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Electron-positron plasmas may be present in laboratory experiments and certain astrophysical environments.
Due to the inertia symmetry there have been some debates about whether the nonlinear electrostatic solitons
generated easily in electron-proton plasmas may develop in electron-positron plasmas. In this study we show the
formation of electrostatic solitons and electromagnetic Alfvén waves in extensive magnetized electron-positron
plasma system generated by streaming instabilities based on electromagnetic particle simulations along with fluid
theory analyses. In particular, the four-component beam-plasma system may lead to the formation of interlacing
electron and positron solitons in the early evolution stage (say, t < 20ω−1

p , where ωp is the plasma frequency) and
large-amplitude Alfvén waves in the later phase (say, t > 150ω−1

p ). The magnetic-field perturbations are generated
by the beam and firehose-type instabilities associated with temperature anisotropy of T‖ > T⊥ resulting from
the parallel plasma heating by the electrostatic instability. It is shown that the growth rates and the dominant
wavelengths of both electrostatic and electromagnetic instabilities are consistent with the fluid theory. The
coexistence of electrostatic solitons and electromagnetic Alfvén waves with significant magnetic field fluctuations
in the same system is a unique feature of electron-positron plasmas and the unified theory behind the formation
mechanisms is well addressed in the paper.
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I. INTRODUCTION

Beam-plasma interaction is a profound process occurring
in space, astrophysical, and laboratory plasmas. In our solar
system consisting primarily of electrons and protons, electro-
static solitary waves may easily be generated by the streaming
instability as shown both observationally and theoretically
(see, e.g., Refs. [1–4]). In particular, the inertial asymmetry
is essential for the formation of electron solitons associated
with hole structures in phase space in electron-proton plasmas.
The question is thus raised of whether electrostatic solitons
may actually develop in electron-positron plasmas with inertia
symmetry (see, e.g., Refs. [5–8]). Based on electrostatic
particle simulations along with fluid theory we have recently
demonstrated the formation of pair solitons with interlacing
positive and negative electric potentials via electron and
positron beams streaming in background stationary electron
and positron plasmas [9,10]. Electrostatic solitons with single
polarity in electric potential can also form for certain bump-on-
tail instabilities with weak beam electrons (positrons) drifting
into background electron-positron plasmas [11]. Note that
interlacing electron and positron hole structures on the phase
space diagram have also been observed in the transition layer
of nonrelativistic or weakly relativistic pair shocks for which
the electrostatic streaming instability plays the major role in
the early stage of the formation processes [12,13].
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The importance of studying electron-positron plasmas has
two aspects, one being the basic physics associated with simple
nonlinear plasma systems and the other being the application
of laboratory experiments as well as certain astrophysical
environments. In particular, laboratory experiments on beam
and plasma interactions in electron-positron plasmas have been
performed by using cylindrical and quadrupole Penning traps
[14] and high-intensity-laser-induced electron-positron jets
[15]. Using the compact magnetic mirror trap, the simultaneous
existence of low-energy (a few eV) electrons and positrons in
the laboratory has been found to be possible [16]. As for the as-
trophysical application, theoretical and numerical models have
been developed for electron-positron beam-plasma systems
present in pulsar magnetospheres to study the magnetic-field
fluctuations induced by electromagnetic streaming instabilities
associated with the generation mechanism of observed radio
emission [17–21]. On the other hand, it has also been proposed
that the bunching electric solitons generated by electrostatic
streaming instabilities may be radiated away in form of the
observed pulsar radio emission [22].

In the past numerical studies, both electrostatic and elec-
tromagnetic waves have been observed in unmagnetized or
magnetized pair plasma systems subject to counter-streaming
instabilities [23–29] or simply generated by thermal fluctua-
tions [30]. Contrary to previous conjectures, we have shown
that electrostatic solitons may form in pair plasmas with inertia
symmetry [9–10]. In this paper we further extend the previous
study to the electromagnetic case with extensive simulation
domains based on full particle simulations and fluid theory
analyses. It is shown that both electrostatic solitons and large
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amplitude Alfvén waves with distinct wavelengths may exist at
different evolutionary stages in the same plasma system subject
to the streaming instability. Comparisons between fluid theory
and particle simulations are made to provide more insights into
the evolution process of streaming instabilities in pair plasmas.

II. FLUID THEORY

In this study we consider both the wave propagation and the
drifting velocity being along the background magnetic field.
Linearization of continuity, momentum, and adiabatic energy
equations as well as Maxwell equations yields the following
general dispersion relations for streaming instabilities in multi-
component magnetized plasmas:

1 =
∑

α

ω2
p,α

(ω − kuα0)2 − γαk2v2
th,α

, (1)

[
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where ωc,α ≡ qαB0/mα and ωp,α ≡ (nα0q
2
α/εomα )1/2 are the

gyro frequency and plasma frequency, respectively. The mag-
netic field and fluid variables such as the number density and
drift velocity with subscript 0 denote the equilibrium quan-
tities. Equation (1) is the dispersion relation for longitudinal
or electrostatic modes [9,24], while Eq. (2) is the dispersion
relation for transverse or electromagnetic modes which can be
separated into R and L modes.

We consider the beam-plasma system with a four-
component bi-streaming velocity distribution consisting of
electrons and positrons streaming in the same direction (de-
noted by the quantities with subscripts e2 and p2, respec-
tively) relative to the background stationary electrons and
positrons (denoted by the quantities with subscripts e1 and
p1, respectively). For comparison with our previous results
[9,10], all four species are assumed to possess the same
number density, thermal velocity vth, and γ value (adiabatic
exponent) while the two streaming species have the same drift
velocity u0. The symmetries between electrons and positrons
would yield the formation of interlacing electron and positron
solitons in electrostatic model [9,10,12,13]. The corresponding
dispersion relations for the longitudinal mode (electrostatic
streaming instability) and the transverse mode (electromag-
netic streaming instability) in four-component plasmas are as
follows:

ω2
p

ω2 − γ k2v2
th

+ ω2
p
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th

=1, (3)
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− (ω − ku0)2
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where ω2
p = ω2

p,e1 + ω2
p,p1 = ω2

p,e2 + ω2
p,p2. Note that, in the

transverse mode presented in Eq. (4), because of the perfect

FIG. 1. The imaginary part of the wave frequency ωi derived from
the linear fluid theory as functions of wave number k and u0 for (a)
the longitudinal mode and (b) the transverse mode.

symmetry between electrons and positrons, the usual R and L
modes are indistinguishable.

Figure 1 shows the imaginary part of the wave frequency
ωi for longitudinal mode [Fig. 1(a)] and transverse mode
[Fig. 1(b)] as functions of wave number k and u0 for the
parameter value ωc = 0.4ωp. As expected, for both longitu-
dinal and transverse modes, the growth rates are increased
with increasing u0 and the wave numbers of the most unstable
modes decrease with increasing drift velocity u0. Note that,
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FIG. 2. The imaginary part of the wave frequency ωi derived from
the linear fluid theory as functions of wave number k and ωc for the
transverse mode.

for the same drift velocity u0, the growth rates and the
corresponding wave numbers of the longitudinal modes are
larger than those of the transverse modes. For the comparison
with the nonlinear simulation, we particularly note that, for
u0 = 20vth, the growth rate and wave number for the most
unstable longitudinal mode are, respectively, ωi = 0.497ωp

and k = 0.086ωp/vth as compared to ωi = 0.089ωp and k =
0.027ωp/vth for the transverse mode. This implies that the
electromagnetic instability with longer wavelength will occur
later than the electrostatic instability. Comparisons with the
kinetic simulation results will be made in the following section.
Also note that for the most unstable transverse mode we have
the relation ωc = ωp − kmaxu0, as a result of the resonance
between plasma oscillation and gyro-motion in beam and
background plasmas.

Figure 2 shows the imaginary part of the wave frequency
ωi for the transverse mode [Fig. 2(b)] as functions of k and
ωc for the case of u0 = 20.0vth. As indicated, the growth
rate of the most unstable mode increases with increasing
ωc, reaching the maximum value at ωc ∼ 0.4ωp, and for
ωc � 0.4ωp it decreases with increasing ωc. In particular, for
ωc � 0.4ωp, the growth rates are ωi,max = 0.034ωp, 0.063ωp,
0.083ωp, and 0.089ωp for ωc/ωp = 0.1, 0.2, 0.3, and 0.4,
respectively, and the growth rate decreases to 0.085ωp for
ωc/ωp = 0.5 and 0.051ωp for ωc/ωp = 1.0. Meanwhile, the
wave number of the most unstable is shown to increase with in-
creasing ωc; in particular, the corresponding wave numbers are
k = 0.012ωp/vth, 0.027ωp/vth, and 0.094ωp/vth for ωc/ωp =
0.2, 0.4, and 1.0, respectively. As expected, for ωc ≈ ωp the
wavelengths of the most unstable longitudinal and transverse
modes are of the same order.

Note that, because of the one-dimensional assumption with
both the wave propagation and drifting velocity being along
the background magnetic field, perpendicularly and obliquely
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FIG. 3. (a), (b) Time evolution of the logarithm of the longitudinal
mode electric field Ex and (c) the transverse mode electric field Ey

with ωc/ωp = 0.0 (circle symbols), 0.1 (cross symbols), 0.2 (plus
symbols), 0.3 (star symbols), 0.4 (square symbols), 0.5 (diamond
symbols), and 1.0 (triangle symbols) based on the simulation results,
respectively. The slope of the corresponding straight lines in each
panels are the maximum growth rates of the unstable mode derived
from the linear theory.

propagating instabilities such as the filamentation and Weibel
instabilities are thus suppressed in our beam-plasma system. It

013203-3



C.-S. JAO AND L.-N. HAU PHYSICAL REVIEW E 98, 013203 (2018)

FIG. 4. Temporal and spatial evolution of (a) Ex (x, t ), (b) Ey (x, t ), and (c) By (x, t ) and the corresponding time evolution of the wave
number for (d) Ex (k, t ), (e) Ey (k, t ), and (f) By (k, t ) for the case of ωc/ωp = 0.4.

has been shown that in the non-relativistic regime the growth
rate of the filamentation instability may not be comparable
to the unstable modes under the present investigation [13,29],
while the Weibel instability may compete with the electro-
magnetic streaming instability for the parameter regime under
study [12,13].

III. KINETIC SIMULATIONS

To study the nonlinear evolution of electromagnetic stream-
ing instabilities in pair plasmas, a one-dimensional electro-
magnetic full particle code has been developed. The plasma
frequency ωp = 1.0 and the thermal velocity of all components
vth = 1.0 are set as the dimensionless units in the simulation
model. The time interval and the grid size are �t = 0.01ω−1

p

and �x = 1λD (λD = vthω
−1
p ), respectively. For all simulation

cases shown here the length of the simulation domain is chosen
to be Lx = 4096λD and the boundary of the simulation system
is periodic for both fields and particles. The inertial length of
the particles is set to be λi = 32λD in the simulation system.
For the initial conditions, the number density distribution is

uniform with 512 pairs of electrons and positrons per cell
and the initial particle velocity of each species is described
by the isotropic Maxwellian distribution. The drifting velocity
is u0= 20vth for both electron and positron beams. In the
simulation the background magnetic field and beam drifts are
assumed to be in the x direction.

Figure 3 shows the time evolution of the electric field Ex

[Figs. 3(a) and 3(b)] and Ey [Fig. 3(c)] for different ambient
magnetic fields (ωc/ωp = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0
as indicated in the caption). The electric components Ex ,
Ey correspond to longitudinal (electrostatic) and transverse
(electromagnetic) modes, respectively. Figure 3(a) shows that
in the early stage (t < 20ω−1

p ) longitudinal waves grow with
the calculated growth rate ωi,max = 0.494ωp. This is in ac-
cordance with linear fluid theory [Eq. (3)] and is seen in
Fig. 1(a).

After long simulation time (t > 150ω−1
p ) in the magnetized

case [Fig. 3(b)] with ωc/ωp = 0.1–0.5, the longitudinal elec-
tric field Ex is damped, while the transverse electromagnetic
field Ey [Fig. 3(c)] grows. The slopes of the corresponding
straight lines in Fig. 3(c) are the maximum growth rates
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of the unstable electromagnetic mode with the value of
ωi,max = 0.034ωp, 0.063ωp, 0.083ωp, 0.089ωp, and 0.085ωp

for ωc/ωp = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. These
agree with linear fluid theory (Fig. 2). The electromagnetic in-
stability appears first with linear growth rate ωi,max = 0.089ωp

in the case ωc/ωp = 0.4, as calculated from Eq. (4) and shown
in Figs. 1(b) and 2. In the unmagnetized case ωc/ωp = 0.0, it
does not occur, as predicted by fluid theory (Fig. 2) and seen
in the particle simulations. As for the case of ωc/ωp = 1.0,
fluid theory predicts growth of the electromagnetic mode
with ωi,max = 0.051ωp (larger than the case of ωc/ωp = 0.1
with ωi,max = 0.034ωp), which, however, is not seen in the
kinetic simulation. We elaborate these results further in the
following.

Figure 4 shows the temporal and spatial evolution of
longitudinal electric field Ex (x, t ) [Fig. 4(a)], transverse elec-
tric field Ey (x, t ) [Fig. 4(b)], and magnetic field By (x, t )
[Fig. 4(c)], as well as the corresponding time evolution of
wave number for Ex (k, t ) [Fig. 4(d)], Ey (k, t ) [Fig. 4(e)], and
By (k, t ) [Fig. 4(f)] for the case of ωc/ωp = 0.4. Like in the
electrostatic simulations of Jao and Hau [9], solitary electric
structures form. In the early stage of the electromagnetic
instabilities, they travel in the direction of the electron-positron
beams [Fig. 4(a)]. The major longitudinal perturbations have
a wave number of 0.05 ∼ 0.09vth/ωp [Fig. 4(d)], in accord
with fluid theory [Fig. 1(a)]. Around t ∼ 150ω−1

p transverse
structures form [Fig. 4(b)]. These also travel in the direction of
beams. Their major wave numbers are 0.015 ∼ 0.022vth/ωp

[Fig. 4(e)] corresponding to wavelengths of 285 ∼ 420λD ,
much larger than those of the longitudinal perturbations (which
have wavelengths of 50 ∼ 80λD), which is consistent with fluid
theory. For smaller simulation domains, say, Lx = 256λD , the
electromagnetic streaming instability, however, would not de-
velop and the electrostatic solitons formed by the electrostatic
instability would remain stable in the simulation system. The
electromagnetic instability is associated with the magnetic-
field perturbation in the simulation system [Fig. 4(c)] with
the same wave number of 0.015 ∼ 0.022vth/ωp [Fig. 4(f)].
The magnetic-field hodograms at t = 168ω−1

p [Fig. 4(a)] and
t = 256ω−1

p [Fig. 4(b)] for the case of ωc/ωp = 0.4 are shown
in Fig. 5. Starting with the value of (By, Bz) from x = 0 (circle
symbol), there is no purely linear or circular polarization at both
t = 168ω−1

p [Fig. 5(a)] and t = 256ω−1
p [Fig. 5(b)]; instead,

linear, right-hand circular, and left-hand circular polarizations
are observed in different regions of the simulation domain.

Figure 6 shows the phase space of the particles at t = 64ω−1
p

and t = 168ω−1
p for the cases of ωc/ωp = 0.0 [Figs. 6(a) and

6(d)], ωc/ωp = 0.4 [Figs. 6(b) and 6(e)], and ωc/ωp = 1.0
[Figs. 6(c) and 6(f)]. As indicated, at t = 64ω−1

p the cases
shown in Figs. 6(a)–6(c) all exhibit the interlacing electron and
positron holes in phase space, which are identical to the one-
and two- dimensional electrostatic simulation results [9,10].
Similar phase space structures have also been seen in the
formation processes of nonrelativistic or weakly relativistic
pair shocks [12,13]. As for the case of ωc/ωp = 0.4 shown
in Fig. 6(e), at t = 168ω−1

p the hole structures that form
are obviously destroyed on the phase space diagram after
the electromagnetic instability takes place (square symbols
in [Fig. 3(c)]. Since the electromagnetic instability does not
occur for the cases of ωc/ωp = 0.0 [circles in Fig. 3(c)] and
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FIG. 5. The magnetic field hodograms at (a) t = 168ω−1
p and

(b) t = 256ω−1
p for the case of ωc/ωp = 0.4. The circle symbol in

each panels denotes the value of (By, Bz ) at x = 0.

ωc/ωp = 1.0 [triangles in Fig. 3(c)], the formed interlacing
electron and positron hole structures may still exist in the
simulation system at t = 168ω−1

p [Fig. 6(d)] for ωc/ωp = 0.0
and [Fig. 6(f)] for ωc/ωp = 1.0. The time evolution of the
electric-potential drop �φ in the simulation system is shown
in Fig. 7 for various cases with the same drift velocity. In the
early stage (say, t< 100ω−1

p ) all three cases are nearly the same
while �φ is decreased significantly for the case ωc/ωp = 0.4
(cyan curve) after t ∼ 150ω−1

p , which is associated with the
development of electromagnetic instability and the destruction
of electron-positron hole structures. Note that the �φ curves
for ωc/ωp = 0.0 (red curve) and ωc/ωp = 1.0 (black curve)
cases separate in the period of t = 200 ∼ 300ω−1

p , coincident
with the time evolution of the transverse electric field Ey shown
in Fig. 3(c), and the stable existence of �φ in both cases
corresponds to the electron-positron holes shown in Figs. 6(d)
and 6(f).

Figure 8 shows the particle velocity distributions at various
times for the cases of ωc/ωp = 0.0 [Fig. 8(a)], ωc/ωp = 0.4
[Fig. 8(b)], and ωc/ωp = 1.0 [Fig. 8(c)]. Note that we only
present the velocity distribution of positrons in Fig. 8 since
the distributions are almost identical for both electrons and
positrons. As indicated, the velocity distributions after the
electrostatic instability has taken place at, say, t = 64ω−1

p

(dashed curve in all panels), show no apparent differences
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FIG. 6. Phase space of the particles for the cases of ωc/ωp = 0.0 at (a) t = 64ω−1
p and (d) t = 168ω−1

p , ωc/ωp = 0.4 at (b) t = 64ω−1
p and

(e) t = 168ω−1
p , and ωc/ωp = 1.0 at (c) t = 64ω−1

p and (f) t = 168ω−1
p . The blue, black, red, and green dots denote background positrons,

beam positrons, background electrons, and beam electrons, respectively.

among the three cases. It is seen that the velocity distributions
for parallel (top panel) and perpendicular (middle and bottom
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 Δ

φ

FIG. 7. Time evolution of the logarithm of the electric potential
drop �φ for the simulation cases with ωc/ωp = 0.0 (red curve), 0.4
(cyan curve), and 1.0 (black curve).

panels) components with respect to the background magnetic
field and drifting direction are distinct in that temperature
or pressure anisotropy with p‖ > p⊥ develops at t = 64ω−1

p

(dashed curve) in all three cases after the electrostatic in-
stability has occurred. The built-up pressure anisotropy is
reduced at t = 256ω−1

p by the electromagnetic instability as
evidenced by the plasma heating in the perpendicular direction
(dot-dashed curve in panel b for the case of ωc/ωp = 0.4).
On the other hand, for the cases of ωc/ωp = 0.0 [Fig. 8(a)]
and ωc/ωp = 1.0 [Fig. 8(c)] for which the electromagnetic
instability does not take place, the velocity distributions and
the temperature anisotropy remain unchanged from t = 64ω−1

p

(dashed curve) to t = 256ω−1
p (dot-dashed curve).

As shown already, according to the linear fluid theory
both cases of ωc/ωp = 0.1 and ωc/ωp = 1.0 are unstable
to the electromagnetic instability with slightly larger growth
rate for the case of ωc/ωp = 1.0. However, in the nonlinear
simulations the electromagnetic instability develops for the
case of ωc/ωp = 0.1 but not for the case of ωc/ωp = 1.0.
The question is thus raised of what are the conditions for the
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FIG. 8. Velocity distributions of positrons at t = 0 (solid curve), t = 64ω−1
p (dashed curve), and t = 256ω−1

p (dot-dashed curve) for the
cases of (a) ωc/ωp = 0.0, (b) ωc/ωp = 0.4, and (c) ωc/ωp = 1.0. The panels from top to bottom denote the velocity distributions f (vx ), f (vy ),
and f (vz ), respectively.

development of electromagnetic instability in the pair plasma
system under study. The above analyses have shown that the
temperature anisotropy associated with the parallel plasma
heating is likely to be the free energy for the electromagnetic
instability. In particular, following the magnetohydrodynamic
(MHD) theory and earlier kinetic simulations for proton fire-
hose instability the dimensionless quantity of S = β‖ − β⊥,
where β‖ = P‖/(B2/2μ0) and β⊥ = P⊥/(B2/2μ0), is used to
measure the degree of pressure anisotropy in the simulations
[31,32]. Figure 9 shows the time evolution of plasma betas
(top and middle panels are for background and beam positrons,
respectively) and magnetic field perturbation δB2/B2

0 (bottom
panels) for the cases of ωc/ωp = 0.2 [Fig. 9(a)], ωc/ωp =
0.4 [Fig. 9(b)] and ωc/ωp = 1.0 [Fig. 9(c)]. It is seen that,
for t < 20ω−1

p , the plasma beta β‖ (solid curve) and the
pressure anisotropy S are increased in all cases, caused by the
electrostatic instability. In particular, the cases of ωc/ωp = 0.2
[Fig. 9(a)] and ωc/ωp = 0.4 [Fig. 9(b)] have much larger
β‖ and S = β‖ − β⊥ values as compared to the case of
ωc/ωp = 1.0 [Fig. 9(c)] and the decreasing of β‖, S and
the increasing of β⊥ are associated with the occurrence of

electromagnetic instability corresponding to the variation of
the velocity distribution shown in Fig. 8(b). It is apparent
that, for the case of ωc/ωp = 1.0, the S = β‖ − β⊥ value is
too small to trigger the firehose-type instability. The saturated
S value (dot-dashed curve) for both cases of ωc/ωp = 0.2
[Fig. 9(a)] and ωc/ωp = 0.4 [Fig. 9(b)] is about 0.2, which
is much smaller than the criterion of β‖ − β⊥ = 2 for the
fluid firehose instability, an indication of significant resonance
effects [31]. Note that all cases shown in Fig. 9 have the
same growth rate for electrostatic instability, yielding similar
thermal pressure p‖ and p⊥. As a result, β‖ − β⊥ is smaller
for larger ωc/ωp, which explains the small value of S in the
case of ωc/ωp = 1.0. The magnetic-field perturbations shown
in the third row of Fig. 9 exhibit coincident features with the
time evolution of plasma betas and the degree of pressure
anisotropy. In particular, for the unstable cases [Figs. 9(a)
and 9(b)], δB2/B2

0 is abruptly increased prior to S = β‖ − β⊥
reaching to certain stable critical values at t ≈ 200ω−1

p . The
abrupt increase of δB2/B2

0 followed by a sudden drop to
a low saturated value is similar to the particle simulations
of firehose-type instabilities in electron-proton plasmas [31].
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FIG. 9. Time evolution of plasma beta β for background positrons (top panels) and beam positrons (middle panels) and the quantity δB2/B2
0

(bottom panels) for the cases of (a) ωc/ωp = 0.2, (b) ωc/ωp = 0.4, and (c) ωc/ωp = 1.0. The solid, dashed, and dot-dashed curves in top and
middle panels denote (β‖ − β⊥), β‖, and β⊥, respectively.

These analyses show that the electromagnetic instability is
attributed to the degree of pressure anisotropy, resulting
from electrostatic streaming instability and measured by S =
β‖ − β⊥. The properties of the magnetic field perturbations
associated with the electromagnetic instability shown above
have several similarities to the Alfvén waves in the context
of MHD theory. In particular, the Alfvén waves are subject to
firehose instability with frequency being much smaller than
the gyro frequency. Additionally, the electric field is nearly
perpendicular to the magnetic field after the development of
electromagnetic instability obeying more or less the frozen-in-
flux condition which is an important mechanism for generating
large-amplitude magnetic-field fluctuations.

As shown in our previous study, it is also possible to
form electrostatic solitary structures with single polarity in an
electric potential via weak-beam electrons (positrons) drift-
ing into background electron-positron plasmas, the so-called
bump-on-tail instabilities [11]. We have attempted to carry
out similar experiments as shown above for the bump-on-
tail instability in electron-positron plasmas and found that
electromagnetic instability is unlikely to be induced by the
weak beam-plasma interaction. Specifically, the heating in
beam components associated with the electrostatic instability
is not sufficient to trigger firehose-type instabilities in the
system.

IV. CONCLUSION

In this paper we have reported the formation of elec-
trostatic pair solitons generated by streaming instabilities in
electron-positron magnetized plasmas based on electromag-
netic particle simulations with extensive modeling spatial
domain. Due to the significant parallel heating temperature
or pressure anisotropy may develop which in turn triggers
the electromagnetic firehose-type instabilities associated with
significant growth of magnetic-field perturbations. We have
analyzed both instabilities based on linear plasma fluid theory
and compared with the kinetic simulation results in terms of
the growth rate and the wavelength of the unstable modes,
which show remarkable agreement. The condition for elec-
tromagnetic instability derived from the linear fluid theory,
however, is only a necessary but not a sufficient condition. It
is shown that in the kinetic simulations the degree of pressure
anisotropy in terms of S = β‖ − β⊥ value, which is less for
stronger background magnetic field, is required to develop
the electromagnetic firehose-type instability. In the final stage
of nonlinear evolution the magnetic field is dissipated with
significant reduction of temperature anisotropy as a result
of wave particle interactions. For certain parameter regimes
both electrostatic electron and positron solitons as well as
electromagnetic Alfvén waves thus may occur at different
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times under the same plasma system. This feature is unlikely
to occur in electron-proton system with very distinct inertial
masses and is a significant result for electron-positron plasmas
with inertia symmetry.
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