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Assessing uncertainties in x-ray single-particle three-dimensional reconstruction
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Modern technology for producing extremely bright and coherent x-ray laser pulses provides the possibility to
acquire a large number of diffraction patterns from individual biological nanoparticles, including proteins, viruses,
and DNA. These two-dimensional diffraction patterns can be practically reconstructed and retrieved down to a
resolution of a few angstroms. In principle, a sufficiently large collection of diffraction patterns will contain
the required information for a full three-dimensional reconstruction of the biomolecule. The computational
methodology for this reconstruction task is still under development and highly resolved reconstructions have
not yet been produced. We analyze the expansion-maximization-compression scheme, the current state of the
art approach for this very challenging application, by isolating different sources of resolution-limiting factors.
Through numerical experiments on synthetic data we evaluate their respective impact. We reach conclusions of
relevance for handling actual experimental data, and we also point out certain improvements to the underlying
estimation algorithm. We also introduce a practically applicable computational methodology in the form of
bootstrap procedures for assessing reconstruction uncertainty in the real data case. We evaluate the sharpness of
this approach and argue that this type of procedure will be critical in the near future when handling the increasing
amount of data.
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I. INTRODUCTION

Determining the structure of a very small biological object,
such as a protein or a virus, is both fascinating and hard. The
most classical and common way to determine the atomic and
molecular structures of small biological objects is to crystallize
them and use x-rays to investigate the resulting macroscopic
crystals. This method, x-ray crystallography, has succeeded
in determining more than 97 200 structures [1]. With x-ray
crystallography, high-quality structures can be obtained from
crystals whose atoms are formed in a near-perfect periodic
arrangement. However, due to conformational flexibility not
all biological samples can form crystals.

Modern x-ray free electron laser (XFEL) technology po-
tentially provides the ability to determine biological structure
without crystals. XFEL pulses are intense and short enough to
create an observable diffraction signal from one single particle,
outrunning the radiation damage. Digital detectors are used
to capture the diffracted wave, depicting the sample before
it explodes and turns into a plasma. This approach is called
“diffract and destroy” [2] and has caught considerable attention
in structural biology [3–8].
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For a flash x-ray single-particle diffraction imaging (FXI)
experiment, a stream of particles are injected into the x-
ray beam and hit by the extremely intense x-ray pulses,
producing diffraction patterns showing the illuminated objects.
The energy from the x-ray pulse destroys the sample, so it is
impossible to collect successive exposures of the same particle.
However, since many biological particles exist in identical
copies at the resolution scales of relevance, the diffraction
patterns can be treated approximately as differently oriented
exposures of the same particle. The particle rotations can be
recovered [9–11] by maximizing the fit among all diffraction
patterns. Hence, a 3D intensity can be assembled as an average
of these oriented patterns.

In 2011, a 2D reconstruction of a mimivirus [12] was
reported, one of the largest known viruses at a diameter of
roughly 500 nm. The reconstruction was based on individual
FXI diffraction patterns, with 32-nm full-period resolution.
Later, a corresponding 3D reconstruction was also presented
[8], whose resolution was markedly inferior to the one achieved
in 2D from individual patterns. The authors there suggested
that a higher-resolution 3D reconstruction could be obtained
by adding more high-quality diffraction patterns from homo-
geneous samples. This would clearly require experimental
developments of the FXI technology along with a compre-
hensive understanding of the uncertainty propagation in the
reconstruction procedure.

In this paper, we attempt to analyze sources and prop-
agation of uncertainties in the expansion-maximization-
compression (EMC) algorithm [9,13], the best-in-practice 3D
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reconstruction method, to be able to estimate the 3D recon-
struction resolution.

An overview of the computational methodology using
FXI images is found in Sec. II. We discuss the sources of
errors and introduce two bootstrap schemes for estimating the
reconstruction uncertainty in Sec. III. Numerical experiments
to assess the impact of the various sources of uncertainty are
presented in Sec. IV, where we also evaluate the sharpness
of the bootstrap estimators and the robustness of the overall
reconstruction procedure. A concluding discussion is found in
Sec. V.

II. IMAGING VIA FXI

It is well known that one can use the Fourier transform
to approximate diffracted waves in the far-field [14]. In this
section, we review the relationship between the solutions to the
wave equation as represented via Fourier transforms and the
captured FXI diffraction images. We also review maximum-
likelihood-based image-processing techniques, and the best-
in-practice 3D FXI reconstruction algorithm.

A. Scattering theory

XFEL pulses can produce diffraction patterns of single
biomolecules. This diffraction process, a wave propagation in
free space, is described by the Helmholtz wave equation,

∇2� + k2n2� = 0, (1)

where the wave number is k, and the refractive index is n.
We can solve the wave equation on an Ewald sphere, which

is perpendicular to the x-ray beam direction, by assuming that:
(i) the polarization of XFEL pulses can be ignored; (ii) the
objects in the x-ray beam are small, so that photons diffract
only once inside the object (i.e., only the first order Born
approximation �1 is required); (iii) small-angle scattering is
assumed, i.e., that the object-detector distance is much longer
than the wavelength; (iv) the XFEL sources generate plane,
coherent, and homogeneous waves.

The scattered wave on the Ewald sphere can then be written
as follows:

�̄ ≈ √
I0�p

2π

λ2
F2{δn⊥(r⊥)}�x3 ∝ F2{δn⊥(r⊥)}, (2)

where F2 is a 2D Fourier transformation, �x is the sam-
pling distance, δn⊥(r⊥) is the refractive component of the
refractive index for the Ewald sphere, I0 is the x-ray pulse
intensity at the object-beam interaction point, and λ is the wave
length. Further, �p equals to P 2/D2, where P is the physical
pitch of a single detector pixel, and D is the object-detector
distance.

The noiseless diffraction pattern detected by the detector is
the square of this scattered wave, i.e.,

I = |�̄|2 ∝ |F2{δn⊥(r⊥)}|2. (3)

We denote a collection of noiseless diffraction patterns by
K∗ = (K∗

k )Mdata
k=1 , where each frame K∗

k is obtained from Eq. (3)
by specifying effectively a rotation of the object. Since the
x-ray pulse intensity at the object-beam interaction point I0

will vary in practice, we denote this variation by φ, the (photon)

fluence, such that diffraction pattern with varying fluence is
obtained by scaling φK∗

k . Moreover, since digital detectors are
pixelized, we also discretize each diffraction pattern and write
K∗

k = (K∗
ik)

Mpix

i=1 , where Mpix is the number of pixels.

B. Maximum-likelihood-based imaging for FXI

In Eq. (2), the refractive component of the refractive index
for the Ewald sphere δn⊥(r⊥) is dependent on the rotation of
the particle. This is directly observable from FXI experiments.
Several methods [9–11] can be used to estimate the unknown
particle rotations from FXI diffraction patterns, but the most
successful approach so far is the EMC algorithm [8,9,13].
Besides calculating maximum-likelihood (ML) estimates, the
EMC algorithm interpolates between 2D diffraction patterns
and a 3D model.

The EMC algorithm consists of 4 steps per iteration: (i)
the expansion step (e step) slices the 3D model through the
model center according to the sampled rotation, i.e., expands
the 3D model into a set of 2D slices; (ii) the expectation step
(E step) estimates the probability of each pattern to be in any
given rotation; (iii) the maximization step (M step) updates
the 2D slices and their fluences using the estimated rotational
probability; (iv) the compression step (C step) inserts the
updated 2D slices back into the 3D model.

We first introduce the e and the C step, which interpolates
between a 3D model and 2D slices. Let W = {Wl}Mgrid

l=1 be a 3D
discrete model, an estimation of the 3D Fourier intensity of a
biomolecule, where Mgrid = M

3/2
pix . The rotational space R is

discretized by (Rj )Mrot
j=1, and the corresponding prior weight for

rotation Rj is wj , normalized such that
∑

j wj = 1. Similarly,

the intensity space is discretized by a set of pixels (qi)
Mpix

i=1 ,
such that the unknown 2D Fourier intensity at position Rjqi

can be denoted by Wij in this coordinate system. We define

interpolation weights f and interpolation abscissas (pl)
Mgrid

l=1
such that for g some smooth function,

g(q) ≈
Mgrid∑
l=1

f (pl − q)g(pl). (4)

An e step slices Wj from the 3D model W as follows:

Wij =
Mgrid∑
l=1

f (pl − Rjqi)Wl . (5)

The C step inverses the interpolation of the e step by
inserting the 2D slices back into the 3D grid,

Wl =
∑Mpix

i=1

∑Mrot
j=1 f (pl − Rjqi)Wij∑Mpix

i=1

∑Mrot
j=1 f (pl − Rjqi)

. (6)

After the C step in each iteration, the EMC algorithm checks
the following stopping criterion:

Mgrid∑
l=1

∣∣W(n+1)
l − W(n)

l

∣∣ � ε, (7)

where ε is a small positive number (we put ε = 0.001 in
practice in the experiments below).
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We next explain the E and M steps in some detail. With i.i.d.
diffraction patterns K = (Kk)Mdata

k=1 , the ML-estimator is given
formally by

Ŵ = arg max
W

M−1
data

Mdata∑
k=1

log P(Kk|W ), (8)

that is, estimated 2D slices are found by maximizing the
likelihood of the diffraction patterns for some probabilistic
intensity model.

Two factors make the optimization problem, Eq. (8), in-
complete: (i) the diffraction pattern Kk cannot be directly
inserted back into a 3D volume due to the true rotation Rk

being unknown; (ii) the fluence φk of the kth diffraction pattern
Kk is also unknown. To fix these two factors, we consider the
following ML-estimator instead:

Ŵ = arg max
W

M−1
data

Mdata∑
k=1

Mrot∑
j=1

log P(Kk|W,R,φ). (9)

The original EMC algorithm [9] assumed that the ith pixel
of the kth measured diffraction pattern Kik is Poissonian
around the unknown Fourier intensity Wij ,

P(Kik = κ|Wij ,Rj ) =
Mrot∏
j=1

(Wij )κe−Wij

κ!
. (10)

Some attempts [8,13] have been made to better take the photon
fluence into account by approximating the Poisson distribution
by a Gaussian distribution for high-intensity FXI diffraction
patterns, which unfortunately makes Eq. (9) nonlinear.

In this paper, we rather more directly take the photon
fluence into account by solving for a scaled Poissonian

probability model, and propose a solution within the EMC
framework using ideas borrowed from nonnegative matrix
factorization (NNMF) methods [15–17]. More precisely, we
assume that the measured intensity of the ith pixel in the kth
diffraction pattern is Poissonian around the scaled unknown
Fourier intensity φjkWij , i.e.,

log P(Kik|Wij ,Rj ,φjk)

∝ Kik log(φjkWij ) − φjkWij := Qijk. (11)

Summing over i, we obtain the joint log-likelihood function,

Qjk :=
Mpix∑
i=1

(Kik log(φjkWij ) − φjkWij ). (12)

In the E step, we assume that the 2D slices W and their
fluences φ are known, so that the rotational probability is
explicitly available by integrating the joint log-likelihood
function, Eq. (12), over the rotational space at the (n + 1)th
iteration:

P n+1
jk = P n+1

jk (Wn,φn) =: P(Rj |Kk,φ
n,Wn)

= wj exp(Qjk(Wn))∑Mrot
j ′=1 wj ′ exp[Qj ′k(Wn)]

. (13)

The M step freezes the rotational probability Pjk at the (n +
1)th iteration, so that φ and W may be obtained as solutions to
the following optimization problem:

arg max
φ,W

∑
ijk

(PjkKik log(φjkWij ) − PjkφjkWij ). (14)

We propose to solve for φ and W jointly by directly
translating the optimization problem into an NNMF problem
in the form of minimizing a certain divergence:

min
φ,W

D(PK||PφW ) = min
φ,W

∑
ijk

(
PjkKik log

PjkKik

PjkφjkWij

− PjkKik + PjkφjkWij

)

= min
φ,W

⎡
⎣−

∑
ijk

(PjkKik log(φjkWij ) − PjkφjkWij ) + C

⎤
⎦, (15)

where C is a constant. The convergence of the NNMF al-
gorithm associated with the divergence Eq. (15) has been
studied in Refs. [18,19]. We minimize Eq. (15) via the multi-
plicative update rules Eqs. (16) and (17), which guarantees
that successive iterates of Eq. (15) form a nonincreasing
sequence:

φ
(n+1)
jk =

∑
i Kik∑
i W

(n)
ij

∑
l W

(n−1)
l∑

l W
(n)
l

, (16)

W
(n+1)
ij =

∑Mdata
k=1 P

(n+1)
jk Kik∑Mdata

k=1 P
(n+1)
jk φ

(n+1)
jk

, (17)

where
∑

l W
(n−1)
l /

∑
l W

(n)
l is a normalization term.

III. UNCERTAINTY ANALYSIS AND BOOTSTRAP
ESTIMATION

To understand the overall uncertainty of the reconstruction
procedure in Fourier space, we investigate the successive steps
of the EMC algorithm. Armed with insights from this analysis,
we suggest practical bootstrap procedures to assess the limits
of the reconstruction resolution.

A. Sources of uncertainty

To identify the sources of uncertainty, we work through the
FXI experiment setup and the EMC reconstruction procedure.
On the one hand, the FXI experiment itself contributes several
sources of errors: the sample heterogeneity error due to inher-
ent variations of biological particles, the sample purity error
due to there being a mixture of different kinds of biological
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TABLE I. Notation for assessing algorithmic errors.

W⊥ The 3D “truth”
W∗ The best possible EMC reconstruction
K∗ Noiseless diffraction patterns
K0 Noisy diffraction patterns
Kf ∗ Diffraction patterns taking fluence into account
Kf 0 Corresponding noisy diffraction patterns

particles, and finally what may be referred to as an unexpected
data error due to technical errors such as detector malfunction,
injector problems, and so on.

On the other hand, the EMC reconstruction procedure
itself contributes specific sources of errors or uncertainty: the
smearing error RS , the rotational error RT , the noise error RN ,
and the fluence error RF . Currently, the errors related to FXI
experimental procedures, such as detectors [20] and injectors
[21], are improving considerably. Therefore, we only focus on
the algorithmic errors and their combinations.

Smearing error RS : This error is caused by a smearing effect
in the compression step and can in fact often be the dominating
one. It can be reduced by using a finer model, or by higher-order
interpolation methods.

Noise error RN : This error is caused by noise in the
diffraction patterns, and hence can be appreciated as a sampling
error. It may also be caused by the data not filling the rotational
space, i.e., some voxels being empty or only having a small
number of contributions due to very similar diffraction patterns
being mapped to the same orientation, or simply because the
number of diffraction patterns is too small.

Rotational error RT : This error is due to the hidden data, i.e.,
the unobserved particle rotation in the FXI experiments. RT

measures the error due to the rotational probability estimations
in the E step Eq. (13).

The fluence error RF : This error is due to the unobserved
beam intensity at the object-beam interaction point in FXI
experiments. The error is introduced when estimating the
fluence in the M step Eq. (16).

Given these semantic definitions, we can now define these
errors mathematically, as well as discuss how to estimate
them. We first introduce two operators: ⊕ and ◦. The operator
⊕ is used when two or more errors are measured in the
same estimation, for example, RS ⊕ RN measures the effect
of the smearing error and the noise error at the same time.

We also use the ◦ operator to connect each step of the
EMC algorithm. For example, we write the reconstruction
c ◦ M(K0,P 0,φ∗) ◦ E(K0) ◦ e ◦ W, when the EMC algorithm
uses the noisy diffraction patterns K0, the 3D intensity W, the
correct fluence φ∗, and the estimated rotational probability P 0

in computations.
To effectively speak of errors, we need to relate our results

against two reference 3D intensities: W∗ and W⊥. The refer-
ence W∗ is the best possible EMC reconstruction. In practice,
it is obtained by inserting noiseless diffraction patterns K∗
into their correct rotations, i.e., applying the compression
step on the noiseless patterns given the correct rotations, so
W∗ = c ◦ K∗. The reference W⊥ is the 3D “truth”—the 3D
Fourier intensity without any interpolation. W⊥ is used solely
when the smearing error RS is assessed.

Based on the set of noiseless diffraction patterns K∗, we
define three additional sets of diffraction patterns: (i) the noisy
diffraction patterns K0 ∼ Po(K∗), where Po(K∗) represents
Poisson random variables with rate parameters (means) K∗; (ii)
the patterns with randomly varying fluence Kf ∗ = φK∗, with
φ = (φk)Mdata

k=1 ; (iii) the corresponding noisy patterns Kf 0 ∼
Po(Kf ∗). The true rotational probability and fluence are P ∗
and φ∗ respectively, while the estimated ones are denoted by
P 0 and φ0. Table I summarizes these notations.

We may now directly measure the algorithmic errors by
comparing the reference 3D intensities with the reconstructed
intensities. These measured errors are 3D maps, which can be
projected to univariate error measures using the error metrics
discussed in Sec. IV B. Table II lists the constructive definition
of the algorithmic errors.

B. Bootstrap estimators

The algorithmic errors as defined previously can be mea-
sured only when a reference 3D intensity is known. For other
situations, we now develop practical bootstrapping procedures.
Bootstrapping [22,23] is a general computational methodology
that relies on random resampling of collected data. It is used to
estimate stability properties of an estimator, e.g., its variance
and standard derivation. For the EMC algorithm, we introduce
two bootstrap schemes—one “standard” approach based on
common practice and one approach specially designed for the
EM framework.

TABLE II. A constructive definition of algorithmic errors and their combinations. To subtract an estimate from a reference map, a rotation
R which takes them into the same frame of reference must always be performed. Note that, to measure the smearing error RS in combination
with others, we use W⊥ instead of W∗ in definitions.

Name Error(s) Definition

Smearing RS W∗ − RW⊥

Noise RN c ◦ K0 − RW∗

Rotational RT c ◦ M(K∗,P 0,φ∗) ◦ E(K0) ◦ e ◦ W − RW∗

RN ⊕ RT c ◦ M(K0,P 0,φ∗) ◦ E(K0) ◦ e ◦ W − RW∗

Fluence RF c ◦ M(Kf ∗,P ∗,φ0) ◦ E(Kf 0) ◦ e ◦ W − RW∗

RF ⊕ RN c ◦ M(Kf 0,P ∗,φ0) ◦ E(Kf 0) ◦ e ◦ W − RW∗

RF ⊕ RT c ◦ M(Kf ∗,P 0,φ0) ◦ E(Kf 0) ◦ e ◦ W − RW∗

RF ⊕ RN ⊕ RT c ◦ M(Kf 0,P 0,φ0) ◦ E(Kf 0) ◦ e ◦ W − RW∗
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1. Standard bootstrap method

The standard bootstrap relies on resampling input diffrac-
tion patterns and reconstructing them using the EMC pro-
cedure. The work-flow of the standard bootstrap method is
illustrated in Fig. 1(a).

Let the diffraction patternsK = (Kk)Mdata
k=1 be the whole boot-

strap universe. The bootstrap replacement method generates B

bootstrap samples (Sr )Br=1, and each sample Sr contains Mdata

frames that are randomly chosen from K with replacement.
In other words, every sample only contains a certain part of
K , including duplicate frames. The EMC algorithm then re-
constructs each sample yielding (Wr )Br=1. The EMC algorithm
is also used to reconstruct the whole bootstrap universe K

yielding Wa .
Once all reconstructions are obtained, the bootstrap mean

is given by

WM ≡ B−1
B∑

r=1

RrWr , (18)

where Rr is the rotation required to align Wr to Wa . Conse-
quently, WM is also aligned to Wa . In practice, we determine
the rotation Rr by solving an optimization problem; see
Eq. (35).

With Eq. (18) defined, the bootstrap estimate of the variance
is defined as follows:

V = 1

B − 1

B∑
r=1

(RrWr − WM )2. (19)

The standard error of the mean is proportional to the square
root of the variance,

Rstd ∝
(
V

B

)1/2

. (20)

Since each bootstrap sample only sees a portion of the
bootstrap universe, it may be biased. We estimate this bias
by

Rbias = WM − Wa. (21)

Since the EMC algorithm uses the same grid for recon-
structing all bootstrap samples, these reconstructions all have
the same level of smearing error. This means that none
of the bootstrap estimates we have introduced can reliably
estimate the smearing error. Instead, we estimate it separately
as follows:

R̂S = c ◦ e ◦ WM − WM, (22)

that is, we expand WM into Mdata slices and then compress
them back into the 3D volume.

An estimator of the total reconstruction uncertainty Rtotal

can now be formed by adding the standard error, the estimated
bias, and the estimated smearing error together,

R2
total = β2R2

std + R2
bias + R̂2

S, (23)

where β is the constant for the proportionality in Eq. (20). In
practice, we take β = 2 or 3.

The standard bootstrap procedure for the EMC algorithm is
summarized in Algorithm 1.

Algorithm 1: The standard bootstrap method for the EMC
algorithm.

Input: Initial guess of the 3D intensity W(0) and
the bootstrap universe of diffraction patterns K .
Output: Bootstrap mean WM together with an
estimated uncertainty Rtotal.

1: Run the EMC algorithm on the bootstrap universe
K , yielding Wa .

2: Generate bootstrap samples (Sr )Br=1 by resampling
with replacement in the bootstrap universe K.

3: for r = 1, . . . ,B do
4: Run the EMC algorithm on the bootstrap sample

Sr until Eq. (7) is satisfied, yielding Wr .
5: end for
6: Compute the bootstrap mean WM via (18).
7: Compute the standard error Rstd and the bootstrap

sample bias Rbias via Eqs. (20) and (21), respectively.
8: Calculate the estimated smearing error R̂S via Eq. (22).
9: Estimate the total reconstruction uncertainty Rtotal by Eq. (23).

2. The EM algorithm with bootstrapping (EMB)

The EMB is a general method that applies bootstrapping
under the EM framework [24,25]. Similar to the standard
bootstrap method, the EMB method also relies on random
resampling. However, instead of analyzing the final 3D model,
the EMB method calculates a bootstrap mean of probabilities.
This calculation can be done at every iteration [25] or after
all reconstructions have finished [24]. Here we use the latter
method, since it can work together with the standard bootstrap
method by only adding a small amount of computations.
Figure 1(b) illustrates the work-flow of the EMB method.

We now explain the EMB procedure in some detail. The
EMC algorithm first runs on the whole bootstrap universe
K , yielding Wa , and saves the estimated fluence φ̄ at the
final iteration. The EMB method then generates the bootstrap
sample (Sr )Br=1 using the same resampling method as in the
standard bootstrap method described in Sec. III B 1. For all
bootstrap samples, the EMC algorithm executes until it meets
the stopping criterion Eq. (7) and saves the estimated rotational
probabilities (Pjkr )Br=1 for each bootstrap sample (Sr )Br=1. Then
the EMB method picks out the mode (i.e., the most probable
rotation) (Mjkr )Br=1 for each frame in the bootstrap sample,

Mjkr =
{

1 if Pjk′r = maxj Pjk′r
0 otherwise , (24)

where the k′th frame of the rth bootstrap sample is the kth
frame of the bootstrap universe K .

Following this step, EMB combines all the modes, so
that each frame Kk now comes equipped with an empirical
distribution over the rotational space. The bootstrap mean of
those modes is

Hjk = B−1
B∑

r=1

Mjkr . (25)

Using this empirical distribution, the EMB method then
computes the 2D bootstrap mean as follows:

W̄ij =
∑

k HjkKik∑
k Hjkφ̄jk

, (26)
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FIG. 1. Bootstrap schemes for EMC: (a) is the standard bootstrap and (b) is the EMB.

where φ̄ is the estimated fluence at the final iteration when
reconstructing the bootstrap universe K .

The 2D bootstrap variance is also defined

V̄ij =
∑

k Hjk(Kik − φ̄jkW̄ij )2∑
k Hjk

. (27)

To generate a comparable result to the standard bootstrap
method, the EMB next compresses the bootstrap mean W̄ and
variance V̄ by Eq. (6), yielding a 3D mean WM and a 3D
variance V, respectively. The 3D standard error Rstd is again
proportional to the square root of the variance Eq. (20).

Once all reconstructions have been obtained, the EMB
method calculates the bootstrap sample bias via

Rbias = WM − RWa, (28)

where R is again the required rotation to align Wa to WM .
After using Eq. (22) to estimate the smearing error R̂S ,

the EMB method estimates the total reconstruction error Rtotal

again via Eq. (23).
The EMB method is summarized in Algorithm 2.
With these two bootstrap schemes, we hope to accurately

estimate the algorithmic errors by reasoning essentially as in

‖Rtotal‖ ≈ ‖RS‖ + ‖RT ‖ + ‖RN‖ + ‖RF ‖
� ‖RS ⊕ RT ⊕ RN ⊕ RF ‖. (29)

However, the nonlinear interaction between the various sources
of uncertainty may in fact imply that ‖RS‖ + ‖RT ‖ + ‖RN‖ +
‖RF ‖ < ‖RS ⊕ RT ⊕ RN ⊕ RF ‖. We usually expect that
Eq. (29) is a robust estimate of the overall reconstruction
uncertainty, at least when reconstructing a sufficiently large
set of diffraction patterns.

IV. EXPERIMENTS

We now proceed to measure some actual algorithmic errors
and assess the sharpness of our bootstrap methodology when

confronted with synthetic data. In Sec. IV A we detail our
experimental setup and in Sec. IV B we discuss the process
of estimating the errors defined in Sec. III. Section IV C is
devoted to an investigation of the algorithmic errors and their
combinations. Finally, the sharpness and robustness of the
bootstrapping procedures are investigated in Sec. IV D–IV E.

To reduce the computing time, we used our data distribution
scheme described in Ref. [26] for parallelization. All imple-
mentations were compiled with GCC 4.4.7, CUDA 7.5, and
Open MPI 1.8.1. With respect to the hardware, we used a cluster
with 4 Nvidia Kepler GPUs in each node, interconnected via
an InfiniBand 32 Gbit/s fabric.

Algorithm 2: The EMB method.

Input: Initial guess of the 3D intensity, W(0), and
the bootstrap universe of diffraction patterns K.

Output: Bootstrap mean WM together with an
estimated uncertainty Rtotal.
1: Run the EMC algorithm on the bootstrap universe K , yielding
Wa and the estimated fluence at the final iteration φ̄.

2: Generate bootstrap samples (Sr )Br=1 by resampling
with replacement in the bootstrap universe K.

3: for r = 1, . . . ,B do
4: Run the EMC algorithm on the bootstrap sample Sr until

Eq. (7) is satisfied, and save the probability Pjkr at the final iteration.
5: end for
6: Compute the modes and the empirical distribution

via Eqs. (24) and (25), respectively.
7: Calculate the 2D mean and the 2D variance by

Eqs. (26) and (27), respectively.
8: Assemble the 2D mean and the 2D variance back into 3D volumes

via Eq. (6), yielding the 3D mean WM and the 3D variance V.
9: Compute the bootstrap sample bias Rbias by Eq. (28)

and the standard error Rstd via Eq. (20).
10: Calculate the estimated smearing error R̂S via Eq. (22).
11: Estimate the total reconstruction uncertainty Rtotal by Eq. (23).
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FIG. 2. (a) and (b) Noiseless synthetic diffraction patterns at two different rotations. Both patterns are generated from the 3D truth W⊥.
(c) The 3D truth W⊥ := M(α = [1.5,0.3,0.5],β = [0.2,0.9,1],k = −4), as defined in Eq. (30). The diameter of the missing data region is
[16,32,64] voxels at, respectively, Mgrid = [643,1283,2563]. All figures are drawn in logarithmic scale.

A. Setup and synthetic data

As summarized in Sec. II A, we know that a diffraction
pattern is a central symmetric image containing interference
of waves. The interference pattern is dependent on the rotation
and shape of the target particle. To be able to discuss repro-
ducible reconstructions, we propose the following 3D synthetic
model of a 3D diffraction pattern,

M(α,β,k) = C sin2(R(α)/2)R(α)k + C sin2(R(β)/2)R(β)k,

(30)

R(α) = (α0X
2 + α1Y

2 + α2Z
2)1/2, (31)

where (X,Y,Z) are 3D mesh-grid coordinates whose origin
is the center of a 643 cube, where three different grids were
used in our experiments, Mgrid = [643,1283,2563], dividing
the coordinates (X,Y,Z) with [1,2,4], respectively. Further, k

is the intensity drop exponent, C the intensity constant, and
α = (α0,α1,α2) and β = (β0,β1,β2) are shape vectors.

The 3D truth used in this paper was

W⊥ := M([1.5,0.3,0.5],[0.2,0.9,1],−4). (32)

We also randomly and uniformly picked up Mdata = 1000
or 5000 rotations from 400 200 rotations sampled from the
600 Cell [9, Appendix C]. With the selected rotations, we
generated Mdata noiseless diffraction patterns K∗ from W⊥
via the expansion step Eq. (5). Using K∗, we also gener-
ated patterns sampled as a Poissonian signal K0 ∼ Po(K∗),
patterns with randomly varying fluence Kf ∗ = φK∗, and the
corresponding Poissonian patterns Kf 0 ∼ Po(φK∗). Here, the
fluence φ was uniformly and randomly chosen in (0.9,1.2). All
these parameters were chosen to reasonably mimic realistic
conditions [9,27].

In FXI experiments, a hole is normally located in the
middle of the detector to let the unscattered x-ray photons pass,
and consequentially a missing data area exists in the middle
of all diffraction patterns. To make our synthetic diffraction
patterns realistic, we also mask out a circular zero region, with
radii [8,16,32] pixels at the respective diffraction pattern sizes
Mpix = [642,1282,2562]. Figure 2 shows the 3D truthW⊥ with
a central missing data region and a noiseless diffraction pattern.

B. Error metrics

Since it is reasonable to compare Fourier intensities about
the same frequency, we propose a simple method to compare
two 3D intensities in radial shells as follows.

Let S = (Su)Uu=1 be the selected radial shells of a 3D
intensity. The uth shell is given by Su = {s = (x,y,z); su �
‖s‖ < su+1}, where s is a point (voxel) at position (x,y,z), and
‖s‖ is the Euclidean norm.

We then define the (strong) error of the uth shell as follows:

êu(W1,W2) = |Su|−1
∑
s∈Su

|(W1)s − (RW2)s |
max

[
ρ, 1

2 (|W1|s + RW2|s)
] , (33)

where ρ is a small cutoff number to prevent dividing by zero,
and where R is the rotation required to align W2 to W1. This
error metric is a strong and very revealing measure, since it
effectively compares relative errors in every point of W1 and
W2. Alternatively, we consider a weaker version which rather
compares each shell in an average sense only,

eu(W1,W2) =
∑

s∈Su
|(W1)s − (RW2)s |∑

s∈Su

1
2 |(W1 + RW2)s |

. (34)

In turn, we align W1 to W2 by solving the following
optimization problem.

arg min
R

U−1
U∑

u=1

eu(W1,RW2), (35)

that is, we find a proper alignment by minimizing the total
weak error using a global optimization algorithm [28]. To be
more robust, it is sometimes useful to align W1 and W2 several
times from different start rotations, and pick up the mode of
this sample. In practice, this minimization problem was never
a major obstacle in our experiments.

To get a baseline for these error metrics, we now explore
two basic error measurements: the 100% and the 50% hidden-
data errors. Let W× be a reconstruction produced by inserting
Mdata = 1000 noiseless diffraction patterns randomly into a
3D volume. Similarly, the reconstruction W

1
2 × is obtained by

inserting the first half of those noiseless patterns randomly into
a 3D volume, and the rest into the correct rotations. Comparing
W× and W

1
2 × with the 3D truth W⊥ defines four errors: the
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FIG. 3. The hidden-data errors at different model sizes. (a) The
strong hidden-data error. The top three lines are the strong 100%
error R̂100, and the bottom three are the weak 50% error R̂50. (b) The
corresponding plot for the weak errors R100 and R50.

strong and the weak 100% errors R̂100 = ê(W×,W⊥), R100 =
e(W×,W⊥), and the strong and the weak 50% errors R̂50 =
ê(W

1
2 ×,W⊥) and R50 = e(W

1
2 ×,W⊥).

Figure 3 shows the strong and weak 100% and 50% hidden-
data errors for the synthetic data model W⊥ in Figure 2(c). As
can be seen, the strong errors (R̂100,R̂50) are larger than their
weak counterparts (R100,R50), but all show the same trend. The
errors rise faster at the shell distance r := ||s|| ∈ (30,32), due
to the truncated domain—the regions filled with zeros on the
corners of the diffraction patterns.

Based on the above, we may state that a reconstruction
procedure fails if the reconstruction uncertainty is larger than
R100, or approximately when the means of the strong or,
respectively, the weak errors for r ∈ (8,30) are larger than
0.50 and 0.37. We may also claim that a proper reconstruction
should generally have uncertainties less than R50, or that the
means of the strong and the weak error for r ∈ (8,30) should
be less than 0.32 and 0.23, respectively.

C. Influences of errors

In this section we investigate the algorithmic errors as
defined in Sec. III A. Recall that the 3D truth W⊥ and the
EMC best reconstruction W∗ are both used when measuring
the algorithmic errors.

1. The smearing error RS

We first measured the error that is induced by the compres-
sion step, i.e., the smearing error RS . As defined in Table II,
RS compares the EMC best reconstruction W∗ with the 3D
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FIG. 4. The strong (a) and the weak (b) smearing errors. The dash-
dot lines are the average R̂50 and R50, respectively. R̂50 and R50 are
the strong and weak 50% hidden-data error, as shown in Fig. 3.

truth W⊥. We measured this error in both the strong sense
ê(W∗,RW⊥) and the weak sense e(W∗,RW⊥), where êk and
ek are defined in Eqs. (34) and (34), respectively. Figure 4
shows these errors at the grid sizes Mgrid = [643,1283,2563].

As expected, the strong error is larger and more sensitive
than the weak error, but both error definitions follow a similar
trend. Since linear interpolation is used for implementing both
the expansion Eq. (5) and the compression Eq. (6) step, we
observe an overall typical O(h2) smearing error, hence RS can
be reduced by a factor of four by doubling the side length of the
grid. Further, the 643 resolution performs bad—the weak RS

error is around half of the R50, due to strong aliasing artifacts
in the diffraction patterns.

Since the strong and the weak errors performed similarly,
from now on we only present the weak error ek together with
the average R50 as a reference.

2. The hidden-data and the noise error (RT and RN ).

We also studied the error that is induced by estimating the
unobserved particles rotations—the rotational error RT , and
the error caused by noise in data—the noise error RN .

As expected, the noise error RN , shown in Fig. 5, is quite
small and flat, due to the compression step significantly reduces
the Poissonian noise by taking the average. We also observe
that the noise error RN is positively correlated to the grid
sizes Mgrid and the shell distance r , since the overall signal
contribution per voxel decreases with r .

A similar analysis holds for RT and for RN ⊕ RT , which are
also positively correlated to the grid sizes Mgrid and the shell
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FIG. 5. The noise error RN .

distance r , as shown in Fig. 6. The rotational error RT increases
with increasing shell distance r , since the error in estimating
a rotational probability induces a larger contribution to total
errors for voxels that are further away from the origin.
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FIG. 6. The rotational error combinations: (a) is The rotational
error RT , (b) is the combination of the noise and the rotational error
RN ⊕ RT , and (c) is the combination of the smearing, the noise, and
the rotational error RS ⊕ RN ⊕ RT .
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FIG. 7. The fluence error combinations: (a) is RF ⊕ RN ⊕ RT ,
and (b) is RS ⊕ RF ⊕ RN ⊕ RT .

Figure 6(c) shows the combination of the smearing, the
noise, and the rotational error. As expected, this combined error
again increases with increasing shell distance r . However, it
is negatively correlated to the grid sizes, since the smearing
error RS reduces much quicker than the other errors increases.
The 643 resolution fails to perform well, due to the dominating
smearing error.

3. The fluence error RF and its combinations with other errors.

Finally, we measured the error induced by the fluence
estimation, i.e., the fluence error RF , and its combinations with
the other algorithmic errors. In isolation, the fluence error RF

behaves similarly to the noise error RN (not shown). Figure 7
shows composite errors including RF . Similar to RN ⊕ RT ,
the combined error RF ⊕ RN ⊕ RT correlates positively with
the grid size Mgrid and the shell distance r; however, it is
slightly larger than RN ⊕ RT . Once the smearing error RS is
considered, the RS error again dominates at the 643-resolution.
Further, the average of RS ⊕ RF ⊕ RN ⊕ RT at Mgrid = 643

and r ∈ (8,30) is 0.22, which is just below the average R50.
To sum up, given a certain number of diffraction patterns,

the combined error RF ⊕ RN ⊕ RT increases and the smearing
error RS decreases with the increasing grid sizes. Further, RS

is bounded by the grid sizes

D. Sharpness of bootstrapping

In this section, we estimate the reconstruction uncertainties
when the correct information: the 3D truth W⊥, the correct
fluence φ∗, and the correct rotational probability P ∗ are not
accessible. We discussed both the standard bootstrap and
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FIG. 8. The sharpness of the bootstrap estimators in the error met-
ric Eq. (36). (a) The estimated total reconstruction uncertainty Rtotal

calculated by the standard bootstrap estimator. (b) Rtotal computed via
the EMB estimator. Both estimators obtain similar results to the error
RS ⊕ RF ⊕ RN ⊕ RT in Fig. 7(b).

the EMB method in detail in Sec. III B, where the total
reconstruction uncertainty Rtotal was defined in Eq. (23). To
put Rtotal in a similar form as the weak error metric Eq. (34),
we transfer Rtotal to the following radial-shell error metric:

ẽu(Rtotal,Wa) =
∑

s∈Su
|Rtotal|s∑

s∈Su
|Wa|s , (36)

where Wa is reconstructed from the bootstrap universe.
To validate our bootstrap estimators, we used the fluence-

affected Poissonian signal Kf 0 as the bootstrap universe. For
both bootstrap schemes, B = 100 bootstrap samples were
used, and each sample contained Mdata = 1000 frames.

Figure 8 shows the sharpness of the bootstrap estimators
presented in the form of the radial-shell error metric Eq. (36).
Comparing the results to RS ⊕ RF ⊕ RN ⊕ RT in Fig. 7, both
the standard bootstrap and the EMB method produce accurate
estimations at Mgrid = [1283,2563]. However, at Mgrid = 643,
both estimations of Rtotal are smaller than RS ⊕ RF ⊕ RN ⊕
RT . This is due to the underestimation of the smearing error,
i.e., RS being much larger than the estimated smearing error
R̂S Eq. (22).

E. Robustness for background noise

Other than the shot noise, the captured diffraction patterns
of a typical FXI experiment might also contain artifacts of
background noise, detector saturation, erroneous pixels, etc.
By adding background noise into our synthetic dataset, we
make our patterns more similar to the patterns acquired from
an FXI experiment and destroy the Poissonian statistics to

investigate the robustness of the EMC algorithm. Since the
diffraction patterns are collected from the same experimental
setup, it is reasonable to assume that the background noise at
each pixel is approximately constant from shot to shot. Hence,
we sample our data as follows:

Km ∼ Po(cφK∗ + tKbg), (37)

where Kbg is the background signal, which was taken from a
real FXI single-particle experiment. If t = 1, the so generated
patterns contain added background noise. Again, K∗ stands
for the noiseless patterns, and φ ∈ (0.9,1.2). Further, c is the
intensity factor that controls the total number of photons of the
diffraction pattern, and set by us to perform the experiments.

To investigate the influences of intensity and the background
noise, we generated six data sets without background noise and
with 1000 frames in each data set. The intensity factors c of
these data sets were chosen such that the maximum number
of photons in one pixel was Pc = [1000,500,100,90,75,50]
photons. We also generated their corresponding diffraction pat-
terns with background noise. As a comparison, we generated
another 6+6 data sets with the samePc by enlarging the number
of frames to 5000.

The standard bootstrap scheme was used to estimate the
reconstruction uncertainty Rtotal for each data set via the un-
certainty estimator Eq. (23). Again B = 100 bootstrap samples
were drawn from each data set, and each bootstrap sample
contained Mdata = 1000 or 5000 diffraction patterns. Figure 9
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FIG. 9. (a) The relationship between the average reconstruction
uncertainty and the diffraction pattern intensity. R50 and R100 are the
average 50% and 100% hidden-data error, as shown in Figs. 3(b).
(b), (c), and (d) Patterns with background noise, generated by Eq. (37),
at 3 different intensity levels Pc = [100,500,1000], from left to right,
respectively. At Pc = 100, the ratio of the signal to the background
noise is less than one in pixel outwards the third fringes (r > 19). All
patterns are drawn in logarithmic scale.
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tainty and the number of frames.

shows the relationship between the intensity and the average
total reconstruction uncertainty for Mgrid = 1283. As can be
seen, the background noise creates a larger reconstruction
uncertainty, since the patterns with background noise violate
the assumption of maximum likelihood Eq. (9). We also
observe that the uncertainty increased with decreasing Pc,
especially when Pc < 100 photons. This is due to the EMC
algorithm being unable to distinguish between the diffraction
signals and the noise, that is to say, the combination of the
rotational error, the fluence error, and the noise error increases
with decreasing intensity. Note, however, that the smearing
error is almost the same for all intensities and mainly depends
on the grid resolution. Further, increasing the number of frames
for a reconstruction reduces the total uncertainty as well.

Take a closer look at Pc < 100 photons in Fig. 9(a).
The average uncertainty from 1000 diffraction patterns is
larger than the average R50 in Fig. 3(b). We may understand
this phenomenon as being roughly equivalent to a less than
50% of the hidden information being recovered from the
1000 diffraction patterns when Pc is less than 100 photons.
However, increasing the number of frames to 5000 reduces the
uncertainty, and hence slightly more than 50% of the hidden
information is recovered at Pc = 100 photons. When Pc is
50 photons, no reconstruction recovers more than 50% of the
hidden information.

We now investigate the influence of the number of frames
when the pattern signal is approximately similar to the diffrac-
tion patterns used in the 3D reconstruction of the Mimivirus
[8], that is when Pc = 1000. As can be seen from Fig. 10,
the average total uncertainty reduces with increasing number
of frames. To obtain a reconstruction whose uncertainty is
less than R100, we need at least 250 diffraction patterns
without background noise, or 500 frames with background
noise. Further, roughly 50% of the hidden information can
be obtained from 500 frames without background noise, or
750 frames with background noise. Our recommendation for
obtaining a minimally accurate reconstruction is therefore in
the range of 500–1000 fairly high quality frames, or about 2.5
times the number of frames reported for the reconstruction of
the mimivirus in Ref. [8].

V. CONCLUSIONS

The FXI technique holds the promise of obtaining biological
particle structures in a near-native state without crystallization.
For the technique to become competitive with existing imag-

ing modalities, experiment work-flow as well as algorithmic
developments are needed. Our aim has been to investigate the
uncertainties of the reconstruction procedure.

To understand the uncertainty propagation in the EMC re-
construction procedure, we have identified several resolution-
limiting factors and quantitatively measured the algorithmic
uncertainties using the setup on synthetic data. For a coarse
3D reconstruction in diffraction space, where fringes are close
to each other, the uncertainty is high due to aliasing effects.
However, the achievable resolution of a more finely resolved
3D reconstruction is higher, but at a higher computational cost.
Also, the number of patterns required for sampling the highly
resolved space will be higher. Since the uncertainty induced
from the most time-consuming step of the EMC algorithm,
the rotational error, is negatively correlated with the 3D recon-
struction size, one can use the binned diffraction patterns to cal-
culate the rotational probability, and use more coarsely binned
patterns in the maximization step for improving the 3D recon-
struction quality as well as reducing the computation time.

To be relevant for realistic cases, where the biological
particle structures are unknown, we have applied a boot-
strap technique to the reconstruction procedure for assess-
ing the reconstruction uncertainty. We claim that both the
standard bootstrap and the EMB estimator proposed by us
work well. Furthermore, in our experiments both bootstrap
procedures are robust, and can tolerate the presence of non-
Poissonian noise. However, we recommend to use the stan-
dard bootstrap method if the statistical model does not fit
the diffraction patterns. If the diffraction patterns are ex-
tremely noisy, it is possible to modify the statistical model
underlying the maximum-likelihood estimate in the M step
by using a penalty function, or by directly modifying the
probability distribution to account for the presence of noise
photons [29,30].

Although XFEL science has progressed from vision to
reality, and imaging techniques are improving, high-resolution
3D structures of single particles are still absent. For exist-
ing data sets, our findings indicate the benefits of using a
higher number of diffraction patterns, avoiding too radical
down-sampling. The sampling level appropriate for proper
use of EMC is higher than the Nyquist criterion on the
level of oversampling necessary for 3D phase retrieval. The
latter criterion is the one primarily used in previous literature
discussing attainable resolution. By properly preprocessing
existing data sets, more patterns usable for 3D reconstruc-
tion can probably be identified in many cases. Another
option for attaining the sampling necessary would be to
apply symmetry or blurring/smoothing in the compression
step.

Newer facilities, such as the European XFEL, aim to
increase the data rates. The European XFEL will be capable of
acquiring 27 000 high-quality diffraction patterns per second—
225 times faster than the Linac coherent light source (LCLS)
and more than 450 times faster than the spring-8 Ångström
compact free electron laser (SACLA). Through an improved
understanding of the uncertainty propagation properties of
EMC, we hope that these future facilities will, in time, allow
the 3D reconstruction of individual reproducible biological
particles down to subnanometer resolution, with appropriate
estimates of the uncertainty in those reconstructions.
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