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Simulations of passive scalar transport on a three-dimensional (3D) multiresolution grid are presented within the
framework of single relaxation time lattice Boltzmann method. The combined modeling of the fluid flow and scalar
transport is handled by a double distribution function approach in which the velocity in the fluid flow equation
is solved first and then copied to the scalar equation to solve the corresponding scalar quantities. A 3D scaling
technique, considering both external forces and scalar source terms, and two-dimensional bicubic interpolation
scheme are developed for coupling nonequilibrium velocity and scalar distributions on the interfaces of different
resolution grids. The proposed algorithm is validated for three benchmark cases, i.e., the forced convection in a 3D
channel, natural convection in a cubical cavity, and turbulent channel flow with heat transfer. Good agreements are
found between the present predictions and previous data, which confirms the capability of the proposed method
for the computation of passive scalar transport in 3D domains.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has emerged as an
efficient numerical tool for computing fluid flows problems
in recent two decades. Due to its origin from the lattice gas
automata, LBM generally solves the lattice Boltzmann equa-
tion (LBE) in a uniform-sized mesh. Consequently, to obtain
accurate results, the mesh size has to be adjusted to resolve the
smallest scales, which means a surge in computational cost,
especially for flows with high Reynold numbers. Nonetheless,
appropriate techniques can be implemented to locally refine
the mesh where the smallest scales are located, thus reducing
the requirement of computational power without losing the
accuracy. These approaches are called the multidomain LBM
or multiresolution LBM. Unlike the conventional methods
based on Navier-Stokes equations, there is a lack of sufficient
research involving grid refinement algorithms in the frame-
work of LBM.

Specifically, Filippova and Hänel [1] first proposed the
method of two-dimensional (2D) grid refinement within the
single-relaxation-time (SRT) LBM. A refinement scheme
based on the scaling post-collision distribution functions is
formulated based on the Chapman-Enskog expansion. The
scheme was validated by simulating a benchmark problem
of athermal flow around a 2D cylinder. They showed that
the method is reliable, accurate, and efficient for simulating
laminar incompressible flows. Dupuis and Chopard [2] further
developed a 2D post-streaming distribution function scaling
approach without singularity of relaxation time for SRT-LBM.
It was claimed that the scheme is accurate and has no limitation
of the relaxation time and overcomes some drawbacks of the
existing approaches [1]. A Poiseuille flow is further simulated
to test the algorithm and a speedup ratio of 1000 is found by
using a hierarchy grid. Chen et al. [3] introduced a volumetric
formulation of 2D grid refinement in which conservation
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laws at the boundaries of different level grids are exactly
satisfied for SRT-LBM. The fluid flow past a 2D cylinder
was chosen to validate interface updating technique. It was
concluded that the conserving boundary schemes are very
robust for the simulation of highly oscillating fluid flows.
Rohde et al. [4] developed a three-dimensional (3D) mass
conservative method without rescaling or interpolation of the
distribution function for SRT-LBM. The selected benchmarks
are Poiseuille flow, lid-driven cavity flow, and turbulent chan-
nel flow. They concluded that the good agreements for both
laminar flow and turbulent first and second order statistics
show the capability of the proposed approach for complex
flows. Freitas et al. [5] further explored the refinement method
of Filippova and Hänel [1] to simulate Poiseuille, cavity, and
3D turbulent channel flows. They come up with an algorithm
in which the transformation and interpolation operations are
formulated independent of the applied LBM scheme and allow
the application of arbitrary collision models. Lagrava et al.
[6] proved that the direct copy of distribution functions causes
numerical instability at relatively high Reynolds number within
the 2D rescaling and interpolation grid refinement algorithm.
A nonweighted filtering technique of the nonequilibrium part
of distribution functions is proposed and validated for flow
past a cylinder and 2D dipole collision. Touil et al. [7]
addressed the LBM based large eddy simulation (LES) in
a 3D multidomain grid. A rescaling method based on the
subscale grid viscosity was introduced. It was claimed that the
approach demonstrates comparable results with those of the
direct numerical simulation (DNS). Guzik et al. [8] studied
the influence of interpolation methods on the accuracy of
multidomain LBM. A spatial and temporal interpolation and
mass conservative scheme was formulated. By simulating the
transient Poiseuille flow, 2D and 3D Taylor–Green vortex, and
flow around a 2D cylinder, it was found that the interpolation
scheme is basically of second-order accuracy. Fakhari et al. [9]
compared the standard LBM with the finite-difference based
LBM (FDLBM) on 3D multidomain grids. They concluded
that the standard LBM is more efficient than the FDLBM
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whereas the latter demonstrated the advantage of stability at
higher Reynolds numbers. Kuwata and Suga [10] proposed
a mass and momentum imbalance-correction grid-refinement
method to further improve the accuracy as well as the appli-
cability of the multidomain grid refinement approach for SRT-
LBM. It was claimed that the scheme can effectively minimize
the unphysically discontinuous velocity distributions. Schoen-
herr et al. [11] implemented the nonequilibrium distribution
rescaling refinement algorithm on multiresolution grids for
both CPUs and GPUs. It was found that the multidomain
grids produce almost no extra computational cost compared to
that of the uniform counterparts since the temporal and spatial
interpolation algorithms are both simple.

As far as the advection-diffusion equations or passive
scalar are concerned, Alemani et al. [12] introduced two grid
refinement techniques for reaction-diffusion problems within
SRT-LBM. The first one relies on the matching of the interfacial
concentration and fluxes, whereas the second one depends on
the nested subgrids. It was found that the two methods show
similarly good results. Stiebler et al. [13] further developed
a multidomain scheme for advection-diffusion equations for
SRT-LBM. Except for spatial and temporal interpolations, a
scaling operation is introduced to guarantee the continuity of
the macroscopic values at the multidomain interfaces. Huang
et al. [14] explored a multidomain technique for the 2D passive
scalar thermal LBM (TLBM) with a multiple-relaxation-
time model. They showed that the proposed multidomain
algorithm does not depreciate the convergence accuracy of
LBM. Dorschner et al. [15] further extended the multidomain
approach to entropic LBM (ELBM) and simulated incom-
pressible, thermal, and compressible flows. It was found that
the proposed multidomain LBM is very stable and allows for
significant under-resolution while retaining accuracy. But that
comes with more complex computation procedures and higher
cost compared with SRT LBM

In summary, to the authors’ knowledge, previous research of
the multidomain LBM mainly focuses on flows without scalar
transport or with only 2D scalar transport whereas the study
of 3D scalar transport based multidomain LBM is limited.
Since spatial interpolations, as well as external forces and
scalar source terms in the 3D domain, may differ from those of
the 2D domains, further validations of the multidomain LBM
are required. Moreover, the transport of scalar quantities, such
as temperature, concentration, and level set function, plays a
pivotal role in tremendous realistic 3D engineering devices
including heat exchangers, mixers, pollutant operators, etc.,
the development 3D of scalar transport with fluid flow in a
multi-resolution grid is a necessity. In the present study, the 3D

multidomain algorithm for scalar transport in a multiresolution
grid will be proposed within the SRT lattice Boltzmann frame-
work. The modeling of scalars and the fluid motion will be
handled by a double distribution function (DDF) approach [16]
due to feasibly adjustable Prandtl numbers. A scaling technique
considering both external forces and scalar source terms will
be proposed for coupling non-equilibrium velocity and scalar
distribution functions on different resolution grids. Without
generality, the temperature will be chosen as a passive scalar in
the following simulation. The proposed algorithm is validated
for three benchmark cases, i.e., the forced convection in a 3D
channel, natural convection in a cubical cavity, and turbulent
channel flow with heat transfer. The remaining sections are
organized as follows. The DDF formulation of LBM with
scalars and the fluid motion is reviewed in Sec. II. A coupling
technique for scalar transport is introduced in Sec. III. Then in
Sec. IV the numerical tests of 3D Poiseuille flow, cubical cavity
flow, and turbulent channel flow are demonstrated. Finally,
Sec. V summarizes the conclusions.

II. DOUBLE DISTRIBUTION FUNCTION LBM

The DDF SRT LBEs for fluid flow and for passive scalar
heat transfer are given by

fα (x + eα�t, t + �t )

= fα (x, t ) − 1

τν

[
fα (x, t ) − f (eq)

α (x, t )
]+ �t

(
1− 1

2τν

)
Fα,

(1)

gα (x + eα�t, t + �t )

= gα (x, t ) − 1

τg

[
gα (x, t ) − g(eq)

α (x, t )
] + �tSα, (2)

where the distribution functions fα (x, t ) and gα (x, t ) represent
the probability of locating a particle at position x and time
t with velocity eα . τν and τg are nondimensional relaxation
times for velocity and temperature, respectively.Fα and Sα

are, respectively, the external force and energy source in
the discrete lattice form. eα is the discrete velocity vector
from Gauss–Hermite quadrature. In the present study, the
D3Q19 and D3Q7 lattice models are employed for velocity
and temperature simulation, respectively, as depicted in Fig. 1.
The discrete velocity vectors and weighting factors for D3Q19
and D3Q7 lattice model read

{eα, wα} =

⎧⎪⎨
⎪⎩

c[(0, 0, 0)], 1/3

c[(±1, 0, 0), (0,±1, 0), (0, 0,±1)], 1/18

c[(±1,±1, 0), (±1, 0,±1), (0,±1,±1)], 1/36

α = 0

α = 1, 2, . . . , 6

α = 7, 8, . . . , 18

(3)

and

{eα, wα} =
{

c[(0, 0, 0)], 1/4

c[(±1, 0, 0), (0,±1, 0), (0, 0,±1)], 1/8

α = 0

α = 1, 2, ...., 6
, (4)

respectively, where the lattice velocity c equals �x/�t .
f

(eq)
α (x, t ) and are g

(eq)
α (x, t ) distribution functions at the

equilibrium state. To reduce the compressible effect in LBM,
the following equilibrium distribution function [17] for fluid
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FIG. 1. (a) D3Q19 and (b) D3Q7 lattice models.

flow is considered:

f (eq)
α (ρ, u) = wα

[
ρ + ρ0

(
eαiui

c2
s

+ Qαijuiuj

2c4
s

)]
, (5)

where ρ0 is the reference density, Qαij = eαieαj − c2
s δij , cs and

wα are the dimensionless speed of sound and weighting factor,
respectively; cs is c/

√
3 for the D3Q19 lattice model. The

equilibrium distribution function for heat transfer is expressed
as

g(eq)
α (T , u) = wαT

[
1 + eαiui

c2
s

]
, (6)

where cs equals c/2 for the D3Q7 lattice model. The external
force term handled by the Guo’s model [18] and the energy
source term are given by

Fα = wα

[
eαiFi

c2
s

+ (uiFj + Fiuj )Qαij

2c4
s

]
, Sα = wαS,

(7)

where Fi is the total macroscopic force and Si is the energy
source term. Then, the density, velocity, and temperature
are determined by the moments of velocity and temperature
distribution functions via

ρ =
∑

α

fα, ρ0u =
∑

α

eαfα + �t

2
F, T =

∑
α

gα. (8)

By the Chapman-Enskog expansion of Eqs. (1) and (2),
the corresponding incompressible Navier-Stokes equations are
obtained as

∂ui

∂xi

= 0, (9)

∂ui

∂t
+ ∂ (ujui )

∂xj

= − 1

ρ0

∂p

∂xi

+ 1

ρ0
Fi + ∂ (2νSij )

∂xj

, (10)

∂T

∂t
+ ∂ (uiT )

∂xi

= ∂

∂xj

(
α

∂T

∂xj

)
+ S, (11)

where the strain rate tensor Sij is defined as Sij =
0.5(∂ui/∂xj + ∂uj/∂xi ). The kinematic viscosity ν and
thermal diffusivity α are calculated from the relaxation

FIG. 2. Refinement boundaries between coarse and fine grids.

times as

ν = c2
s

(
τν − 1

2

)
�t, α = c2

s

(
τg − 1

2

)
�t, (12)

respectively. Therefore, the Prandtl number Pr is defined by

Pr = ν

α
= 4

3

2τν − 1

2τg − 1
. (13)

Another important aspect of DDF-LBM is about the bound-
ary conditions. In this study, the boundary treatment technique
of Malaspinas and Sagaut [19,20] will be employed. It is based
on the Zou and He hypothesis [21] but reconstructs the non-
equilibrium distribution function from the non-equilibrium
stress tensor. The method shows advantages of both accuracy
and stability.

III. 3D MULTIDOMAIN LBM WITH SCALAR TRANSPORT

The 3D multidomain grids with two-level refinement are
shown in Fig. 2. For brevity’s sake, let subscript c denote
the coarse grids and f denote the fine grids. There exist
two kinds of scaling strategies between space and time, that
is the convective scaling and the diffusive scaling. Here
the convective scaling is adopted [6], where the spatial and
temporal resolutions between coarse and fine grids are given
as �xf /�xc = �tf /�tc = n. Here n is the grid refinement
ratio. To exchange information between the fine grid boundary
(2D plane marked with blue color in Fig. 2) and the coarse grid
boundary (2D plane marked with red color in Fig. 2), the width
of the overlapping zone is set to one coarse grid.

According to the Chapman-Enskog expansion, the distribu-
tion functions can be decomposed as series of a small parameter
ε whose order of magnitude equals the Knudsen number, i.e.,

fα = f (0)
α + εf (1)

α + ε2f (2)
α + · · · , (14)

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
,

∂

∂xi

= ε
∂

∂xi1
, (15)

and

F = εF(1). (16)
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Then, by the Taylor expansion, Eq. (1) can be rewritten as

�t

(
∂

∂t
+ eαi

∂

∂xi

)
fα + 1

2
�t2

(
∂

∂t
+ eαi

∂

∂xi

)2

fα + O(�t3)

= − 1

τν

[
fα − f (eq)

α

] + �t

(
1 − 1

2τν

)
Fα. (17)

Substituting Eqs. (14)–(16) into Eq. (17) and rewriting them
in the consecutive orders of ε as

ε0 : f (0)
α = f (eq)

α , (18)

ε1 :

(
∂

∂t1
+ eαi

∂

∂xi1

)
f (0)

α − F (1)
α

= − 1

�tτν

[
f (1)

α + �t

2
F (1)

α

]
, (19)

ε2 :
∂f (0)

α

∂t2
+

(
1 − 1

2τν

)(
∂

∂t1
+ eαi

∂

∂xi1

)[
f (1)

α + �t

2
F (1)

α

]

= − 1

�tτν

f (2)
α . (20)

Note that the macroscopic quantities, including density, ve-
locity, external force, temperature, and energy source, remain
invariant to the grid resolution, i.e., ρc = ρf , uc = uf , Tc =
Tf , Fc = Ff , and Sc = Sf . The equilibrium distribution func-
tions, external force, and energy source in momentum space,
which are composite functions of macroscopic quantities,
are therefore also independent of grid resolutions, namely
f

(eq)
α,c = f

(eq)
α,f , g(eq)

α,c = g
(eq)
α,f , Fα,c = Fα,f , and Sα,c = Sα,f . The

right-hand side of Eq. (19) can be expressed as

1

�tcτν,c

[
f (1)

α,c + �tc

2
F (1)

α,c

]
= 1

�tf τν,f

[
f

(1)
α,f + �tf

2
F

(1)
α,f

]
.

(21)

Since the nonequilibrium part f
(neq)
α = fα − f

(eq)
α ≈ εf (1)

α ,
Eq. (21) is further rearranged as

1

�tcτν,c

[
f (neq)

α,c + �tc

2
Fα,c

]
= 1

�tf τν,f

[
f

(neq)
α,f + �tf

2
Fα,f

]
.

(22)

Similarly, by Chapman-Enskog and Taylor expansion, the
following equations on temperature distribution functions are
obtained

gα = g(0)
α + εg(1)

α + ε2g(2)
α + · · · , (23)

S = εS (1), (24)

�t

(
∂

∂t
+ eαi

∂

∂xi

)
gα + 1

2
�t2

(
∂

∂t
+ eαi

∂

∂xi

)2

gα + O(�t3)

= − 1

τg

[
gα − g(eq)

α

] + �tSα, (25)

Combining Eqs. (15), (23), (24), and (25) and rearranging them
in the consecutive orders of ε as

ε0 : g(0)
α = g(eq)

α , (26)

FIG. 3. Calculation processes for a three-level multidomain grid
where the number in the bracket represents the order of operations.

ε1 :

(
∂

∂t1
+ eαi

∂

∂xi1

)
g(0)

α − Sα1 = − 1

�tτg

g(1)
α , (27)

ε2 :
∂g(0)

α

∂t2
+

(
1 − 1

2τg

)(
∂

∂t1
+ eαi

∂

∂xi1

)
g(1)

α

+ �t

2

(
∂

∂t1
+ eαi

∂

∂xi1

)
Sα1 = − 1

�tτg

g(2)
α , (28)

Performing the aforementioned operations on Eq. (28), the
scaling strategy for non-equilibrium scalar distribution func-
tion is given by

1

�tcτg,c

g(neq)
α,c = 1

�tf τg,f

g
(neq)
α,f . (29)

Once the scaling strategy is established, a multidomain grid
coupling of distribution functions can be carried out. Figure 3
shows the detailed streaming and collision process (black
arrow), interpolation process (green arrow), and duplication
process (red arrow) on a multidomain grid with three level
resolutions (L0, L1, and L2). The order of operation in one
cycle is indicated by the number in the bracket. The tempo-
ral interpolation scheme of the non-equilibrium distribution
functions is linear whereas the spatial interpolation scheme is
bicubic as shown in Fig. 4. A general expression of the third

FIG. 4. Bicubic spatial interpolations from coarse to fine grids.
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order bicubic interpolation is given by

p(x, y) =
3∑

i=0

3∑
j=0

bij x
iyj , (30)

where the coefficients bij depends on the fine grid location.
Specifically, for central nodes, a full 16-point bicubic in-
terpolation scheme is used. For edge and corner nodes, a
biased 12- and 9-point interpolation schemes are applied.
A full 16-point bicubic interpolation scheme has also been
tested for the Poiseuille flow case and found that biased
interpolation does not affect the overall accuracy since the
number of corner and edge nodes is marginal compared to
overall grids. Therefore, to guarantee the parallel efficiency
[6] (Only two envelope nodes are required for communication
between different blocks), biased interpolations are adopted
in the present study. Furthermore, the third-order bicubic
interpolation is found to be mass conservative for a preliminary
numerical test.

For copying distribution functions from fine to coarse grids,
there exist two major filtering techniques, one is arithmetic
average proposed by Lagrava et al. [6] and the other is weighted
average proposed by Touil et al. [7]. The effect of filter has been
tested in our cases. For laminar flow at relative low Reynolds
number or Raleigh number, the filter is not necessary and does
not affect the final results. However, for turbulent flow and
cavity flow with higher Raleigh number, say 106 in our case,
the adoption of filter can contribute to the stability of simulation
with relatively coarse grids. In addition, there is no observable
difference between arithmetic average and weighted average.
Hence, in present study, a uniform filter is adopted.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, some benchmark cases will be simulated to
validate the proposed 3D multidomain approach for passive
scalar heat transfer. The first problem is the forced convection
in a 3D channel with constant wall heat flux. This case involves
both an external force in the fluid flow equation and a source
term in the energy equation. The second problem is the natural
convection in a cubical cavity. Unlike the first case, this case
does not possess an energy source term, but its energy equations
are coupled with the fluid flow equation through the Boussinesq
approximation.

A. 3D Poiseuille flow with constant wall heat flux

A schematic diagram of pressure-driven Poiseuille flow in
a 3D channel with heat transfer is depicted in Fig. 5. The
streamwise (x), transverse (y), and spanwise (z) dimensions
of the computational domain are set to 4h, 2h, and 2h,
respectively, where h is the half channel width fixed at 1.
Periodic boundary conditions are assumed in x and z directions
whereas in the transverse direction the top and bottom walls
are assumed to be no-slip and with constant wall heat flux of
q ′′. The flow is driven by a constant pressure gradient in the
x-direction which is treated as an external body force term
F1 = ρu2

τ /h, where uτ is the friction velocity. The periodic
temperature boundary condition is realized by imposing a
source term S = q ′′/(ρcphub ) in the energy equation, where

FIG. 5. Schematic diagram of the forced convection in a 3D
channel.

cp is the specific heat and ub is the bulk mean velocity. The
analytical solutions for both velocity and temperature are
expressed as

u = 1

2
Reτ uτ

[
2 −

(y

h

)](y

h

)
, (31)

θ = −1

8

[(y

h

)
− 1

]4
+ 3

4

[(y

h

)
− 1

]2
+ θw − 5

8
, (32)

where θ and θw is the dimensionless temperature and wall
temperature normalized by q ′′h/k. The corresponding Nusselt
number Nu, calculated by 4/(θw − θb ), equals 8.235, where θb

is the bulk mean temperature.
In the present study, the Reynolds number Reτ , defined as

uτh/ν, is fixed at 10. A working fluid air is employed, whose
Pr equals 0.71. To test the multidomain algorithm, three grid
systems named MG1, MG2, and MG3 are adopted as recorded
in Table I. The grids are refined twice near the top and bottom
walls as depicted in Fig. 6. The wall distances of the first
and second refinement are 0.1h and 0.5h, respectively. For
the evaluation of Nusselt number, the trapezoid integration
algorithm is adopted.

Figure 7 shows the transverse distributions of the stream-
wise velocities normalized by uτ , u+, and dimensionless
temperature θ , obtained with the present multidomain LBM
for the grid system of MG1. The blue and green arrows,
denoted as L1-L0 and L2-L1, indicate the refinement locations
between grid level 0 and level 1, and between grid level 1 and
level 2, respectively. It is seen that the calculated velocity and
temperature agree very well with the analytical solutions. Note
that results of other two grid systems are not plotted here since
they demonstrate no observable differences in u+ and θ . As
one further looks at the refinement interface L1-L0 and L2-L1,
there exist no discontinuities of velocity or temperature. This

TABLE I. Grid configurations for the 3D channel flow (h = 1).

Grid Level 0 size Level 1 size Level 2 size

MG1 h/8 h/16 h/32
MG2 h/10 h/20 h/40
MG3 h/16 h/32 h/64
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FIG. 6. Multidomain grid distributions on xy and yz midplanes
of the channel.

is due to fact that the present method conserves the second
order momentum and heat flux under the bicubic interpolation.
In contrast, a grid system above 41 × 41 × 81 is required to
achieve the present accuracy on a uniform mesh.

To further test the accuracy of the method, Table II lists
the simulated maximum and mean velocities, umax and ub,
minimum and mean temperature, θmin and θb, and Nu compared
with those of the analytical solution. The comparison shows a
maximum relative error less than 1% for all grids and quantities
examined. It is observed that the relative errors between
calculated results and analytical solutions are decreasing with
increasing number of grid points. The log error with respect to
the log grid size gives a slope around 2 which further proves
the second-order accuracy of the present method.

B. Natural convection in a cubical cavity

Since the channel flow problem does not consider the
coupling between fluid flow equation and energy equation,
another more complicated 3D benchmark case, i.e., the natural
convection in a cubical cavity, will be simulated in this section.
A sketch of the cubical cavity with natural convection is
demonstrated in Fig. 8. Constant high and low temperature
(TH and TL) boundary conditions are imposed on the right
and left walls (x = 0 and x = H ), respectively, whereas the
remaining walls are maintained adiabatic. The flow is driven
by a gravitational force g, pointing towards the negative y-axis,
as well as the corresponding buoyancy force. For moderate
temperature difference, the flow inside the cavity is considered
incompressible and the Boussinesq approximation is adopted

FIG. 7. Velocity and temperature profiles compared with the
analytical results for the MG1 grid at Reτ = 10 and Pr = 0.71.

TABLE II. Comparisons of maximum and mean velocities, min-
imum and mean temperature, and Nusselt number with the analytical
results at different grid resolutions for Reτ = 10 and Pr = 0.71.

Grid umax ub θmin θb Nu

Analytical 5 10/3 0.375 0.5143 8.235

MG1 Present 4.9986 3.3241 0.3786 0.5184 8.3058
Error (%) 0.0283 0.2765 0.9485 0.7986 0.8594

MG2 Present 4.9992 3.3275 0.3771 0.5167 8.2769
Error (%) 0.0164 0.1756 0.5499 0.4717 0.5085

MG3 Present 4.9998 3.3312 0.3756 0.5151 8.2496
Error (%) 0.0035 0.0638 0.1645 0.1603 0.1765

to model the buoyancy force term, i.e., F = ρ0 gβ(T − T0),
where β is the thermal expansion coefficient and T0 is the refer-
ence temperature defined by T0 = (TH + TL)/2. The Rayleigh
number Ra and the characteristic velocity u0 are defined
by Ra = gβ(TH − TL)H 3/(αv) and u0 = √

gβ(TH − TL)H ,
respectively. Similar to that of the channel flow, the air featuring
a Prandtl number of 0.71 is chosen as working fluid. The overall
Nusselt number Nuo is determined by gradients of temperature
on the heat walls as

Nuo =
∫ H

0

∫ H

0

∂θ

∂x

∣∣∣∣x=0 orH dydz, (33)

where θ is the dimensionless temperature defined as θ =
(T − TL)/(TH − TL). In the present study, the Rayleigh num-
ber ranges from 103 to 106. To resolve the thermal boundary
layer and the corner vortices, a three-level multidomain grid
is generated as described in Fig. 9. The coarsest grids (level 0
grids) lie around the center of the domain with a fixed size of
H/32 while the sizes of level 1 and level 2 grids are H/64 and
H/128, respectively. The first and second refinement locations
are 0.35H and 0.15H from the nearest walls.

Table III summarizes the present calculated results of
maximum velocity components, umax and vmax, overall Nusselt
numbers, Nuo, and the corresponding coordinates compared
with previous numerical data [22–24] on the z = 0.5 midplane.
It is found that they are in reasonably good agreements
with those from the literature for all Ra examined. The

FIG. 8. Sketch of the natural convection in a cubical cavity.
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FIG. 9. Multidomain grid distributions on xy, xz, and yz mid-
planes of the cubical cavity.

negative discrepancies of Nuo are due to weakly compressible
characteristics of LBM, which can be further reduced by
refining grid.

Figures 10(a)–10(d) depict the isotherms on x = 0.5 and
z = 0.5 planes for Ra = 103, Ra = 104, Ra = 105, and Ra =
106, respectively. Due to the existence of buoyancy forces,
the temperature contours, indicated by the curved profiles of
the isotherms, are not linearly distributed for all Ra examined.
As the value of Ra increases from 103 to 106, the deviations
from the vertically linear profile become more prominent, i.e.,
the nearly vertical isotherms turning horizontal (stratification)
except the regions adjacent to the left and right walls. This
is attributable to the enhanced effect of buoyancy which is
implicitly proportional to the value of Ra. It is also observed
that the temperature distributions at x = 0.5 plane are not
uniform due to the influence of the side walls. Note that the

TABLE III. Maximum velocity components, overall Nusselt
numbers, and the corresponding coordinates compared previous data
[22–24] on z = 0.5 midplane for Ra = 103, 104, 105, and 106.

Ra umax y vmax x Nuo

103 Present 0.1331 0.1875 0.1332 0.8281 1.0673
Ref. [22] 0.1314 0.2 0.132 0.8333 1.085
Ref. [23] 0.132 0.188 0.133 0.826 1.075
Ref. [24] 0.1315 0.1919 0.1326 0.8301 1.0700

104 Present 0.2007 0.1719 0.2235 0.8828 2.0468
Ref. [22] 0.2013 0.1833 0.2252 0.8833 2.1
Ref. [23] 0.206 0.163 0.221 0.887 2.085
Ref. [24] 0.1968 0.1799 0.2218 0.8873 2.0535

105 Present 0.1457 0.1484 0.2479 0.9375 4.2936
Ref. [22] 0.1468 0.1453 0.2471 0.9353 4.361
Ref. [23] 0.149 0.136 0.240 0.935 4.378
Ref. [24] 0.1426 0.1493 0.2442 0.9317 4.3248

106 Present 0.0819 0.1484 0.2616 0.9609 8.4909
Ref. [22] 0.0841 0.1443 0.2588 0.9669 8.77
Ref. [23] − − − − −
Ref. [24] 0.0816 0.1403 0.2556 0.9653 8.5428

FIG. 10. Isotherms on x = 0.5 and z = 0.5 midplanes of the
cubical cavity for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d)
Ra = 106.

above-mentioned temperature features at z = 0.5 are qualita-
tively similar to those of Wang et al. [24].

The velocity magnitude, normalized by the characteristic
velocity u0, on x = 0.5 and z = 0.5 planes for Ra = 103, Ra =
104, Ra = 105, and Ra = 106, are plotted in Figs. 11(a)–11(d),
respectively. It is noticeable that there exist four high-velocity
regions near the four side walls indicating the existence of
a large buoyancy induced a spherical vortex in the center of
the cavity for Ra = 103. The high-velocity fluid gradually
concentrates around the left and right walls as Ra increases
beyond 104 suggesting the vortex stretch. Since the increasing
value of Ra leads to sharper temperature gradient near the
left and right walls [Figs. 10(a)–10(d)], it results in greater
buoyancy and, in turn, higher near-wall velocity.

C. 3D turbulent channel flow with heat transfer

To further validate the present multigrid model for turbulent
flow and heat transfer, the 3D turbulent channel flow with
heat transfer [25] is simulated in this section. Figure 12
depicts the schematic diagram of generic 3D turbulent channel
flow. The streamwise, spanwise, and transverse dimension of
computational domain are 2πδ, 2δ, and πδ, respectively. The
Reynolds number, based on the friction velocity uτ and channel
half height δ, i.e.,Reτ = uτ δ/ν, is 180. A working fluid air is
chosen, with Prandtl number Pr = 0.71. The top and bottom
walls are assumed to be no-slip and with constant higher (Th)
and lower temperature (Tc), respectively, and the rest of the
walls are assumed to be periodic. The pressure gradient is
treated as a body force F = −dp/dx = ρu2

τ /δ.
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FIG. 11. Velocity magnitude normalized by the characteristic
velocity u0 = √

gβ(TH − TL)H on x = 0.5 and z = 0.5 midplanes
of the cubical cavity for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105,
and (d) Ra = 106.

To save the computational cost, the LES model with a
Smagorinsky sub-grid closure and van Driest damping near
the wall is used in this calculation. A two-level grid sys-
tem, 280 × 90 × 140 and 140 × 45 × 70, is adopted, which
corresponds to first layer y+ of 3.8. Similar to Fig. 6, the
refinement distance is 0.4δ from the nearest wall. The initial
velocity field is generated with one-seventh power law plus a
random fluctuation within 5% of bulk mean velocity. The initial
temperature field is specified with linear profile. The simulation
is run for 100T ∗ until a statistical steady-state has been
reached, where T ∗ = δ/uτ is turnover time. The turbulence
statistics are collected from time-averaging over 20T ∗. The
transverse profiles are calculated by averaging mean fields
first along streamwise direction and then along spanwise
direction.

FIG. 12. Computational domain for 3D turbulent channel flow
with heat transfer.

FIG. 13. Mean velocity and temperature profiles compared with
DNS results [25].

Figure 13 shows streamwise mean velocity profile, U+ =
U/Uτ , and mean temperature profile, T + = (T − Tw )/Tτ ,
in near-wall coordinate, with Tτ = qw/(ρcpuτ ) and qw =
−K (∂T /∂n)w. The law of wall and DNS data of Kawamura
et al. [25] are also plotted for comparison. The calculated
velocity shows reasonable agreement with log law results in
viscous and log law region and a maximum difference around
3%, compared to that of DNS in the overlapping region, due
to subgrid scale model in LES. It should be pointed out that
the present data does not extend to Y+ = 1 since the first
layer grid distance is Y+ = 3.8. Meanwhile, the temperature
profile is also in good agreement with DNS data except a slight
deviation in the core region. The overprediction is caused by
the assumption of constant turbulent Prandtl number.

To examine the possible discontinuity of high order statis-
tics as mentioned by Kuwata and Suga [10], Fig. 14 shows the
〈u+v+〉 Reynolds stress component and 〈u+θ+〉 turbulent heat
flux distributions along the y direction. For the Reynolds stress
component, the linear profile of Reynolds stress, viscous stress,
and total stress, i.e., −〈u+v+〉 = 1 − Y+/Reτ − ∂U+/∂Y+, is
plotted for further comparison. It is seen that the simulated
result varies with Y+ and agrees well with DNS results.
Since the mean velocity gradient is close to zero around that
area as depicted in Fig. 13, 〈u+v+〉 decreases linearly around
horizontal midplane. In addition, the streamwise heat flux is
also in a good match with DNS results with no discontinuity
found in the grid refinement interface.

V. CONCLUSIONS

In the present study, the simulations of scalar transport
on a 3D multidomain grid have been addressed within the
LBM framework. A coupling technique and 2D interpolation
method are proposed for scaling the velocity and passive
scalar distribution functions in different resolution grids. The

FIG. 14. Reynolds stress component and turbulent heat flux com-
pared with DNS results [25].
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proposed algorithm is validated for three benchmark cases, i.e.,
the forced convection in a 3D channel, natural convection in a
cubical cavity, and turbulent channel flow with heat transfer.
The good agreements with analytical solutions and previous
benchmark data prove that the present approach can solve 3D
scalar transport problems with both accuracy and efficiency.
It should be pointed out that the present Rayleigh number or
Reynold number is relatively small and does not cover a wider
range of engineering applications. Therefore, the future work
will be dedicated to applying the present multigrid LBM to the

simulation of high Reynold number turbulent fluid flow with
3D passive scalar transport.
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