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In radiation pressure ion acceleration (RPA) research, the transverse stability within laser plasma interaction
has been a long-standing, crucial problem over the past decades. In this paper, we present a one-dimensional
two-fluid theory extended from a recent work Wan et al. Phys. Rev. Lett. 117, 234801 (2016) to clearly clarify the
origin of the intrinsic transverse instability in the RPA process. It is demonstrated that the purely growing density
fluctuations are more likely induced due to the strong coupling between the fast oscillating electrons and quasistatic
ions via the ponderomotive force with spatial variations. The theory contains a full analysis of both electrostatic
(ES) and electromagnetic modes and confirms that the ES mode actually dominates the whole RPA process at
the early linear stage. By using this theory one can predict the mode structure and growth rate of the transverse
instability in terms of a wide range of laser plasma parameters. Two-dimensional particle-in-cell simulations are
systematically carried out to verify the theory and formulas in different regimes, and good agreements have been
obtained, indicating that the electron-ion coupled instability is the major factor that contributes the transverse
breakup of the target in RPA process.
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I. INTRODUCTION

Ion acceleration driven by ultraintense lasers has become
a very active topic since the experimental observation of an
intense proton beam with the maximum energy of 58 MeV
in 2000 [1–3]. Energetic ion sources from compact laser
plasma-based acceleration have many unique features such
as ultrashort pulse duration, micron-scale size, and ultrahigh
peak current compared with those from conventional radio-
frequency accelerators, and thus have great potential for many
applications, including ultrafast radiography [4–6], cancer
therapy [7,8], fast ignition [9–11], etc.

Among all the existing acceleration mechanisms, radiation
pressure ion acceleration (RPA) has attracted much attention
worldwide for its properties of monoenergetic acceleration
with high-energy conversion efficiency in one-dimensional
(1D) geometry [12–17]. The concept of RPA was first proposed
by Esirkepov et al. [12] in 2004. Their three-dimensional
(3D) particle-in-cell (PIC) simulations showed that GeV quasi-
monoenergetic ion beams can be obtained by employing a
superintense linearly polarized laser (1023 W/cm2) to interact
with a thin foil. Soon afterwards, Macchi et al. [13] through
1D PIC simulations found that circularly polarized (CP) lasers
with moderate intensity can provide a prominent radiation
pressure effect, as the nonoscillating ponderomotive force in
this case applies a steady pressure to the target front and
forms a quasistatic high-density layer moving forward. This
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is known as the hole boring (HB) process [13,18]. Similarly,
for a ultrathin foil, the compressed electron and ion layers
can be pushed and accelerated as a whole by the laser
pressure in the so-called light sail process [12,14–17,19,20]
and monoenergetic ion beams can be generated.

Though radiation pressure ion acceleration (RPA) seems
very attractive in ideal 1D geometry, it is still quite challenging
for its experimental realization. Until now, the experimental
progress on RPA has been very limited [21–24]. Objectively,
there are two aspects of reasons that can be applied for the
explanation of RPA’s current status: on one hand, it is very
demanding on the laser contrast and the manufacture of a nano-
foil target, which is still hard to achieve in the present experi-
ments [2,3]; on the other hand, key physical effects like laser
pressure nonuniformity-induced electron heating [15–17] and
transverse instability [15,16,25–31] can significantly affect the
physical process in multidimensional geometry. In reality, the
RPA scheme has been suffering from the transverse instability
since it was proposed. Previous two-dimensional (2D) and 3D
simulations showed that for either thick or thin foils, there are
always transverse density ripples induced at the front surface
irradiated by the laser pulse, which can grow very significantly,
breaking up the target and prematurely terminating the RPA
process [15,16,26–31]. This phenomenon even shows up for
a laser with a transversely uniform profile [15,25,32]. Over
the past decades, many mechanisms have been proposed to
try to explain the formation of these transverse ripples, such
as Rayleigh-Taylor-like instability [16,25,32–35], Weibel-like
instability [28,29,36–39], and so on. Among them, for linearly
polarized lasers [36–39], Weibel-related instabilities from
strong electron heating seem to be major factors that contribute
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FIG. 1. (a) The schematic model of the hole boring process by radiation pressure. (b) The physical picture of transverse instability within
the high-density layer. z represents the longitudinal direction and x and y represent the transverse directions. ni1 and Ex,y1 represent the ion
density and the transverse electric field fluctuations, respectively. fp represents the ponderomotive force.

to the surface ripples. However, for circularly polarized lasers
(mainly used for RPA), none of these models are able to give
accurate predictions of the mode structure and its growth rate
consistent with PIC simulations for a wide range of laser
plasma parameters.

In this article, we will present a predictive theoretical
model extended from a recent work [40] to analyze in detail
the transverse instability in the RPA process. It turns out
that the transverse density fluctuations are mainly due to the
strong coupling between the fast oscillating electrons and
quasistatic ions via the induced transverse ponderomotive
force with spatial variations. The physical picture of this
process is illustrated in Fig. 1. In the longitudinal direction,
as shown in Fig. 1(a), a high-density layer is formed and
pushed forward stably by the laser pressure after a equilibrium
between the electrostatic force and laser pressure is built. In the
transverse direction of the high-density layer [see Fig. 1(b)],
the penetrating CP laser fields oscillate at the laser frequency.
If there is a small ion density fluctuation, it can easily couple
with the oscillating laser field to excite a fluctuation of electron
oscillation, which can then beat with the laser field to generate
spacial variations along the transverse direction, giving rise to a
ponderomotive force. This force of stationary parts can in turn
drive electrons to enhance the ion density fluctuations. After
several feedback loops, the transverse instability can finally
result. It is noted that this process is similar to the oscillating
two-stream instability in inertial confinement fusion research
[41,42]. However, significant distinctions exists: first, the laser
field penetrates only within the compressed high-density layer
formed by the laser pressure, with its amplitude determined
by the boundary conditions at the front surface; second, for
RPA, the adopted laser here is relativistically intense, with the
normalized vector potential a0 on the order of 1, much larger
than those studied in the early studies related to oscillating
two-stream instability [41,42].

This paper is organized as follows. In Sec. II a basic
1D theory of the transverse instability is carefully derived,
which contains a full treatment of both electrostatic and
electromagnetic perturbations. In Secs. III and IV, the mode
structure and its growth rate in three different regimes [a0 < 1,
a0 > 1 for a thick foil (HB) and thin foil (LS)] are derived and
systematically verified by 2D PIC simulations. The work is
summarized in Sec. V.

II. THEORETICAL MODEL OF THE
TRANSVERSE INSTABILITY

In this section, a 1D theoretical model of this instability
will be derived based on the above physical picture. In this
configuration, a circularly polarized laser normally incidents
on the front surface of a target and launches a high-density layer
by its radiation pressure. Thus a full set of two-fluid (electron
and ion) plasma description can be written as

∂n(i,e)

∂t
+ �∇ · (n(i,e)�v(i,e)) = 0, (1a)

∂ �P(i,e)

∂t
+ �v(i,e) · �∇( �P(i,e)) = −q(i,e)

(
�∇� + 1

c

∂ �A
∂t

)

+ q(i,e)
v(i,e)

c
× �∇× �A−

�∇(ni,eTi,e)

ni,e

,

(1b)(
1

c2

∂2

∂t2
− ∇2

)
�A = 4π

c
�j − �∇

(
1

c

∂�

∂t
+ �∇ · �A

)
, (1c)

�∇ ·
[

�∇� + 1

c

∂ �A
∂t

]
= −4π (qini − ene), (1d)

where �v, �P , q, and T are the particle velocity, momentum,
charge, and temperature, respectively; � and �A are the scalar
and vector potential; �j is the beam current density; and c is the
light speed in vacuum.

It is known that the ponderomotive force mainly comes
from two parts, the �E · �∇ �E and �v × �B, which respectively
contribute to the instabilities of electrostatic (ES) mode and
electromagnetic (EM) modes. In the following derivation, we
define z as the laser propagation (longtudinal) direction and
(x,y) as transverse directions, and these two modes will be
carefully studied separately.

For simplicity, we adopt the Coulomb gauge �∇ · �A = 0, and
consider only the fluctuations along one of the transverse (y)
directions.

First, the ES mode is analyzed. This mode is stimulated by
the P-polarization part of the CP laser through �E · �∇ �E effect.
Here we only adoptAy0 = A0 sin (ω0t + φ) (P-polarization) as
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the initial laser vector potential, where ω0 is laser frequency,
and φ is the initial phase.

In the comoving frame of the high-density layer, the two-
fluid equations for electrons and ions in the y direction are

∂n(i,e)

∂t
+ ∂n(i,e)v(i,e)y

∂y
= 0, (2a)

∂P(i,e)y

∂t
+ v(i,e)y

∂P(i,e)y

∂y
(2b)

= −q(i,e)

(
∂�

∂y
+ 1

c

∂Ay

∂t

)
− 1

ni,e

∂(ni,eTi,e)

∂y
,

(
∂2

∂z2
+ ∂2

∂y2

)
� = −4π (qini − ene). (2c)

For simplicity, we assume the target is fairly flat and the
density fluctuation depends only on (y,t). To linearize the
fluid equations, all the quantities can be decomposed as
a stationary part plus a first-order quantity, such as vey =
vey0 + vey1, Pey = Pey0 + Pey1, viy = viy0 + viy1 (viy0 = 0),
ne = ne0 + ne1, ni = ni0 + ni1, Ay = Ay0 + Ay1, and � =
�0 + �1, where Pey0 = Pos sin (ω0t + φ) (based on the con-
servation of canonical momentum). Here ions are assumed
nonrelativistic and Ti = 0. Based on the Coulomb gauge
�∇ · �A = 0, one can get Ay1 = 0.

Then the equations for only first-order quantities can be
obtained as

∂ne1

∂t
+ vey0

∂ne1

∂y
+ ne0

∂vey1

∂y
= 0, (3a)

∂Pey1

∂t
+ vey0

∂Pey1

∂y
= e

∂�1

∂y
− 1

ne0

∂(ne1Te)

∂y
, (3b)

∂ni1

∂t
+ ne0

∂viy1

∂y
= 0, (3c)

∂viy1

∂t
= − qi

mi

∂�1

∂y
, (3d)

∂2�1

∂y2
= −4π (qini1 − ene1), (3e)

where mi represents the ion rest mass. From Eqs. (3), it
is indeed the term vey0

∂Pey1

∂y
, corresponding to Ey0

∂Ey1

∂y
, that

triggers the instability. Thus, the P-polarization part of a CP
laser stimulates only the ES mode.

By assuming all first-order quantities have the form of
exp[i(ky − ωt)]), one can get the following equations in (ω,
k) space:

−iωne1(ω) − vosk

2
[ne1(ω + ω0), (4a)

−ne1(ω − ω0)] + ikne0vey1(ω) = 0,

−iωPey1(ω) − vosk

2
[Pey1(ω + ω0) (4b)

−Pey1(ω − ω0)] = ike�1(ω) − 1

ne0
ikne1Te

−iωni1(ω) + ikni0viy1(ω) = 0 (4c)

−iωviy1(ω) = − ikqi�1(ω)

mi

(4d)

−k2�1(ω) = −4π [qini1(ω) − ene1(ω)]. (4e)

For simplicity, in the following, mass is in units of electron
rest mass me, velocity in light speed of vacuum c, and charge
in electron charge e. After eliminating ni1, ve,iy1, and Ey1, it is
straightforward to obtain

−iωne1(ω) − vosk

2
[ne1(ω + ω0) − ne1(ω − ω0)]

+ ikne0κPey1(ω) = 0, (5a)

−iωPey1(ω) − vosk

2
[Pey1(ω + ω0) − Pey1(ω − ω0)]

− ε(ω)ne1(ω) = 0, (5b)

where vos = Pos/γ0 is the electron quiver velocity amplitude in the laser electric field, and γ0 is the electron’s zero-order Lorentz
factor; ε(ω) = i[kTe/ne0 − 4πω2/k(ω2

pi − ω2)], κ = (2 − v2
os)/2γ0; and ωpi is the ion plasma frequency. These two equations

show the relationship between ne1 and Pey1 at ω and ω ± ω0. By replacing ω with ω ± ω0, one can obtain another four equations
describing the relationship among ω, ω ± ω0, and ω ± 2ω0. Since ions also get involved in the whole process, their dynamics
are typically on a much slower timescale than the laser oscillation (i.e., ω � ω0). In order to obtain a closed dispersion relation,
we may drop the ω ± 2ω0 components as fast-timescale and off-resonant terms. For ions, we keep only the ω components, and
electrons are treated as isothermal in the case of ωpe � ω0, where ωpe is the electron plasma frequency. The substituted four
equations are presented as

−i(ω + ω0)ne1(ω + ω0) − vosk

2
[−ne1(ω)] + ikne0κPey1(ω + ω0) = 0, (6a)

−i(ω + ω0)Pey1(ω + ω0) − vosk

2
[−Pey1(ω)] + i

(
4π

k
+ kTe

ne0

)
ne1(ω + ω0) = 0, (6b)

−i(ω − ω0)ne1(ω − ω0) − vosk

2
[ne1(ω)] + ikne0κPey1(ω − ω0) = 0, (6c)

−i(ω − ω0)Pey1(ω − ω0) − vosk

2
[Pey1(ω)] + i

(
4π

k
+ kTe

ne0

)
ne1(ω − ω0) = 0. (6d)
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Therefore, we now have six closed equations for six quantities (ne1, Pey1 at ω and ω ± ω0), and this can be cast into a matrix
form as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iω − vosk

2
vosk

2 ikne0κ 0 0
vosk

2 −i(ω + ω0) 0 0 ikne0κ 0
− vosk

2 0 −i(ω − ω0) 0 0 ikne0κ

i
[

kTe

ne0
− 4πω2

k

(
ω2

pi−ω2
)]

0 0 −iω − vosk

2
vosk

2

0 i
(

4π
k

+ kTe

ne0

)
0 vosk/2 −i(ω + ω0) 0

0 0 i
(

4π
k

+ kTe

ne0

)
− vosk

2 0 −i(ω − ω0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ne1(ω)
ne1(ω + ω0)
ne1(ω − ω0)

Pe1(ω)
Pe1(ω + ω0)
Pe1(ω − ω0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= �0. (7)

By taking the determinant of the matrix equal to zero,
we can get the dispersion relation between ω and k. The
wave number of the instability km corresponds to the value
at which the imaginary part of ω [Im(ω)] is maximal and can
be calculated numerically through this dispersion equation. In
the following, for simplicity, the moving high-density layer
is treated nonrelativistic, and thus the obtained km mode and
growth rate from the matrix can both be directly used in the
laboratory frame.

Figure 2 shows a numerical example. We take γ0 = 1.06,
ωpe = 6.32ω0, ωpi = 0.147ω0, and Te = 0.005mec

2. The re-
lation between k and Im(ω) from Eq. (7) is plotted in Fig. 2.
One can easily get the most unstable mode of km as 27.5
ω0/c. Besides, there is another peak (k = 30ω0/c) existing
in this mode spectrum. However, the real part of ω [Re(ω)]
corresponding to this peak is nonzero and not consistent with
the purely growing fluctuations observed in simulations. In the
following, we consider only the most unstable km with zero
frequency [i.e., Re(ω)=0].

It is noted that the electron temperature here is set not very
high (i.e., 2.5 keV), as electron heating is quite limited for a
nonoscillating ponderomotive force from the CP laser pulse.

20 24 28 32
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0
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FIG. 2. The relationship between k and Im(ω) obtained from
Eq. (7) in the case of γ0 = 1.06, ωpe = 6.32ω0, ωpi = 0.147ω0, and
Te = 0.005mec

2.

Besides the ES mode, in the following, we take only the
EM mode into consideration. Since the EM mode is actually
stimulated by the S-polarization part of the CP laser through the
v × B effect, here for simplicity, Ax0 = A0 cos (ω0t + φ) (S-
polarization part) is adopted as the initial laser vector potential.
Then, similarly, all the quantities can be divided into a zero-
order part plus a first-order quantity. From the Coulomb gauge,
one can get Ay1 = 0. Thus all the first-order equations can be
written as

∂ne1

∂t
+ ne0

∂vey1

∂y
= 0, (8a)

∂Pey1

∂t
= e

∂�1

∂y
− evex0

∂Ax1

∂y
− 1

ne0

∂(ne1Te)

∂y
, (8b)

∂ni1

∂t
+ ni0

∂viy1

∂y
= 0, (8c)

∂viy1

∂t
= − qi

mi

∂�1

∂y
, (8d)

∂2�1

∂y2
= −4π (qini1 − ene1), (8e)(

1

c2

∂2

∂t2
− ∂2

∂y2
+ ω2

pe

c2
κ

)
Ax1 = −4π

c
ene1vex0. (8f)

From Eqs. (8), vex0
∂Ax1
∂y

, corresponding to vex0Bz1, is the first
order of ponderomotive force that leads to the instability.
Therefore, the S-polarization part of a CP laser stimulates
only the EM mode. By using the standard Fourier analysis as
mentioned above, we can finally obtain the relation between
ne1 and Ax1:

(
Te

ne0
k − ω2

kne0κ
− 4π

k

ω2

ω2
pi − ω2

)
ne1(ω)

+ kvos

2
[Ax1(ω + ω0) + Ax1(ω − ω0)] = 0, (9a)

ζ (ω)Ax1(ω) − 2πvos[ne1(ω + ω0) + ne1(ω − ω0)] = 0, (9b)
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where ζ (ω) = ω2 − k2 − ω2
peκ . Similarly, by replacing ω with ω ± ω0 and ignoring the components at 2ω0, one can get another

four equations:

[
Te

ne0
k − (ω + ω0)2

kne0κ
+ 4π

k

]
ne1(ω + ω0) + kvos

2
[Ax1(ω)] = 0, (10a)[

Te

ne0
k − (ω − ω0)2

kne0κ
+ 4π

k

]
ne1(ω − ω0) + kvos

2
[Ax1(ω)] = 0, (10b)

ζ (ω + ω0)Ax1(ω + ω0) − 2πvos[ne1(ω)] = 0, (10c)

ζ (ω − ω0)Ax1(ω − ω0) − 2πvos[ne1(ω)] = 0. (10d)

These six closed equations show the relationship between ne1 and Ax1 at three frequencies (ω, ω ± ω0), and the corresponding
coefficient matrix is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Te

ne0
k − ω2

kne0κ
− 4π

k
ω2

ω2
pi−ω2 0 0 0 kvos

2
kvos

2

0 Te

ne0
k − (ω+ω0)2

kne0κ
+ 4π

k
0 kvos

2 0 0

0 0 Te

ne0
k − (ω−ω0)2

kne0κ
+ 4π

k

kvos

2 0 0
0 −2πvos −2πvos ζ (ω) 0 0

−2πvos 0 0 0 ζ (ω + ω0) 0
−2πvos 0 0 0 0 ζ (ω − ω0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

After further derivation, it is equivalent to solve the determinate of a matrix as⎛
⎜⎜⎝

Te

ne0
k − ω2

kne0κ
− 4π

k
ω2

ω2
pi−ω2

kvos

2
kvos

2

−2πvos ζ (ω + ω0) 0
−2πvos 0 ζ (ω − ω0)

⎞
⎟⎟⎠. (12)

Taking its determinant equal to zero, we can get the dispersion relation. Figure 3 shows a numerical example. We take γ0 = 1.06,
ωpe = 6.32ω0, ωpi = 0.147ω0, and Te = 0.005mec

2, the same as Fig. 2. The relation between k and (Imω) from Eq. (12) is
plotted in Fig. 3. One can easily get the value of km as 1.4 ω0/c. The maximal Im(ω) of EM mode is about 0.0334 ω0, much
smaller than that of ES mode (0.3 ω0) for the same laser plasma paramters, which indicates that the ES mode dominates the whole
development of the transverse instability.

For accurate descriptions, one needs to take all these modes into account. Based on the full set equations [Eqs. (1)] and
initial conditions of Ax0 = A0 sin(ω0t + φ), Ay0 = A0 cos(ω0t + φ) for a CP laser. After similar processing as mentioned above
(linearization and spatio-temporal Fourier transformation), we can finally get nine closed equations for nine quantities (ne1, Pey1,
and Ax1 at ω and ω ± ω0), and the coefficient matrix is written as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ω kvos/2 kvos/2 kne0κ 0 0 0 0 0
kvos/2 −ω − ω0 0 0 kne0κ 0 0 0 0
kvos/2 0 −ω + ω0 0 0 kne0κ 0 0 0
−iε(ω) 0 0 −ω kvos/2 kvos/2 0 −ikvos/2 ikvos/2

0 4π/k + kTe/ne0 0 kvos/2 −ω − ω0 0 ikvos/2 0 0
0 0 4π/k + kTe/ne0 kvos/2 0 −ω + ω0 −ikvos/2 0 0
0 2iπvos −2iπvos 0 0 0 ζ (ω) 0 0

−2iπvos 0 0 0 0 0 0 ζ (ω + ω0) 0
2iπvos 0 0 0 0 0 0 0 ζ (ω − ω0)

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

The dispersion relation can be obtained by taking the
determinant of Eq. (13) equal to zero. Figure 4 shows a typical
example of this case. The initial parameters are set as γ0 =
1.5, ωpe = 6ω0, ωpi = 0.13ω0, and Te = 0.005mec

2. The
relation between k and Im(ω) is presented in Fig. 4. One can
see the curves from Eq. (7) (solid blue) and Eq. (13)
(dashed red) have very similar trends, and the obtained km

are both close to 7.2ω0/c, which indicates that the ES
mode is more effective than the EM mode. Besides this
example, we also have scanned in a wide range of pa-
rameters and found that the ES mode still dominates in
all cases. In the following, for simplicity, only the electro-
static effect is considered and the electron temperature is
ignored.
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FIG. 3. The relationship between k and Im(ω) obtained from
Eq. (12) in the case of γ0 = 1.06, ωpe = 6.32ω0, ωpi = 0.147ω0, and
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FIG. 4. The relationship between k and Im(ω) obtained from
Eq. (7) (solid blue) and Eq. (13) (dashed red) in the case of γ0 = 1.5,
ωpe = 6ω0, ωpi = 0.13ω0, and Te = 0.005mec

2.

III. TRANSVERSE INSTABILITY FOR a0 < 1

For a0 < 1 taking κ ≈ 1 for nonrelativistic electrons, the dispersion relation can be calculated as

−4ω8 + 4ω6(ξ 2 + 2ω2
0 + 3ω2

pe + ω2
pi

) + ω4[−ξ 4 − 4ξ 2(ω2
0 − ω2

pe

)2 − 4
(
ω4

0 + 3ω4
pe + 2ω2

0ω
2
pi + 2ω2

pe + ω2
pi

)]
+ω2

{
ξ 2

(
ω2

pe + ω2
pi

) + 4
(
ω2

0 − ω2
pe

)2(
ω2

pe + ω2
pi

) + 2ξ 2
[ − 2ω4

pe + ω2
peω

2
pi + 2ω2

0

(
ω2

pe + ω2
pi

)]}
−ξ 2ω2

peω
2
pi

(
ξ 2 + 2ω2

0 − 2ω2
pe

) = 0. (14)

where ξ = kvos . To simplify Eq. (14), several assumptions
based on numerical simulations are given as follows:

1. The maximal Im(ω) corresponds to the case where
Re(ω) = 0.

2. The maximal growth rate γm = Im(ω) is on the same
order of ωpi

3. ξ = kvos for maximum growth rate is on the same order
of ωpe.

Therefore, we may drop all the components including
ω8 and ω6 and keep only dominant coefficients of ω4, ω2

and constant terms. Equation (14) can then be simplified
significantly as

ω4
(
ξ 4 + 12ω4

pe

) − ω2ω2
pe

(
ξ 2 − 2ω2

pe

)2

+ ξ 2ω2
peω

2
pi

(
ξ 2 − 2ω2

pe + 2ω2
0

) = 0. (15)

In order to show the similarity of Eqs. (15) and (14), a series
of numerical simulations were carried out. Figure 5 gives
an example. We take γ0 = 1.5, ωpe = 6.32ω0, and ωpi =
0.147ω0. The relations between ξ and ω from Eq. (14) (solid
blue) and Eq. (15) (dashed yellow) are plotted in Figs. 5(a) and
5(b). One can find the two curves have good agreement with
each other.

In most cases,ωpe � ω0 > ωpi . ξ for the maximum |Im(ω)|
can be directly solved from Eq. (15) as ξmax ≈ √

2ωpe, and the
instability mode wave number km is

km = ξmax

vos

≈
√

2ωpe

vos

. (16)

In previous studies, self-consistent analytical models have
been developed to describe nonlinear effects such as density

compression and induced transparency in the case of a high-
intensity laser interaction with overdense plasma [43]. Besides
the relatively complicated analysis, the expression of ωpe can
be easily obtained by using the following kinetic model, and
assuming an uniform density profile and charge neutrality
(i.e., ne ≈ ni) within the high-density layer. The basic physical
picture of the hole boring process for a0 < 1 in the longitudinal
direction is shown in Fig. 6, as mentioned in a number of papers
[13,18].

Based on the assumptions, the electrostatic field Es can be
expressed as Es = Es0(ls − z), (0 < z < ls), where Es0 is the
maximum longitudinal electrostatic field and ls is the thickness
of this layer. After balance is built, the equilibrium between the
laser pressure and the electrostatic force within the layer can
be written as 1

2Es0en̄els = 2I/c, where I is the laser intensity
and n̄e is the averaged electron density of the high-density
layer. Meanwhile, in the comoving frame, ions (Z = 1) are
moving into this region with a velocity of v = −vb and then
be decelerated to v = 0 at the boundary (the O point). So we

7 8 9
0.1

0.2

0.3

ξ [ω
0
]

Im
(ω

) [
ω

0]

Eq.14

Eq.15

7 8 9
0

0.2

0.4

ξ [ω
0
]

R
e(
ω

) [
ω

0]

Eq.14

Eq.15
(a) (b)

FIG. 5. The relations between ξ and ω from Eq. (14) (solid blue)
and Eq. (15) (dashed yellow) in the case of γ0 = 1.5, ωpe = 6.32 ω0,
and ωpi = 0.147 ω0.
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FIG. 6. Schematic drawing of the hole boring process for a0 < 1.
Here np0 is the initial plasma density.

can get 1
2Es0els = 1

2miv
2
b . Combing these two equations, the

first relation between ions and laser pressure is

1

2
n̄emiv

2
b = 2I

c
. (17)

As the balance is dynamic, ions are moving into the high-
density layer with n = np0 and v = −vb and also out with n =
np0 and v = vb consecutively. During δt , the ion momentum
conversation leads to (2I/c)δt = np0vbδt(vb + vb), which is

2np0miv
2
b = 2I

c
. (18)

Combing Eqs. (17) and (18), one can get

n̄e = n̄i = 4np0. (19)

This simple relation can be readily verified by PIC simulations.
On the other hand, by applying the Fresnel-like boundary

condition and neglecting the vb × B effect in the y direction
(vb � c), we can get

vos/c ≈ 2a0
ω0

ωpe

. (20)

With the new form of vos [Eq. (20)] and ωpe [Eq. (19)],
Eq. (16) can be written in a form easier for direct comparison
with PIC simulations:

km ≈ 2
√

2
np0

a0nc

[ω0/c]. (21)

To verify the above theory, we performed a series of 2D PIC
simulations using the code OSIRIS [44]. In these simulations,
a CP laser driver with a transverse uniform profile is used.
The laser has a flattop temporal profile and propagates in the z

direction. High resolutions are used in both directions (y =
z = 0.002 cω−1

0 ), with 16 particles per species in each cell.
The foil is a pure hydrogen plasma with a step density profile.

Figure 7 shows an example. We take a0 = 0.2 and np0 =
10nc. In Fig. 7(a), one can see ion density ripples are induced in
the high-density layer at the time of t = 180ω−1

0 after the laser
impinges on the target. A line out corresponding with the red
dot line of Fig. 7(a) is presented, showing the periodic density
structures appearing during the interaction process. Figure 7(b)
is the 2D Fourier transformation of Fig. 7(a), and a line out
showing the distribution of ky at kz = 0 corresponding with
the green dot line is also presented. The obtained instability
mode number km is about 125 ω0/c, in good agreement with
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FIG. 7. The ion density fluctuations at t = 180ω−1
0 after laser

impinges on the target in the case of a0 = 0.2, np0 = 10nc. (a) The
ion density with transverse ripples within the front high-density layer
and its line-out distribution at z = 10.38 c/ω0 (the red dot line).
(b) The FFT of the proton density and its line-out distribution at
kz = 0 (the green dot line). ksim, knum, and kest are obtained from
PIC simulations, from direct numerical solutions of Eq. (7), and from
Eq. (21), respectively.

the estimated value kest (133 ω0/c) from Eq. (21) and numerical
value knum (128 ω0/c) from Eq. (7).

Besides this typical example, we also scanned in a wide
range of parameters to show the validity of this theory.
Figure 8(a) plots the relation between km and a0 by fixing the
initial plasma density (np0 = 10nc). Three values of km [km

obtained from PIC simulation, from direct numerical solution
of Eq. (7), and from Eq. (21)] are used for comparison. One
can see very good agreements are obtained. In Fig. 8(b) we
also plot the relation between km and np0 by fixing a0 = 0.2.
One can see equally good agreements between the three values
of km.

The growth rate γm0 at km can also be obtained from Eq. (15)
directly:

γm0 ≈ 2 ωpi. (22)

We performed a series of 2D simulations with a large range
of plasma parameters similar to Fig. 8 to confirm our analysis.
Figure 9(a) gives the relation between γm and a0 at np0 = 10nc.
It is found that though γm is varying with a0, it is still on the
same order of ωpi (in the range of ωpi ∼ 2ωpi), which has
some agreements with Eq. (22).

The weak relation between γm and a0 mainly comes from
the fact that in the comoving frame, ions are moving in and
out of the high-density layer consecutively, and this area
is not stationary. If the longitudinal flow is quite slow, the
expression of growth rate γm can also be evaluated. We assume
that at t = t0, the ion density fluctuation is f (t0) = δn0ls ,

0 0.5 1
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k
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c

200

400
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k
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k
num

k
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(b)(a)

0 20 40 60

FIG. 8. (a) The relationship between km anda0 fornp0 = 10nc. (b)
The relationship between km and np0 for a0 = 0.2. ksim, knum, and kest

are obtained from PIC simulations, from direct numerical solutions
of Eq. (7), and from Eq. (21), respectively.
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FIG. 9. (a) The relationship between γm and a0 at np0 = 10nc.
(b) The relationship between γm and np0 at a0 = 0.2. γest and γsim

are the estimated and simulation growth rates of ion density ripples,
respectively.

where ls is the length of the high-density layer, and δn0

is the ion density fluctuation at t = t0. Then at t = t0 + δt ,
the fluctuation becomes as f (t0 + δt) = δn0e

γm0δt (ls − vbδt).
The growth rate can be calculated as eγmδt = f (t0 + δt)/f (t0),
where vb = a0c

√
menc/minp0 is the hole boring velocity of

ions in nonrelativistic regime. Based on the analysis above, it
is straightforward to obtain

γm ≈ 2ωpi − 2ω0iηa0, (23)

where ω0i = √
me/miω0 is the critical ion plasma frequency,

and η is a coefficient. Equation (23) shows γm has a weakly
linear dependence on a0, which is in quite good agreement
with Fig. 9(a) for a0 < 0.7. And η ≈ 4.8 can be evaluated
from simulations. It is noted that Eq. (23) is valid for the
initial several 1/ωpi , since as the instability grows, more other
effects like electron heating and radiation pressure transverse
nonuniformity will get involved. To guarantee that the ion flow
is slow enough, a0 also should be quite small.

As Fig. 9(b) shows, if we fix a0 = 0.2, the values of growth
rates from simulations also have great agreement with that from
Eq. (23).

IV. TRANSVERSE INSTABILITY FOR a0 > 1

For a0 > 1, the Lorenz factor of electrons needs to be
considered. In this case, if

√
κωpe � ω0, Eq. (7) can also be

simplified into a similar type as Eq. (15):

ω4
(
ξ 4 + 12κ2ω4

pe

) − κω2ω2
pe

(
ξ 2 − 2κω2

pe

)2

+ξ 2κω2
peω

2
pi

(
ξ 2 − 2κω2

pe + 2ω2
0

) = 0. (24)

And one can obtain km:

km ≈
√

2
ωpe

vos

√
κ = ωpe√

γ0

√
γ 2

0 + 1

γ 2
0 − 1

. (25)

Equation (25) is valid both for thick foil cases (hole boring) and
thin foils cases (light sail). In the following, we present detailed
theoretical analysis [based on Eq. (25)] of the transverse
instabilities happening in these two regimes, and 2D PIC
simulations are systematically performed to verify the obtained
formulas.

A. Hole boring regime

In this case, if the laser is not very intense (i.e., the ion
depletion layer is much shorter than the compressed layer
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0
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kz [ω 0/c] 100-100

k      = 5.46

k      = 4.34

k      = 4.84

)b()a(

|F
F

T
 (

n
i/n

c)
|0.10

0.00

FIG. 10. The ion density fluctuations at t = 120ω−1
0 after the laser

impinges on the target in the case of a0 = 5, np0 = 10 nc. (a) The ion
density transverse ripples within the high-density layer and its line-out
distribution at z = 15.37 c/ω0 (the black dot line). (b) The FFT of the
ion density and its line-out distribution at kz = 0 (the green dot line).
ksim, knum, and kest are obtained from PIC simulations, from direct
numerical solutions of Eq. (7), and from Eq. (25), respectively.

composed of ions and electrons), we can still take the entire ion
high-density layer as a whole and assume a uniform density
profile (here ne 	= ni). In order to obtain the estimation of ωpe

and γ0, several relations needs to be derived. First, according
to a Fresnel-like boundary condition similar to Eq. (20), one
can get √

γ 2
0 − 1 = 2a0

ω0

ωpe

√
γ0. (26)

Then, by using the same model as Eqs. (17)–(19), one can
get the formulas of n̄e and n̄i within the high-density layer
as n̄e = 4np0(ls + ld )/ls and n̄i = 4np0, where ls , ld are the
lengths of compressed and depletion layers, respectively.

Finally, combining the above three equations with the
Poisson equation, one can get two simple expressions of the
relations between γ0 and ne as

γ0 − 1

γ0
= 4a2

0
nc

ne

, (27a)

ne − 4np0

nc

= a2
0

γ0
. (27b)

From Eqs. (27), ωpe = ω0
√

ne/nc and γ0 can be directly
calculated, and thus km can also be estimated.

In order to verify the above analysis, we performed a series
of 2D PIC simulations. Figure 10 gives a typical example. In
this simulation, a CP laser with a0 = 5 is used to interact with
a thick target with initial plasma density of np0 = 10 nc and
a thickness of d = 5 c/ω0. In Fig. 10(a) one can see the ion
density ripples are formed in the high-density layer at the ront
surface during the RPA process. After 2D FFT processing, as
shown in Fig. 10(b), a specific ky mode grows the fastest with
the value of 4.34 ω0/c, which has good agreement with the
estimated value 5.46 ω0/c from Eqs. (27) and Eq. (25), and
the numerical value 4.84 ω0/c from Eq. (7).

In Fig. 11(a) we plot the relation between km and a0 by fixing
the plasma density (np0 = 20 nc). One can see the three values
of km [km obtained from PIC simulation, from direct numerical
solution of Eq. (7), and from Eqs. (27) and Eq. (25)] have very
good agreement. In Fig. 11(b) we also plot the relation between
km and np0 by fixing a0 = 5. One can see the three values of
km are still very close to each other in a wide range of plasma
densities, and the ratio between ksim and kest is about 70%–80%.
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The small differences mainly come from the fact that ni is not
exactly 4np0 (ni < 4np0).

It is noted that Eqs. (27) are most reasonable in the
case of ld � ls that ions (electrons) can still be treated as
a single layer. From performed simulations, it is found that
the condition needs to roughly satisfy ld � 1/4 ls , which
can also be approximately written as a2

0 � (np0/nc)γ0. If the
laser intensity is very high such that the electrons are pushed
forward fiercely, leaving behind majority ions, Eqs. (27) are
not valid any more. In this case, we may evaluate ωpe only
from simulations and then calculate γ0 from Eq. (26).

Figure 12 shows an example of this case. We begin with
a0 = 5, np0 = 3 nc, and d = 20 c/ω0. In this simulation, the
laser pressure is so strong that (ld � 1/4 ls) is not satisfied.
Thus we can estimate ne ≈ 20 nc only from simulations. Then
the obtained mode number knum = 1.7 ω0/c from numerical
solutions of Eq. (7) and kest = 2.1 ω0/c from estimations of
Eq. (25) have good agreements with the simulation result
of 2.0 ω0/c. If applying Eqs. (27), we get knum = 0.8 ω0/c

and kest = 1.4 ω0/c, which seems quite distinctive from the
simulation results.

The extremity of km can also be approximately estimated if
we combine Eqs. (26) and (25) into a new form:

km = 2a0√
γ 2

0 − 1

√
γ 2

0 + 1

γ 2
0 − 1

. (28)

Since |γ0|max approximately equals a0 in most simulations for
high-laser intensity in the HB regime, from Eq. (28) one gets
|km|min ∼ 2. Several 2D PIC simulations have been performed
to verify this interesting trend. The results are shown in Table I.
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0 after laser

impinges on the target in the case of a0 = 5 and np0 = 3 nc. (a) The
ion density transverse ripples within the front high-density layer and
its line-out distribution at 26.24 c/ω0. (b) The FFT of the ion density
and its line-out distribution at kz = 0 (the green dot line). ksim, knum,
and kest are obtained from PIC simulations, from direct numerical
solutions of Eq. (7), and from Eq. (25), respectively.
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0 after the laser impinges on the target (c, d). (a, c) The ion
density distributions and their line-out distribution at z = 31.02 c/ω0

for (a) and 21.57 c/ω0 for (c) (the black dot line). (b, d) The FFT
of the ion density and its line-out distribution at kz = 0 (the green
dot line). ksim, knum, and kest are obtained from PIC simulations, from
direct numerical solutions of Eq. (7), and from Eq. (25), respectively.

B. Light sail regime

In the light sail process, a ultrathin foil is pushed and
accelerated by the laser pressure as a whole, and at the same
time the laser can partially propagate through it. Equation (25)
can still be valid in this case. However, ωpe and γ0 need to
be evaluated from simulations. To show the developments of
transverse instabilities and the related mode structures during
the LS regime, two 2D PIC simulations are presented in Fig. 13.

In Figs. 13(a) and 13(b), we set the input parameters as a0 =
2.5, np0 = 10 nc, and d = 0.4 c/ω0. At the time of t = 100ω−1

0
after laser impinges on the target, one can see density ripples
are induced in the whole target [Fig. 13(a)], and the mode wave
number in this simulation is 5.2 ω0/c, which is quite similar to
the estimated value 5.1 ω0/c from Eq. (25) and numerical value
4.5 from Eq. (7) [Fig. 13(b)]. In Figs. 13(c) and 13(d), we set
the input parameters as a0 = 1, np0 = 4 nc, and d = 0.4 c/ω0.
The mode wave number in this simulation is 4.2 ω0/c, which
is quite close to the estimated value 5.3 ω0/c from Eq. (25)
and numerical value 4.6 from Eq. (7) [Fig. 13(d)].

It is noted that for a very intense laser (a0 � 1), the
expression of the km mode will be simplified as km ≈ ωpe/

√
γ0

and approaching to 1 (i.e., |km|min ≈ 1) due to the relation
ωpe �

√
γ0.

TABLE I. 2D PIC simulation results in cases of a0/np0 � 1.

Simulation parameters ksim[ω0/c]

a0 = 10, np0 = 10nc, d = 20 c/ω0 1.9
a0 = 15, np0 = 10nc, d = 20 c/ω0 1.78
a0 = 20, np0 = 20nc, d = 20 c/ω0 1.88
a0 = 30, np0 = 20nc, d = 30 c/ω0 1.74
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V. CONCLUSIONS

In summary, transverse stability plays a crucial role for
obtaining high-quality ion beams using the RPA scheme. In
this paper we present a one-dimensional theoretical model
to explain the intrinsic physical mechanism of the transverse
density ripples induced in the RPA process. It turns out that the
instability mainly originates from the strong coupling between
transverse oscillating electrons and quasistatic ions via the pon-
deromotive force with spatial variations. The theory contains a
fully treatment of both electrostatic (ES) and electromagnetic
(EM) modes and confirms that the ES mode actually dominates
the whole RPA process at the early linear stage.

The predictions of the mode structure and growth rate have
good agreement with 2D PIC simulations for a wide range
of laser powers (laser a0 from 0.1 to 30, corresponding to
currently available TW to PW lasers). The discussed target
densities in the paper (from 4nc to 50nc) are chosen for the
consideration of limited computational amounts and relatively
lower than real solid targets. However, the basic physical
mechanism should be the same even for densities up to
100–1000nc, and simulations show that in the case, similar
mode structures can still be observed and are well consistent

with our estimations. Besides, in all the simulations mentioned
above, we adopt uniform laser intensity profiles for the exact
comparison with the theoretical model. For realistic cases of
laser pulses with nonuniform transverse profiles like Gaussian
[e.g., exp(−r2/w2

0)], density ripples with predicted mode
structures can still appear and grow in the central region of the
high-density layer as shown in the simulations of Ref. [40].

This theory is based on a dispersion relation analysis and
mainly suitable to describe the origin of transverse instability
at the early linear stage of several 1/ωpi . Once coming into the
nonlinear stage, significant distortion of the target and electron
heating effect can become crucial, leading to several other
kinds of instabilities involved in the latter process.
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