,31] and maximally random
jammed sphere packings [32].

III. SOME THEORETICAL REMARKS ON SURFACE
CORRELATION FUNCTIONS

A. The small-r behavior of Fss and Fsv in general

Debye and coworkers [15,16] showed that the slope of S2(r)
at the origin (r = 0) is directly proportional to the specific
surface s, which enables people to obtain the surface area of
the whole system by measuring the tail of a scattering profile.
The small-r behavior of the two-point surface correlation
functions have been derived previously by taking higher-order
derivatives of S2(r) of a dilated interface and then letting the
thickness go to zero [33,34]. Here we present a much simpler
derivation based on a probabilistic interpretation of the surface
correlation functions.

We restrict ourselves to the discussion of systems with
interfaces that are differentiable everywhere. This assumption
enables us to approximate the vicinity of a point on the interface
with planes or spheres in the following discussion.

The small-r behavior of the surface-surface correlation
function is straightforward to obtain. First, randomly pick a
reference point p0 on the interface (with specific surface s for
the entire system). Second, consider a concentric shell with
radius r to r + dr around the reference point, then a local
specific surface of the shell can be defined as dr → 0. The
quantity Fss(r) is then the product of the specific surface s

of the system and the average local specific surface over the
interfaces (the local specific surface is defined at every point
on interfaces, thus can be integrated to compute the average).
We present a schematic plot that elucidates the derivation in

ss sv

FIG. 2. (a) Schematic that illustrates the small-r asymptotic be-
havior of the surface-surface correlation function in three dimensions
in which the vicinity of the p0 is approximated by a plane, where
the area of interface contained in the shell is shaded. (b) Schematic
that illustrates the small-r asymptotic behavior of the surface-void
correlation function in two dimensions, where rc is the local radius of
curvature of the interface.

Fig. 2(a) in three dimensions. When r is very small, the vicinity
of p0 is basically flat for the zeroth-order approximation [see
the quadrangle in Fig. 2(a)] and there is no other interface
intersecting with the shell. As shown in Fig. 2(a), the area of
interface contained in the shell is 2πrdr , and the volume of
the shell is 4πr2dr , so

Fss(r) ∼ s ×
〈

2πrdr

4πr2dr

〉
= s

2r
, r → 0. (26)

For d = 2, following the same method we have

Fss(r) ∼ s ×
〈

2dr

2πrdr

〉
= s

πr
, r → 0. (27)

Since the zeroth-order approximation of Fss(r) is divergent as
r → 0, we will not discuss higher-order finite correction terms
here [33].

The determination of the small-r behavior of the surface-
void correlation function is more involved. Again, we ran-
domly pick a reference point p0 on the interface. Next consider
a “test” sphere of radius r centered at the reference point. We
denote by Psv(p0) the following conditional probability: given
a point p0 on the interface, the probability that a uniformly
and randomly placed vector r emanating from p0 lands in
the void phase. The quantity Fsv(r) is then the product of the
specific surface of the system s and the average of Psv(p0)
over the interfaces, i.e., Fsv = s〈Psv(p0)〉. Since it is more
convenient to illustrate the basic idea behind the computation
in two dimensions and the result can be easily generalized to
three dimensions, a schematic plot that elucidates our approach
is illustrated in Fig. 2(b) in two dimensions, where the shaded
area is the part of the small “test” sphere contained in the
solid phase. In d = 2, under aforementioned assumptions, we
can approximate the interface with a circular arc of radius of
curvature rc(p0). Then we can work out the probability Psv(p0)
up to the first-order approximation with respect to r , which
writes as

Psv(p0) = 1

2
+ r

2πrc(p0)
. (28)
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Average out this quantity on interfaces, we get the final result

Fsv(r) = s

(
1

2
+ r

2π

〈
1

rc(p0)

〉)
, (29)

where 〈1/rc(p0)〉 is the average of 1/rc(p0) on interfaces.
Following the same procedure in three dimensions, we find

Psv(p0) = 1

2
+ r

4rc(p0)
. (30)

Thus, we have

Fsv(r) = s

(
1

2
+ r

4

〈
1

rc(p0)

〉)
. (31)

However, in three dimensions, the curvature varies when
the normal plane rotates, and hence here 1/rc(p0) is to be
interpreted to be the mean curvature at the point. One should
also notice that 1/rc(p0) is a signed quantity in general,
although we only illustrate the positive situation in Fig. 2(b) for
the sake of simplicity. Note our simple approach can be easily
extended to derive the small-r behavior in higher dimensions.
In any d dimension, we find

Fsv(r) = s

(
1

2
+ r

2B
(

d−1
2 , 1

2

)〈
1

rc(p0)

〉)
, (32)

where B( d−1
2 , 1

2 ) is the beta function. Using this approach, the
connection between the small-r behavior of Fsv(r) and mean-
curvature interfacial growth problems [35] is intuitively clear.

Remarks: Note that when the “test” sphere of p0 intersects
with the nondifferentiable singularities, such as edges or
corners, the derivation above breaks down. Thus, Eqs. (29) and
(31) do not hold in general for interfaces that have singularities,
even though the integrated mean curvature may still be defined
and computed in these systems [36]. Using the same approach,
we obtain in Appendix A some results for certain systems in
which the interfaces have singularities. A discussion of these
issues can be found in Ref. [37].

B. Phase-interchange relations for Fsv

Here we remark on phase-interchange relations involving
the surface-void correlation function Fsv. For a two-phase
medium, since the sum of indicator functions for phase 1 and
phase 2 is unity everywhere, we have

〈M(x)[I (1)(x + r) + I (2)(x + r)]〉 = 〈M(x)〉, (33)

implying that the sum of the two surface-void correlation
functions for phases 1 and 2 equals the specific surface, i.e.,

F (1)
sv (r) + F (2)

sv (r) = s. (34)

Furthermore, if the two phases are statistically the same, these
surface-void correlation functions are constants [33], namely,

F (1)
sv (r) = F (2)

sv (r) = s

2
, (35)

which is a remarkable relation given that it applies to complex
microstructures with such symmetries. This will be verified in
Sec. VII.

FIG. 3. An illustration of the previous algorithm that computes
Fss(r), where ε is the dilation thickness. Then Fss(r) is computed by
S2(r; ε)/ε2 as ε → 0.

IV. PRECISE ALGORITHMS TO COMPUTE
BOTH Fss AND Fsv

Despite the fact that surface correlation functions contain
crucial microstructural information, the technical difficulty
involved in computing them has been a stumbling block in
their widespread use. Methods have been devised to compute
the surface correlation functions for dispersions of spheres that
rely on dilating the interfaces [31,32]. A schematic illustration
of how the algorithm works for Fss is presented in Fig. 3, where
ε is the dilation thickness. The algorithm simply measures
the two-point probability function S2(r; ε) of the dilated phase
and then one takes the appropriate limit of ε. Surface-surface
correlation functions have also been used as input information
to reconstruct two-phase digitized materials by Jiao, Stillinger,
and Torquato [13]. Since reconstruction algorithms require
numerous evaluations of evolving microstructures, the surface
correlation functions were approximated to improve computa-
tional speed.

A. Algorithmic details

Here we describe efficient general algorithms that enable
the precise determination of the surface-surface correlation
function Fss(r) and the surface-void correlation function Fsv(r)
for most situations that one may encounter in simulations
and experiments. We consider d-dimensional statistically ho-
mogeneous and isotropic two-phase systems within a cubic
fundamental simulation cell of side length L under periodic
boundary conditions. We also assume that the interfaces are
differentiable almost everywhere with exceptions for corners
and edges only.

The idea behind the algorithm is that one can reduce the
complexity of the problem by extracting information from a cut
of the d-dimensional statistically homogeneous and isotropic
system with a m-dimensional subspace (m = 1,2, . . . ,d − 1)
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[1]. For example, the fully three-dimensional two-point corre-
lation function S2(r) of such a two-phase system is the same as
the one-dimensional two-phase system formed from the cut of
the original system with an infinitely long line. Similar ideas
can be exploited to compute surface correlation functions as
well. A straight line intersects with the interface in Rd and
leaves infinitely many intersection points, in principle. We
can recover the fully three-dimensional surface correlation
functions of the system by analyzing these intersections, but
here we need to weight the points in accordance with the fact
that the line cuts through the interface at different angles at
each intersection point. In particular, because the interface
projects to the line differently, each intersection point carries
the weight 1/ cos θ , where θ is the acute angle between the
straight line and the normal vector at the intersection point.
From a “dilation” point of view, the straight line will cut
through the dilated phase and leave line segments with lengths
ε/ cos θ , then S2(r; ε)/ε2 will reduce to the pair correlation
function of intersection points with weights 1/ cos θ in the
limit of ε → 0.

Using this simple observation, the calculation of the surface-
surface correlation function Fss(r) consists of the following
steps:

1. Generate a straight line parallel to one of the edges of the
box at a random position.

2. Find all the intersection points (P1, P2,...Pn) with
interfaces of the system along this straight line. Store their
positions x1, x2...xn.

3. Find the normal vectors at each intersection point and the
angles (the acute one) between the straight line and these norm
vectors θ1, θ2...θn. Compute 1/ cos θ1, 1/ cos θ2...1/ cos θn.

4. Bin the distance between every pair of intersection points
(suppose the size of each bin is Lbin). Add 1/(cos θi cos θj ) to
the corresponding bin.

5. Normalize the value in each bin by dividing 2LLbin.
6. Repeat the process from the beginning.
7. Compute the average of the results.
The calculation of the surface-void correlation function

Fsv(r) consists of the following steps:
1. Generate a straight line parallel to one of the edges of the

box at a random position.
2. Find all the intersection points (P1, P2,...Pn) with

interfaces of the system alone this straight line. Store their
positions x1, x2...xn.

3. Find the normal vectors at each intersection point and the
angles (the acute one) between the straight line and these norm
vectors θ1, θ2...θn. Compute 1/ cos θ1, 1/ cos θ2...1/ cos θn.

4. Generate t random points along the straight line. Deter-
mine whether each point is in the void phase or not. Suppose
Q1, Q2,...Qm are the points in the void phase, store their
positions y1, y2...ym.

5. Bin the distance between every pair ofPi andQj (suppose
the size of each bin is Lbin). Add 1/ cos θi to the corresponding
bin.

6. Normalize the value in each bin by dividing 2tLbin.
7. Repeat the process from the beginning.
8. Compute the average of the results.
A schematic plot that elucidates our algorithm is shown in

Fig. 4. For systems with hard-wall boundary conditions (the
usual case for experimental images), the value in the kth bin

FIG. 4. A schematic plot that elucidates our algorithm that
computes surface correlation functions. Here the sampling straight
line intersects with the interface at the points P1, P2, P3, and P4.

should be multiplied by a factor L/(L − kLbin) due to the fact
that fewer pairs can be formed near both ends of the boundaries.
One can also easily generalize the algorithm to anisotropic
media and to higher-order correlation functions such as Fssv

and Fsvv [1].
For a d-dimensional system consisting of N particles (or

voxels), the complexity for generating a single sampling line
is O(N1/d ). Computing each pair of intersection points on
the line requires O(N2/d ). The number of sampling lines is
usually a preset number, and thus the overall complexity for
computing surface-surface correlation function is O(N2/d ). By
a similar analysis, we know the complexity for computing
surface-void correlation function is O(N1/d ). Note that our
algorithms are as efficient as the approximation method used in
reconstructions [13], but with much better accuracy. Actually,
as N increases, fewer lines are needed, since each line contains
more intersection points. If the total number of pairs we want
to sample is fixed, both algorithms can give constant time
complexity.

B. Testing against the benchmark of overlapping spheres

Three-dimensional overlapping sphere systems provide an
excellent benchmark to test our algorithm, since the surface
correlation functions are known exactly; see Eq. (21) and
Eq. (22). We generate a single but large configuration con-
sisting of 250 000 overlapping spheres with a reduced density
η = 1.047 and particle-phase volume fraction φ = 0.649. We
generate one million straight lines at random locations and
on each line we generate 1000 random points (t = 1000) in
the case of computing Fsv. As we can see from Fig. 5, the
theoretical and simulation results for the surface correlation
functions are in excellent agreement with one another, even
at the nondifferentiable point r = D, indicating that the algo-
rithm works remarkably well. As we discussed in Sec. III,
the surface-surface correlation function Fss diverges at the
origin. We also ran our algorithm at other particle-phase
volume fractions and again find excellent agreement with the
corresponding theoretical results.

V. COMPUTING SURFACE CORRELATION FUNCTIONS
FOR DIGITIZED TWO-PHASE MEDIA

Unlike continuous-space microstructures (e.g., overlapping
spheres), where we know surfaces exactly, images of hetero-
geneous materials are necessarily digitized, which presents
algorithmic challenges to identify surfaces and normal vectors.
We devote this section to the discussion of how to apply the
aforementioned algorithm to this practical setting. Considering
that experimental images are generally gray scale, we first
discuss the case in which the two-phase medium is obtained
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FIG. 5. Comparison of theoretical and simulation results of
surface-surface correlation function Fss(r) and surface-void corre-
lation function Fsv(r) for overlapping spheres in three dimensions,
where D is the diameter of the sphere. The simulations are carried
out using 250 000 overlapping spheres in a cubic box under periodic
boundary conditions using 1 000 000 line samples. The particle-phase
volume fraction φ is 0.649.

from a level cut of a digitized scalar field F (x) in Rd [1]. This
common way to produce a two-phase medium enables us to
identify interface normal vectors by the gradient of the scalar
field. We then apply this idea to black and white images by
first converting the given two-phase medium to a scalar field.

A. Two-phase media obtained from level cuts of scalar fields

Suppose we set a threshold F0 to convert a scalar field
F (x) to a two-phase medium: regions that satisfy F (x) >

F0 constitute phase 1, and regions that satisfy F (x) < F0

constitute phase 2. The phase indicator function I(x) for phase
1 is given by

I(x) = 
[F (x) − F0], (36)

where 
(x) is the Heaviside step function. The interface
between two phases is simply the contour defined by F (x) =
F0. For any point on the contour, the normal vector is defined
by the gradient of the scalar field, i.e., ∇F (x).

The algorithm can be implemented in essentially the same
way as discussed in Sec. IV, but must be specialized to digitized
two-phase media. In order to locate points of intersection of the
line with interfaces, we need to find where F (x) − F0 changes
sign along a straight line, and then interpolate the position of the
point. The gradient at the point can be computed approximately

0 10 20 30 40 50r
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FIG. 6. Simulation results of Fss(r) of a digitized Gaussian ran-
dom field with level cut F0 = 0 computed under different resolutions.
The resolutions shown here are 1000 × 1000, 2000 × 2000, 4000 ×
4000 and 10 000×10 000. The continuum result is computed directly
using the analytic expression of the scalar field. One can see that as the
resolution increases, the numerical result is closer to the continuum
result.

by the finite differences of its neighboring pixels. However, the
most significant difference between dealing with continuous
models and digitized media is that the number of sampling
straight lines one can afford is bounded by the resolution in the
later case. Indeed, for an n × n image, one can only sample at
most O(n) times if the sampling straight lines are lined up with
the grid. Thus, the resolution of the image is crucial to obtain
reliable results.

Here we use Gaussian random field [38] as an example
to demonstrate the importance of resolution. The field is
generated by a superposition of 10 000 plane waves, as we
employed elsewhere [19], to give a rather disordered structure.
The results for the surface-surface correlation function are
summarized in Fig. 6. Here we considered the field within a
fixed square region but with different resolutions 1000 × 1000,
2000 × 2000, 4000 × 4000 and 10 000 × 10 000. We also
include a continuum result which is calculated by directly
solving the contour and computing the gradient analytically.
It can be seen that as the resolution increases, the numerical
results rapidly converge to the continuum result.

B. Significance of the 1/ cos θ threshold

Figure 6 shows that the computed Fss fluctuates widely
when the resolution is low. We discuss the origin of this
behavior and how to deal with it in this subsection.

FIG. 7. An illustration of the sampling scenario. The unit circle
is the interface and the solid straight line samples along the direction
that is perpendicular to itself by varying x.
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To begin, consider the simple situation illustrated in Fig. 7,
which involves a straight line sampling the boundary of a
unit circle. The discussion of this case is instructive because
the vicinity of the intersection point can be approximated by
sphere surfaces in most cases, and when r is large enough,
Fss(r) is proportional to 〈1/ cos θ〉2. So for simplicity, the aim
here is to estimate 〈1/ cos θ〉 for the lower left quarter of the
circle. Suppose the straight line samples from x = 0 to x = 1
uniformly along the direction that is perpendicular to itself;
then we have

∫ 1

0

dx

cos θ
=

∫ 0

π
2

d(1 − sin θ )

cos θ
=

∫ π
2

0
dθ = π

2
. (37)

The integral correctly gives the surface area of the lower
left quarter of the circle. Notice that although the integrand
1/ cos θ is divergent at x = 0, it is still integrable because
the probability of hitting the vicinity of the singularity is
proportionally infinitesimally small. However, it is easy to see
that the variance of 1/ cos θ is divergent since the integral
of 1/ cos2 θ diverges, which implies that large deviations
can result when estimating the mean of 1/ cos θ . However,
the simulation results suggest that increasing the number of
sampling lines still reduces the fluctuations from the expected
value, and a large sampling number yields good estimates,
as one can see in Fig. 5. This suggests that the probability
of getting a large deviation diminishes when the sampling
number is increased. This is indeed the case, as we show in
Appendix B.

However, in the case of digitized media, one cannot increase
the sampling number arbitrarily. On the other hand, the prob-
ability of hitting the vicinity where θ ≈ π/2 can be rounded
to a relatively large fraction due to the finite resolution. For
example, a curved interface can align parallel to the sampling
line after the digitization. The consequence is that we are more
likely to encounter large deviations, as one can see in Fig. 6,
where the abnormal peaks [as well as the universal trend of
overestimating Fss(r)] are due to certain very large values of
1/ cos θ encountered in the sampling. Although both problems
can be alleviated by simply increasing the resolution, it is
generally not known a prior that what resolution is required.
Furthermore, obtaining high-resolution representations can
also be computationally or economically costly, or simply
beyond access due to the limitation of experimental techniques
or available memory for a simulation. These restrictions force
us to come up with a more efficient way to bypass the problems
of digitized media. A straightforward way to remove this effect
is to simply discard samples when they are larger than a certain
threshold δ, i.e., 1/ cos θ > δ. The bias induced by this method
is usually small and insignificant, but with this small compro-
mise, one can significantly reduce fluctuations (see a detailed
analysis in Appendix C). To demonstrate the effect of applying
thresholds to digitized media, we take the lowest resolution
representation (1000 × 1000) of the Gaussian random field in
the last subsection and recompute Fss with a threshold δ = 100.
The result is shown in Fig. 8. Note that after applying a
threshold, the fluctuations are dramatically suppressed and the
result is much closer to the continuum result, even comparable
to the ones with much higher resolutions in Fig. 6.
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FIG. 8. A comparison of simulation results of Fss(r) of a digitized
Gaussian random field with level cut F0 = 0 computed with and
without applying a threshold δ. The resolution is 1000 × 1000, and
the threshold δ is 100. The continuum result is computed directly
using the analytic expression of the scalar field. By applying a
threshold, the fluctuations are largely suppressed and the result is
much closer to the continuum result, even comparable to the ones
with much higher resolutions.

C. Converting digitized two-phase media into scalar fields

We complete our discussion of two-phase media by dis-
cussing the case in which all of the information provided about
the system is a binary digitized medium. Due to the jagged
interface geometry, the transition from one phase to another is
sharp and there is no easy way to estimate the direction of the
norm vector as we did in the case of Gaussian random fields
by computing the gradient of the scalar field.

Here we propose a straightforward method to deal with this
situation. We first convert the two-phase medium to a coarse-
grained scalar field, then convert it back to a two-phase medium
by thresholding. In this way we can again use the algorithm
introduced in Sec. V. A. We follow the procedure described in
Refs. [1,39]. By taking pixels in phase i as source points, we
can convert the two-phase medium into a scalar field F (i,j )
by convolving the indicator function I (i) with a kernel or filter
K(x). Then, the scalar field is

F (i,j,{C}) =
∑

k

∑
l

I (i)(i + k,j + l)K(k,l,{C}), (38)

where {C} represents the parameters of the kernel. One of the
most common choices of kernels is the Gaussian filter,

K(x; b) = exp

(
− |x|2

b2

)
, (39)

where b is a length parameter that controls the size of the
“influence” region of the filter. By taking a level cut of the
scalar field at a threshold F0, we can then convert the scalar
field back into a two-phase medium. The threshold F0 is chosen
to retain the original volume fraction of phase i.

We include an example of overlapping spheres in two
dimensions processed by this method. We prepare a digitized
realization of 10 000 overlapping disks under periodic bound-
ary conditions at a particle-phase volume fraction φ = 0.677.
The resolution is chosen to be that the side length of a
pixel is 1/120 of the diameter D of the disk. We apply the
Gaussian filter mentioned above for different values of b and
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FIG. 9. (a) Digitized random overlapping disks with particle-
phase volume fraction 0.677. (b) Corresponding scalar field of (a)
by using a Gaussian kernel (39) with b = 0.042D.

compute the corresponding Fss of the converted scalar fields.
A comparison of a portion of the system before and after
applying the filter (b = 0.042D) is shown in Fig. 9, one can
see that the structure of the system is maintained while there
is a transition region between two phases. The comparison
of Fss computed with different filters is shown in Fig. 10
along with the exact result computed from the continuum
model. It is noteworthy that although all the surface-surface

2 4 6 8 10
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4.0×104

5.0×104

F ss
(r

)
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b=0.042D
b=0.025D
Exact

FIG. 10. Simulation results of Fss(r) of a digitized overlapping
disk configuration by applying Gaussian kernels for different values
of b.

correlation functions computed capture the shape of the exact
one, they all tend to underestimate the actual function. The
possible explanation is that the digitized version loses detailed
interfacial information and hence the interface appears to be
less curved, which leads to smaller surface areas. However, as b

decreases and the filter becomes more localized, the difference
between the computed Fss and the exact one monotonically
diminishes. The smallest value of b shown in Fig. 10 is
three times of the pixel width, one may expect that when the
resolution is high enough, the curve of the digitized version
will finally converge to the exact one of the underlying pattern.
Although images obtained in experiments may not necessarily
be of high resolution, generally they are gray-scale images,
which means one can simply use the algorithm described for
scalar fields directly.

VI. RESULTS FOR OVERLAPPING AND
NONOVERLAPPING
SPHERE PACKINGS

In this section, we compute the surface correlation functions
of several particle systems, including overlapping spheres,
hard-spheres in equilibrium and decorated “stealthy” patterns.
Given our abilities to compute the surface-surface correlation
function, we can calculate local surface-area variances through
Eq. (10), and compare them with local volume-fraction vari-
ances in these systems.

We start by analyzing overlapping spheres in three dimen-
sions. The volume-fraction variance σ 2

V
(R) and surface-area

variance σ 2
S

(R) for the same system studied in Sec. IV are
presented in Fig. 11(a), where R is the radius of the spherical
window and a is the radius of particles. These quantities
are computed by numerically computing the integral in Eqs.
(7) and (10) as well as through Monte Carlo simulations. In
the later method, we generate windows at random positions
and calculate the volume-fraction and surface-area variances
directly. Since in this model spheres can form very complex
clusters, we evaluate the volume fraction and surface area
inside each window by generating random points uniformly
in the window or on the surface of spheres and counting their
fractions inside or on the surface of the clusters correspond-
ingly. The theoretical prediction and simulation results agree
very well, as one can see in Fig. 11(a). It is also noteworthy
that in Fig. 11(a) the surface-area variance is much larger
compared to the volume-fraction variance. However, one can
see that in Fig. 11(b), after multiplied by R3 (in order to show
the large-R behavior of fluctuations), it is clear that there
is a crossover of function values around R = 2.6a. Further
numerical experiments show that the crossover only happens
when the particle-phase volume fraction is between 0.57 and
0.7, outside this interval the surface-area variance is always
larger than the volume-fraction variance, suggesting that the
surface-area variance is a more sensitive descriptor.

We further compare the surface-area variance σ 2
S

(R)
with the volume-fraction variance σ 2

V
(R) of hard spheres

in equilibrium in three dimensions at different packing
fractions. The variances are again computed using Eqs. (7)
and (10); however, the autocovariance functions are not
known analytically in this case. As mentioned previously, we
use the results included in Ref. [14], which was computed
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FIG. 11. (a) A comparison of the local surface-area vari-
ances σ 2

S
(R) with the volume-fraction variances σ 2

V
(R) for three-

dimensional overlapping spheres of radius a as functions of window
radius R at particle-phase volume fraction φ = 0.649. Note the
surface-area fluctuation is much larger at small R, suggesting that
it is a more sensitive microstructure descriptor. (b) A comparison
of rescaled local surface-area variances with the volume-fraction
variances from (a).

using the Percus-Yevick approximation and the Verlet-Weis
correction. We include our results in Fig. 12. Note that the
surface-area variance is always larger than the volume-fraction
variance across a large span of packing fractions. In Fig. 13,
the surface-area variance and the volume-fraction variance
are compared respectively at different packing fractions.
As the packing fraction increases, the hard-sphere system
becomes more short-range ordered [40], thus the variances
are expected to drop. The overall trend of σ 2

S
(R) and σ 2

V
(R) is

consistent with this intuition. However, the volume-fraction
variances experience another crossover at small R, while the
surface-area variances drop monotonically and larger gaps
can be seen between the curves for different packing fractions.
These results strongly suggest that the surface-area variance
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FIG. 13. (a) A comparison of volume-fraction variances of hard
spheres at equilibrium at different packing fractions, it is noteworthy
that there is a crossover at small R. (b) A comparison of surface-area
variances of hard spheres at equilibrium at different packing fractions,
which clearly reflect the increase of short-range order as packing
fraction increases.

is a more sensitive measure of microstructures of the system
compared to the volume-fraction variance.

Finally, we compare surface-area variances of hard spheres
in equilibrium and overlapping spheres at different volume
fractions in Fig. 14. The fact that the hard-sphere systems
always suppress surface-area fluctuations variances to a greater
degree than those of overlapping spheres, which reflects the
stronger pair correlations in the former system.

Besides using Fss to compute surface-area variances, it can
itself be used as a “fingerprint” to detect important structural
information, such as short-range order or the hyperuniformity
of the system. Here we consider a special hyperuniform point
patterns called “stealthy” point patterns that were studied in a
recent paper [41], and we follow the procedure of circumscrib-
ing each point with a sphere to make the system a two-phase
medium. The “stealthy” patterns are generated in a simulation
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FIG. 12. A comparison of local surface-area variances σ 2
S

(R) with volume-fraction variances σ 2
V

(R) for three-dimensional hard spheres of
radius a as functions of window radius R in equilibrium at different packing fractions φ; (a) φ = 0.1. (b) φ = 0.3. (c) φ = 0.5.
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FIG. 14. A comparison of surface-area variances σ 2
S

(R) of three-
dimensional hard spheres in equilibrium and overlapping spheres of
radius a as functions of window radius R at different volume fractions.
(a) φ = 0.1. (b) φ = 0.5.

box with basis vectors (c,0,0), (0,c,0) and (c/2,c/2,c/2). We
compare two sets of stealthy point patterns, with the parameter
χ = 0.08 and 0.46 (In general, the system with larger χ will

have more short-range order). Each point is decorated with a
variable-sized sphere. We include our results for Fss in Fig. 15.
When the decorated spheres are very small, such as the case in
Fig. 15(a), they do not overlap with one another, and thus Fss

should reveal structural features of the underlying point pat-
tern. Clearly, the curve corresponding to χ = 0.46 in Fig. 15(a)
exhibits stronger features, which is consistent with the fact that
the pattern is more short-range ordered than that for χ = 0.08.
As stated in Ref. [41], the system loses its hyperuniformity
when spheres begin to touch each other. From Fig. 15, it is
seen that as the diameter D increases, the correlation function
begins to lose its features, and ultimately these two “stealthy”
cases becomes indistinguishable from each other as well as the
corresponding correlation function for overlapping spheres,
shown in Fig. 5(a). The dramatic decrease around r = D

corresponds to the fact that the correlation between any two
points on the same sphere cannot contribute to the function
value beyond r = D, and thus reveals a characteristic length
scale of the system. Moreover, although the two systems start
almost at the same specific surface, the gap between two curves
continues to increase, and in the end the system with χ = 0.46
has a much larger specific surface. This suggests that the system
with χ = 0.46 has greater short-range order that keeps the
decorated spheres from overlapping with one another, and thus
leads to a larger specific surface.

VII. RESULTS FOR SNAPSHOTS OF EVOLVING
SPATIAL PATTERNS

In this section, we go beyond the analysis of well-known
sphere models and extend the application of our algorithm to
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FIG. 15. Surface-surface correlation functions Fss of stealthy patterns decorated with spheres with different diameters: (a) D = 0.05c.
(b) D = 0.07c. (c) D = 0.08c. (d) D = 0.1c.
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(a) Critical quench (b) Off-critical quench

FIG. 16. The interfaces of two binary mixtures undergoing a phase separation at critical quench (volume fraction ratio of two phases is 1:1)
and off critical quench (volume fraction ratio of two phases is 2:8), respectively. The system size is 1000 × 1000.

other important disordered patterns encountered in the phys-
ical and biological sciences. Specifically, we focus on time-
dependent pattern formation processes that are governed by
the Cahn-Hilliard equation and the Swift-Hohenberg equation.
These patterns have recently been shown to be hyperuniform
and could have important applications in material science
[19]. We determine correlation functions of snapshots of these
patterns here.

A. Spinodal decomposition patterns from the
Cahn-Hilliard equation

The Cahn-Hilliard equation was introduced to describe
phase separation by spinodal decomposition [42] and has been
applied to model alloys [43], polymer blends [44], and even
pattern formations in ecology [45]. In Fig. 16, we show two
typical patterns generated by this equation. The left one is
at critical quench, in which case the hyphenate ratio for two
phases is 1:1, while the right one is off critical quench and has
hyphenate ratio 2:8. The interface between the two phases is
highlighted.

One important feature of the Cahn-Hilliard equation is that
the system will enter a “scaling regime” after some time, and
the system will remain statistically the same after scaled by a
growing characteristic length. This provides an indirect way to
check our algorithm on digitized media. We can compute the
surface correlation functions at different times and then an ap-
propriate scaling enables them to collapse onto a single curve.

The rescaled surface-surface and surface-void correlation
functions at different times are shown in Figs. 17 and 18 for
critical and off-critical quenches. The curves for different times
do collapse onto each other, as expected, further justifying
the accuracy of our algorithm. Note that although the two
systems shown in Fig. 16 appear to be structurally different,
the corresponding standard autocovariance functions χV (r) in
Fig. 19 are similar to one another. The inability to distinguish
the structures of these two systems is easily overcome by com-
plementing χV (r) with the information content of Fss(r) and
Fsv(r), as they differ greatly for these two systems. Specifically,
one can see that in Fig. 18, the surface-void correlation function
for the critical quench has a flat slope at the origin [as predicted
by Eq. (35)], while the one for the off-critical quench has a
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FIG. 17. (a) The scaled surface-surface correlation function Fss(r)/k1(t)2 versus rk1(t) at different time stages associated with the spinodal
decomposition pattern shown in the left panel of Fig. 16. (b) The scaled surface-surface correlation function Fss(r)/k1(t)2 versus rk1(t) at
different time stages associated with the spinodal decomposition pattern shown in the right panel of Fig. 16. One can see that they both collapse
onto a single curve respectively after the rescaling. The shapes of two curves are significantly different.
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FIG. 18. (a) The scaled surface-void correlation function Fsv(r)/k1(t) versus rk1(t) at different time stages associated with the spinodal
decomposition pattern shown in the left panel of Fig. 16. We see that Fsv(r) is a constant (flat function), which is consistent with the exact
expression (35). (b) The scaled surface-void correlation function Fsv(r)/k1(t) versus rk1(t) at different time stages associated with the spinodal
decomposition pattern shown in the right panel of Fig. 16. One can see that they both collapse onto a single curve respectively after the rescaling.
The shapes of two curves are significantly different.

downward slope at the origin. This can be well explained by
the small-r behavior of Fsv that was derived in Sec. III A. From
Eq. (29), we know that the slope of Fsv at origin is proportional
to the mean curvature of the system. In the case of critical
quench, the surface consists of both concave and convex parts,
whose contributions cancel each other out, and thus the mean
curvature is zero. In the case of off critical quench, where the
matrix is the solid phase and the droplets are taken to be the
void phase, the mean curvature is apparently negative, and
thus in Fig. 18(b) we see the curve slopes down initially. This
example again demonstrates the value of surface correlation
functions in characterizing complex patterns.

B. Patterns from the Swift-Hohenberg equation

The Swift-Hohenberg equation was developed to study
Rayleigh-Bénard (RB) convection in hydrodynamics and later
it became a subject of interest on its own in pattern forma-
tions [46]. The pattern produced by this equation is usually
labyrinth-like, and the width of the “channel” is determined
by a preselected wave number k0. It has been shown that the
patterns can have different degrees of hyperuniformity [19]

when some tuning parameters are changed, although they may
appear to be structurally alike.

Here we compute and compare two surface-surface cor-
relation functions for two patterns generated under different
k0, namely k0 = 0.7 and k0 = 0.32π in the same way in the
authors’ previous paper [19]. It has been shown that the later
one is more long-range ordered, which is also justified in our
plot of Fss in Fig. 20. It is evident that the Fss for k0 = 0.32π

is much more long-ranged than the one for k0 = 0.7. Both
curves have sharp spikes when rk0 is integer times of π ,
which corresponds to the fact that the underlying patterns
consist of stripes with width of π/k0, leaving roughly parallel
interfaces with the same spacing at short scales. Note that
spikes in Fss(r) also occur in sphere systems but only at the
single location r = D (see Figs. 5 and 15 for examples), while
the corresponding S2 for these systems are smooth functions
without sharp transitions (see Refs. [1,20] for plots). This
again shows that surface-surface correlations can be superior
in detecting short-scale microstructural features compared to
that of the standard two-point correlation function S2(r).

We also evaluate the local surface-area variances in these
systems usingFss and Eq. (10). The results are shown in Fig. 21.
Note that the surface-area variance for k0 = 0.7 scales like

0 10 20 30 40 50
rk1

0

0.1

0.2

χ V(r)

(a) Critical quench

0 10 20 30 40 50
rk1

0

0.05

0.1

0.15

0.2

χ V(r)

(b) Off-critical quench

FIG. 19. (a) The autocovariance function χV (r) versus rk1 at t = 100 000 associated with the spinodal decomposition pattern shown in the
left panel of Fig. 16, where r is scaled by the characteristic wave number k1. (b) The autocovariance function χV (r) versus rk1 at t = 100 000
associated with the spinodal decomposition pattern shown in the right panel of Fig. 16. There is no significant difference between these two
curves in (a) and (b).
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rk0

0

0.2

0.4
F ss

(r
)

k0=0.7
k0=0.32π

FIG. 20. Surface-surface correlation function Fss(r) of patterns
generated from the Swift-Hohenberg equation with two different
values of the parameter k0.

R−3, implying hyperuniformity [17]. However, the variance
for k0 = 0.32π scales even slower than R−2. The explanation
is that in the case of k0 = 0.32π , the corresponding wavelength
is too small compared to the pixel size, which makes the
numerical integration in Eq. (10) unreliable.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we developed efficient general algorithms
that enable the sampling of the surface-surface correlation
function Fss(r) and the surface-void correlation function Fsv(r)
with heretofore unattained precision. Our algorithms have
advantages over the traditional “dilation” method [31,32].
First, the dilation method can only be easily implemented when
the interfaces are relatively smooth and easy to be parame-
terized (e.g., packings of spheres and ellipsoids). However,
our algorithms can be easily adapted to treat general complex
interfaces. Second, the dilation method is difficult to implement
for digitized media, which greatly limits its application to
experimental data. By contrast, we have shown that our
algorithms can be straightforwardly applied to digitized media.

4 8 16
R

1×105

0.0001

0.001

0.01

0.1

σ s2 (R
)

k0=0.7
k0=0.32π

R-3

R-2

FIG. 21. Local surface-area variances σ 2
S

(R) as functions of
window radius R computed from Eq. (10) for patterns generated
from the Swift-Hohenberg equation with two different values of the
parameter k0, with comparison of different scalings.

Third, as the dilation thickness ε approaches to zero, the
probability of hitting the dilated phase will proportionally
decrease, which requires a large number of samplings to ensure
the accuracy, and hence greater computational time. However,
in the extreme situation that the information of a large but
single system is available, our algorithms can yield accurate
results from a single sample, since it is possible for the straight
line to penetrate the interface a sufficiently large number of
times. Moreover, our algorithms can be generalized to compute
three-point surface correlation functions [1] straightforwardly.
Application of our algorithms to a variety of model disordered
microstructures reveals that surface-surface correlation func-
tion Fss(r) is a sensitive descriptor of small-scale structural
features, especially compared to the information content of
the standard two-point correlation function S2(r).

We also showed that the extracted surface correlation
functions can be used to compute accurately the surface-area
variance, a quantity that can be a more sensitive measure of
microstructural fluctuations compared to the volume-fraction
variance. Through examples of spinodal decomposition pat-
terns, we showed that surface correlation functions contain
information that supplements that of S2, and the small-r
behavior of Fsv(r), which is determined by the mean curvature
of the system. In two dimensions, the total curvature of a closed
simple curve is a constant 2π , implying that when the system
approaches a percolation threshold, the absolute value of the
mean curvature will drop dramatically due the formation of
large clusters. This observation suggests that the surface-void
correlation function Fsv(r) may aid in detecting the onset of
continuum percolation, which is an interesting topic for future
exploration. We also showed how surface-surface correlation
functions can be used to determine the hyperuniformity of two-
phase media using patterns generated by the Swift-Hohenberg
equation as examples.

Lower-order correlation functions have been successfully
used to infer the physical properties of random media as
well as to reconstruct them. This bodes well for their use
in machine learning in the area of material optimization
[47,48]. We expect that the algorithms to compute precisely
the surface-surface correlation function Fss(r) and the surface-
void correlation function Fsv(r) presented in this paper will
equip the community with powerful computational tools to
characterize the structure and physical properties of multiphase
media, especially with respect to those physical processes
that are intimately linked to the interfaces. In particular,
our algorithms can be adapted in reconstruction algorithms
[13,20] with heretofore unattained accuracy without sacrificing
computational speed.

A sample Matlab program that enables one to compute the
correlation functions Fss , Fsv and Fvv for three dimensional
digitized media can be downloaded at Ref. [49].
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APPENDIX A: THE SMALL-r BEHAVIOR OF SURFACE
CORRELATION FUNCTIONS OF SYSTEMS WITH

SINGULARITIES

Since the surface-surface correlation function discussed in
Sec. III is only approximated to the zeroth-order, we focus our
attention here to the surface-void correlation function of sys-
tems with singularities. We include results for certain specific
cases, namely, two-dimensional systems that all singularities
are corners and three-dimensional overlapping spheres.

For two-dimensional systems that all singularities are cor-
ners, suppose the angle formed by a corner to the solid phase
is θ , one can show that the Fsv(r) for small r can be written as

Fsv(r) = s

(
1

2
+ r

2π

〈
1

rc

〉
�

)
+ 2ρc

〈
cot

θ

2

〉
r, (A1)

where � is the set of all the points on the interfaces that
are differentiable, and ρc is the density of corners in the
system. One interesting implication of this formula is that
the expression of the surface-void correlation function for
packings of equilateral polygons is the same as the expression
for packings of their inscribed circles.

Singularities in three dimensions are much more complex to
analyze. Here we only take overlapping spheres as an example.
Surprisingly, this is a nontrivial model of a heterogeneous
material, since the lack of spatial correlation implies that the
particles may overlap to form complex clusters, and leave
many nondifferentiable edges in the system. Using the same
geometric approach in Sec. III, by naively plugging in a as rc

in Eq. (31), we should have

Fsv(r) = s

(
1

2
+ r

4a

)
, (A2)

where a is the radius of spheres and s = 3ηe−η/a is the spe-
cific surface of overlapping spheres [1]. However, expanding
Eq. (22) to the first order directly gives us

Fsv(r) = s

(
1

2
+ r

4a
− 3ηr

8a

)
. (A3)

The extra negative term −3sηr/8a implies that we have
overestimated the probability of falling into the void phase Psv

by neglecting the fact that another sphere (see the upper left
sphere in Fig. 22, which we henceforth call the “invading”
sphere) can approach to and intersect with our “test” sphere
(see the “dotted” sphere in Fig. 22) and reduce its fraction
of surface area covered in the void phase. Indeed, any sphere
whose centroid lies in the concentric shell with radius a to
a + r around the reference point p0 will intersect with the
“test” sphere (we do not consider spheres that are closer than
a since then the reference point would no longer be on the
interface). Here we evaluate the reduced fraction of surface
area in the void phase of the “test” sphere.

When the “invading” sphere overlaps with both the “test”
sphere and the interface it can be difficult to evaluate the extra
surface area of the “test” sphere covered by the “invading”
sphere. Luckily, since the volume of the shell is 4πa2r , which is
already first order, we can approximate the interface around the
reference point as a flat plane that divides the “test” sphere into
two hemispheres. By symmetry we know the extra surface area
covered on average is just 1/2 of the total surface area covered

FIG. 22. An illustration of evaluating the two-body correction to
the small r behavior of Fsv(r), where the upper left sphere is the
“invading” sphere and the sphere in dotted line is the “test” sphere.

by the “invading” sphere on average. Suppose the distance
between the center of the “invading” sphere and the reference
point is d, then the surface area of the spherical crown that is
covered is

S = 2πr2

(
1 − d2 + r2 − a2

2dr

)
. (A4)

Letting d = a + x, the fraction of surface area of the “test”
sphere that is covered by the “invading” sphere is

S

4πr2
= 1

2

(
1 − (a + x)2 + r2 − a2

2(a + x)r

)
≈ 1

2

(
1 − x

r

)
. (A5)

Then on average the total fraction that is covered by the
“invading” sphere is∫ r

0

1

2

(
1 − x

r

)
× 4π (a + x)2ρdx = πa2rρ + O(r2). (A6)

Finally, by symmetry, we know the correction term to Fsv(r)
is −sπa2rρ/2 or −3sηr/8a, as in Eq. (A3). This correction
term will disappear in the dilute limit, since spheres will not
overlap with one another.

One can carry out the same analysis for impenetrable
spheres, but the calculation will be much more involved. In this
case, the other sphere can only approach from the void phase,
and the nonoverlapping condition will restrict its direction to
a small range, which will in the end make the correction term
of the order O(r2) as long as g2(D+) is not a delta function,
where D is the diameter of a sphere. Thus our general formula
will apply to hard spheres in equilibrium or random sequential
addition (RSA) packings [50].

APPENDIX B: THE PROBABILITY OF GETTING AN
ABNORMAL PEAK

It is instructive to estimate the probability

P { 1
N

∑N
i=1

1
cos θi

> π
2 + e}, where N is the number of

sampling and e stands for a given error. To do so, first
we can sort 1/ cos θ such that 1/ cos θi � 1/ cos θi+1 for
i = 1,2,...,N − 1. Define

T = min

{
j |

j∑
i=1

1

cos θi

> N

(
π

2
+ e

)}
, (B1)
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FIG. 23. (a) Simulation results of Fss(r) for systems of three-dimensional overlapping spheres computed with different thresholds 10, 100,
1000 and without threshold. We use the same system in Sec. IV, except that only 10 000 sampling lines are used. Clearly, applying thresholds
does not change the overall shape of the curve, but significantly reduce the fluctuations. (b) Red circles: Average of Fss(r) in the interval
[D,11D] for different thresholds. The blue line is s2, which is the theoretical value of Fss(r) when r > D. Green squares: the largest deviation
of Fss(r) from s2 in the interval [D,11D] for different thresholds. The average of Fss(r) is always very close to the expected value (within 1%
for all cases). However, by applying a more stringent threshold, there is a trend to reduce the abnormal peaks significantly.

which is the smallest number of elements needed to make the
inequality hold. Then we can decompose the probability by
conditioning on T , i.e.,

P

{
1

N

N∑
i=1

1

cos θi

>
π

2
+ e

}
=

N∑
i=1

P {T = i}. (B2)

We can write down each term explicitly. When N is large
enough, we have

P {T = 1} =
∫ arcsin 1

N( π
2 +e)

0
sin θcosN−1 θdθ ∝ 1

N2
,

P {T = 2} =
∫ arcsin 2

N( π
2 +e)

arcsin 1
N( π

2 +e)

sin θdθ (B3)

∫ arcsin min{1, 1
N( π

2 +e)− 1
sin θ

}

θ

sin φcosN−2 φdφ ∝ 1

N3

... (B4)

The reason why Eq. (B4) has this scaling behavior is because
cosN−2 φ is effectively zero when φ is larger than 1/

√
N . One

can continue this process and it is easy to see that the major
contribution to the summation in Eq. (B2) comes from the first
a few terms. Thus one can see that by increasing N one can
significantly reduce the chance of getting an abnormal peak
in the simulation, which is why the results in Fig. 5 are very
smooth, especially compared to the “δ = ∞” case in Fig. 23(a),
which has a much smaller sampling number.

APPENDIX C: THE EFFECT OF SETTING A THRESHOLD

We still take Fig. 7 as an example. By setting a threshold δ,
the new expected value of 1/ cos θ is〈

1

cos θ

〉
=

∫ 0

arccos 1
δ

d(1 − sin θ )

cos θ
= π

2
− arcsin

1

δ
. (C1)

The relative error is then 2/π arcsin 1/δ. When δ � 1, it is
approximately 2(πδ)−1. We can easily control this error by

using a moderate threshold. For example, by setting δ = 100,
the error is already below 0.7%. However, with this little
compromise we can have a finite second moment, i.e.,

〈
1

cos2 θ

〉
=

∫ 0

arccos 1
δ

d(1 − sin θ )

cos2 θ
= ln δ

(
1 +

√
1 − 1

δ2

)
.

(C2)

Thus, one can reduce the fluctuation to any level simply by
adding more samples. When δ � 1, the variance is approx-
imated by ln δ. In the case of δ = 100, one can reduce the
relative standard deviation to 1% by using around 12 000
samples. It is noteworthy that the mean and variance have
different asymptotic behaviors, the error diminishes as 1/δ,
while the variance only grows as ln δ, which gives us a great
flexibility to choose δ.

The suppression of abnormal peaks by using a threshold
δ can also be deduced from Eq. (B2). Since now 1/ cos θ is
bounded, it requires at least N (π/2 + e)/δ terms to have the
inequality in Eq. (B1), which means the leading N (π/2 + e)/δ
terms in Eq. (B2) vanish, leaving the probability significantly
smaller than the case without a threshold (actually by Hoeffd-
ing’s inequality the probability will decrease exponentially).

We test this idea on two models: overlapping spheres and
Gaussian random fields. In the former case, we consider
the same system in Sec. IV, while restricting ourselves to
a relatively small amount of sampling lines (10 000) and
compare the computed Fss with different thresholds δ = 10,
100, 1000, and ∞ (no threshold). The result is shown in
Fig. 23(a). Clearly, in all these cases, Fss fluctuates around a
common curve, while as the threshold is tightened, fluctuations
are suppressed. To show this point quantitatively, we focus on
the behavior of Fss in the interval [D,11D]. As noted in Sec. IV,
when r > D the surface-surface correlation function Fss is a
constant s2 in theory and should be a flat line in the plot; while
in the simulations Fss, fluctuates around a baseline. To compare
the simulation and theoretical results, we compute the average
of surface-surface correlation function 〈Fss(r)〉 and the largest
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deviation from s2 in this interval. As shown in Fig. 23(b), the
average of Fss(r) is always very close to the expected value
(within 1% error for all cases). However, by applying a more

restrictive threshold, there is a trend to reduce the abnormal
peaks significantly. We indeed get much smoother curves by
making a very minor sacrifice of accuracy.
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