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Two-dimensional structures of electron bunches in relativistic plasma cavities
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The spatial structure of an ultralow-emittance electron bunch in a plasma wakefield blowout regime is studied.
The full Liénard-Wiechert potentials are considered for mutual interparticle interactions in the framework of the
equilibrium slice model. This model uses the quasistatic theory which allows one to solve the Liénard-Wiechert
potentials without knowledge of the electrons’ history. The equilibrium structure we find is similar to already
observed hexagonal lattices but shows topological defects. Scaling laws for interparticle distances are obtained
from numerical simulations and analytical estimations.
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I. INTRODUCTION

Plasma-based electron acceleration methods are known for
their high efficiency, which allows one to accelerate electrons
up to some GeV over much shorter distances than in con-
ventional accelerators [1]. In the field of laser-driven plasma
acceleration, the wakefield is excited by an intense laser pulse
with wavelength λL, duration τ , and focal spot size R [2,3].
In plasmas with homogeneous density, the wakefield breaks
as soon as the laser pulse intensity reaches a certain threshold
value and the normalized laser amplitude a0 > 1. If a0 > 4
and R > 2λL and if the laser pulse perfectly fits into the first
half of the plasma period, a solitary electronic cavity, called
the bubble, is formed [4–7]. It is a nearly spherical region
with uniform accelerating fields that propagates with almost
speed of light c [8] and traps background electrons at its tail.
The major features that characterize the bubble regime are
the quasimonoenergetic spectrum of the fast electrons and
a quasistatic laser pulse, which propagates many Rayleigh
lengths in homogeneous plasma without significant diffraction.
Another method to excite a plasma wakefield is to use a charged
particle beam with length σz, radius σr , and density nb [9,10]. If
the particle beam is thin, σz ≈ √

2k−1
p � σr , and if its density

much larger than the electron plasma density, a structure
similar to the bubble, the so-called blow-out, is created. In
both cases, a nearly harmonic wakefield potential accelerates
trapped electrons to high energies and focuses them to the axis
where they form a dense electron beam—the so-called beam
load.

Two promising methods to control the beam-load forma-
tion are the density down-ramp and the ionization injection
technique. Both methods produce witness electron beams with
sub-fs temporal duration, a very high peak current of several
kA, energy spreads well below 1%, and an excellent transverse
emittance [11–16]. The density down-ramp injection is reached
by a longitudinal modulation of the plasma density with
potentially extremely large gradients (also known as shock
fronts) [17–20]. The ionization injection requires a small
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amount of higher-Z gas, added to the gas used for acceleration
[21,22]. If the wakefield is driven by a short electron beam,
the Trojan horse regime of underdense photocathode plasma
wakefield acceleration is reached [23,24]. It is best suited
to decouple the electron bunch generation process from the
excitation of the accelerating plasma cavity. The combination
of the nonrelativistic intensities required for tunnel ionization
(1014 W/cm2), a localized release volume as small as the
laser focus, the greatly minimized transverse momenta, and
the rapid acceleration leads to dense phase-space packets.
In homogeneous plasma they can have ultralow normalized
transverse emittance in the bulk of μm mrad and a minimal
energy spread in the 0.1% range [23,25].

In addition to the aim to produce electron bunches with
highest energies and smallest transverse emittances, it is also
important to discuss the spatial beam-load structure. In some
recent experiments the length, the diameter, and the emittance
of the beam load were measured to determine the beam quality
[26,27]. If, however, the relativistic emittance falls below a
certain threshold value and if the electron energy is sufficiently
low, the interparticle interaction becomes important and starts
compensating the focusing force of the wakefield. We know
that this repelling force between two alongside-propagating
electrons [Fig. 1(a)] scales inversely proportional to their
energy E = γmec

2, where γ is the Lorentz factor and me

is the electron mass. If both particles propagate one behind
the other [Fig. 1(b)] the interaction force scales like 1/E2.
For this reason it is convenient to neglect any interparticle
interaction between accelerated electrons in the bubble regime
as long as the beam-load energy is in the GeV regime. For
much lower energies between some tens of MeV and some
hundreds of MeV and a transverse emittance of 10−9 m rad,
alongside-propagating neighboring electrons will repel each
other such that a spatial structure, which is known as the
equilibrium structure of the beam load, can be considered.
To analyze this structure a suitable description of the mutual
electron interaction in the bubble is necessary.

One method to describe a retarded interaction of electrons
within the bubble is to superpose the wakefield known from
a quasistatic model with the interaction field described by the
Liénard-Wiechert fields for relativistically moving pointlike
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FIG. 1. Schematic depiction of (a) two alongside-propagating
particles and (b) two particles propagating one behind the other in
the same direction.

charges. However, this approach would require knowledge of
the history of all electrons within the beam load. To circumvent
this disadvantage it is necessary to find an explicit expression
of the retarded time in terms of the actual system time, the
space variables, and the momentum variables. Once such an
expression is found and substituted into the Liénard-Wiechert
fields, a new quasistatic interaction model is derived. In
this way the approximation of the retarded time effects the
predicted equilibrium structure.

One important example for an interaction bubble model
incorporating an explicit expression of the retarded time is
introduced in Ref. [28] where two-dimensional (2D) and 3D
equilibrium distributions are calculated on the basis of a Taylor
expansion of the Liénard-Wiechert potentials in terms of v/c.
Here, the series is cut after the second order because higher
orders would require terms including the electron acceleration
and thus radiation effects, too. Another argument given in
Ref. [28] to cut the Taylor series after the second order is that
retardation effects during the interaction of charged particles
become small either if the particles move much slower than
the speed of light or if the distance traveled by light in the time
gap between the retarded time and actual time is large against
the mean electron distance. In the scope of this approach it
could be shown that the 2D equilibrium structure is similar to
Wigner crystals observed in other areas of plasma physics, like
dusty plasmas, while the 3D equilibrium distribution shows a
completely new spatial symmetry.

In our current work we discuss an approach which allows
us to calculate the retarded time with arbitrarily high precision
and without knowledge of the electrons’ history. We analyze
the mutual electron interaction with a moderate energy up to
some hundreds of MeV. At this energy level the interaction
force between two alongside-propagating electrons is more
than a hundred times stronger than it is for electrons traveling
one behind the other. Thus we subdivide the beam load into
multiple slices similar to the approach in Ref. [29] and discuss
the results of this equilibrium slice model (ESM) for zero
transverse emittance beam loads and full Liénard-Wiechert po-
tentials. Afterward we compare our results to the 2D structure
presented in Ref. [28] and discuss topological defects in the
symmetry of the equilibrium distributions. We find that, while
having a different size and more topological defects, similar
hexagonal lattices as before are observed. The differences in
size and number of defects can be explained by the more
precise modeling of the system without Taylor expansions.
An additional comparison of our numerical simulations to

FIG. 2. Schematic depiction of the random distribution on a
circular disk inside the bubble.

analytical scaling laws derived from a two-particle system
of alongside-propagating relativistic electrons shows that the
analytic scalings hold even for system with a much higher
number of particles.

II. THE MATHEMATICAL MODEL

In the following we derive the Hamiltonian for a system
of interacting alongside-accelerating relativistic electrons in
external potentials in a moving coordinate system. In the
scope of this model we analyze the equilibrium structure of
electrons which are distributed on a circular disk inside a 3D
bubble such that ξ = z − V0t is the same for all electrons
(Fig. 2, red dots on the yellow hyperplane). Here, z is the
propagation direction of the bubble, V0 is the bubble velocity,
and ξ is the particles’ longitudinal position inside the bubble
in the moving system. The equilibrium structure is found by
numerical simulations minimizing the Hamiltonian for the
special case that the external potentials are known from the
strongly simplified quasistatic 3D bubble model for electron
acceleration in homogeneous plasma [8]. In this model the
acceleration in the direction of propagation is just due to
the external electric field Ez = ∂�/∂ξ , where � = ϕ − Az =
(x2

i + y2
i + ξ 2

i )/8 is the wakefield potential.
The basic mathematical model for the electron-electron

interaction is the retarded Liénard Wiechert potentials ϕLW and
ALW, which originate from pointlike particles i with charge qi ,
position ri , and velocity vi at retarded time ti and are measured
at time t and position r:

ϕLW =
n∑

i=1

qi

|r(t) − ri(ti)| − vi (ti )
c

· [r(t) − ri(ti)]
, (1)

ALW =
n∑

i=1

qivi(ti)

|r(t) − ri(ti)| − vi (ti )
c

· [r(t) − ri(ti)]
. (2)

From now on we normalize time to the inverse plasma fre-

quency ω−1
p =

√
4πe2ne/me

−1
, lengths to the inverse plasma

wave number k−1
p = c/ωp, kinetic momenta to mec, energy to

mec
2, fields to mecωp/e, charges to the elementary charge e,

masses to the electron rest mass me, and potentials to mec
2/e.

To model the interparticle interaction by the Liénard-
Wiechert potentials it is necessary to know the history of all
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electrons within a slice or to find an explicit expression of the
retarded time ti in terms of the actual system time, the space
variables, and the momentum variables. In the following we
discuss the idea that all electrons in the slice are accelerated
coherently such that they have the same (time-dependent) pz

and ξ but different constant radial positions ri and thus pr = 0.
This approach is equivalent to the assumption that the electron
ensemble is already in equilibrium and that we seek to find its
spatial structure by minimizing the total energy of the system.

Since we assume that the kinetic energy of our electrons is
much larger than their rest energy, γ � γ0, and the solutions of
the equations of motion of a single not-interacting test electron
can be expressed in terms of the smallness parameter ε0 =
1/(2γ 2

0 ). Written up to the second order in ε0 the solutions are

pz = p0 − ξ0

2
(t − t0) − ε0

4
(t − t0)2,z = z0 +

∫ t

t0

pz

γ
dt ′.

(3)

For boundary conditions t0 = 0, z(t0) = ξ (t0) = ξ0, and
pz(t0) = p0, our approximations result in implicit expressions
for the positions and velocities of our electrons:

ri(t) =
⎛
⎝ xi,0

yi,0

ξ0 + ∫ t

0 vzdt ′

⎞
⎠, vi(t) = piz

γ
êz. (4)

In general, the retardation of time is given by tret = t − |ri(t) −
rj (tret)|, but for t = t0 = 0 the retarded time of the j th particle
simplifies to

tj = −|ri(t) − rj (tj )|

= −
√


x2
ij + 
y2

ij +
(∫ tj

0
vzdt

)2

, (5)

where 
xij = xi,0 − xj,0 and 
yij = yi,0 − yj,0 describe the
time-independent distance of particle i at time t to particle j

at time tj in the x or y direction, respectively.
Within this approach the particle positions are known

analytically but the retarded times tj still need to be computed
numerically. The retarded Liénard Wiechert potentials, created
by the j th particle and seen by the ith particle at time t ,
simplify to

ϕij = �qjγj

−γj tj + pzj

∫ tj
0 vzdt

, (6)

Aij = �qjpzj

−γj tj + pzj

∫ tj
0 vzdt

êz. (7)

Here, the prefactor� = re/λpe consists of the classical electron
radius re = 2πe2/(mec)2 and the plasma wavelength λpe. From
now on we use the index j to indicate that we are using
a variable that is given at the retarded time tj and index
i when dealing with the laboratory time t = 0. Then, the
corresponding n-particle system Lagrangian is

L ≈
n∑

i=1

[
− 1

γi

+ qivi · A(ri) − qiϕ(ri)

]

−
∑
i>j

(
1 − pizpjz

γiγj

)
qiϕij (8)

because all electrons move in one direction and have the same
momentum. The first term in brackets is the Lagrangian of a
free particle, while the second and third terms describe the
coupling of the ith electron to the external potential. The last
sum incorporates the retarded electron-electron interaction.

To calculate the Hamiltonian we need to know the canonical
momentum πi of each particle, which in principle is the strict
derivative of the Lagrangian with respect to the velocity vi .
Instead we, analogous to the calculation by Landau-Lifshitz
[30], consider the term describing the interaction as perturba-
tion. Then

πi = ∂L

∂vi

≡ pi + qiA(ri), vi = πi − qiA(ri)

γi

, (9)

and we only have to change the signs of the interaction parts.
Furthermore, we perform a canonical transformation to the
comoving frame, described by the coordinate ξ . Then

H =
n∑

i=1

[
γi + qi�(ri) − piz +

∑
i>j

(
1 − pizpjz

γiγj

)
qiϕij

]
.

(10)

Since we will be using an iterative algorithm to find the
energetic minimum of the system, we need the gradient of
our Hamiltonian, which is given by

∇i⊥H = 1

2

(
xi0

yi0

)
+

∑
j �=i

(
1 − pizpjz

γiγj

)
∇i⊥ϕij

−
∑
j �=i

ϕij

(
piz

γi

∂

∂pjz

pjz

γj

∂pjz

∂tj
∇i⊥tj + pjz

γj

∇i⊥
piz

γi

)
,

(11)

where ∇i⊥ = êx∂xi
+ êy∂yi

. We cover the numerical procedure
in further detail in Sec. IV, where we also present our numerical
findings. In the next section we calculate the dependencies
of the interparticle distance in equilibrium on our simulation
parameters analytically, such that we can compare these to our
simulation results.

III. SCALING LAWS

In the following we derive scaling laws for the mean inter-
particle distance 
r depending on the particles’ energy and the
plasma wavelength. To find an analytic expression, we consider
the interaction of two equally charged alongside-propagating
relativistic particles which experience two counteracting forces
along their separation direction. The first force is the repelling
interaction force F⊥ which can be calculated from the Liénard-
Wiechert potentials. The second force is an external force
Fext which focused the particles to the origin but does not
accelerate them in the direction of motion. Similar to the
mathematical model we assume that the particles are resting in
their equilibrium positions and calculate their distance. Due to
the Colulomb interaction being a strictly two-particle effect in
classical physics, we consider the interaction in the n-particle
system as the sum of many two-particle interactions. In the
following we conclude the scaling of the n-particle system
from the two-particle case by separation of the contributions
of the single parameters. This approach is rather heuristic but
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holds for our simulations, as can be seen in the following
section.

Starting from the scalar potential ϕ, we have

ϕ = �
q1q2

|r1(t) − r2(t2)| − v2(t2) · [r1 − r2(t2)]

= �
q1q2

d12
· 1

1 − n2 · v2(t2)
, (12)

where

n2 = d12

d12
, t2 = −d12, d12 = |r1(t) − r2(t2)|. (13)

Further, we have

F1 = −q1∇ϕ + q1v1 × (∇ × A),

v1 = v1êz = v2êz = v2 = const., (14)

so that

F⊥ = F1 = −F2 = −q1
(
1 − v2

1

)⎛⎝∂x

∂y

0

⎞
⎠ϕ12, (15)

r2(t2) = r2(t) − d12v1. (16)

It is r1(t) − r2(t) ⊥ v1 so that the retarded time becomes

t2 = −|r1(t) − r2(t)|γ = −dγ. (17)

We consider electrons with velocity vz ≈ 1, thus v = |v1| =
|v2| ≈ 1 and q1 = q2 = −1. Further, we assume that the
electrons are located on the x axis. Then, with Eqs. (17) and
(16) the interaction force is

Fx ≈ − �

γ 2

∂

∂x

1

d12 − [z1 − z2(t2)]v
, (18)

where

d12 = |r1 − r2|γ = dγ, d = x1 − x2. (19)

Since z1(t) = z2(t), Eq. (16) gives

z1 − z2(t2) = dγ v, d12 − [z1 − z2(t2)]v = d

γ
, (20)

and thus

Fx = − �

γ 2

∂

∂x

γ

d
= �

γ

1

d2
. (21)

In equilibrium the magnitude of this force must be equal to the
magnitude of the external force. In the bubble regime |Fext| =
r/2, where 
r = d = 2r due to the symmetry of the system
such that


r = 3

√
4re

λpeγ
(22)

in normalized units and


r = 3

√
re

2π3

(
λpe√

γ

)2/3

∝ p−1/3λ2/3
pe (23)

in cgs units. This scaling holds for all systems of two alongside-
propagating electrons with constant velocity and constant
distance. In the mathematical model of the two-dimensional
beam-load slice these conditions are fulfilled in part because we

assumed that all electrons have fixed radial positions and move
with the same longitudinal velocity. This velocity, however, is
not constant because we consider all particles to be accelerated
coherently in the bubble in the longitudinal direction. Further,
the physical system of the slice is an n-particle system but the
interaction is modeled as a sum of two-particle interactions.
Thus we expect that the scaling (23) holds for an arbitrary high
but fixed number of electrons. The dependency on n in turn
must be determined numerically and we do so in the following
section. Moreover, we show that the idea of separating the
single-parameter dependencies holds in our simulations.

Another important point regarding scaling laws is a com-
parison of our approach to the one presented in Ref. [28]. Here,
a Taylor expansion of the Liénard-Wiechert potentials in terms
of v/c was used to find the radially repelling interaction force

FTR ∝ �
1


r2

(
1

γ
+ v2

2

)
, (24)

while the external force Fext = r/2 is the same as in our model.
In the limit v2 ≈ 1 the equilibrium condition is


r3
TR ∝ 2�

(
1

γ
+ 1

2

)
, (25)

so that


rTR ∝ 3

√
1

γ
+ 1

2
λ2/3

pe (26)

in cgs units. If we consider large electron energies γ � 2, the
square root in Eq. (26) can be expanded in terms of γ −1 and
the scaling of the mean electron distance in a 2D slice in the
beam load becomes


rTR ∝ 2−2/3λ2/3
pe + 22/3

3
λ2/3

pe γ −1. (27)

If we compare 
rTR to the scaling law in Eq. (23), we see that


rTR


rLW
∝ 3

√
γ

2
+ 1

3

(
2

γ

)2/3

. (28)

For high electron energies the second term approaches zero
and


rTR


rLW
∝ 3

√
γ . (29)

This estimation clearly shows that the mean electron-
equilibrium distances in the interaction model [28] are more
than one order of magnitude larger than those predicted by
our theory if the electrons have an energy in the near-GeV
regime. For energies in the lower-MeV regime the difference
between the distances predicted by the models is rather small
and definitely in the same order.

IV. THE 2D EQUILIBRIUM STATE

In this section we present the numerical method we use
to minimize the Hamiltonian in Eq. (10) and discuss the
equilibrium structure in the 2D beam-load slices we find. In
this context we compare the predictions of the scaling laws
from the previous section to our numerical simulations for
a fixed number of electrons and discuss topological defects.
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FIG. 3. Final distribution of a simulation with a momentum of
p = 125 MeV/c and n = 1000 electrons with λpe = 0.01 cm.

Furthermore, the scaling of the mean particle distance in the
equilibrium structure with the number of electrons is analyzed.

For our simulations we choose the steepest descent method
to find the equilibrium structures. It is an iterative algorithm,

Xk+1 = Xk − ∇kH · 
t, (30)

that shifts the particles’ positions Xk = (rk
1, . . . ,r

k
n) at time

step k contrary to the direction of the gradient known from
Eq. (11). The step size 
t is appropriately chosen in order
to obtain the distribution X0 = (x1,0,y1,0, . . . ,xn,0,yn,0), such
that (∇XH )[X0] vanishes.

We distribute a fixed number of 100, 1000, or 4000 electrons
randomly on a circular disk with a fixed ξ coordinate (see
Fig. 2) inside the bubble and see hexagonal lattices as spatial
equilibrium distribution (Fig. 3), analogous to Ref. [28].

In our simulations we vary the electron momenta between
25 and 500 MeV/c and observe a decrease in the mean particle
distance 
r with increasing momentum which scales like


rphy ∝ p−1/3, (31)
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FIG. 4. Dependence of the mean particle distance for different
momenta for n = 100, 1000, and 4000 electrons with λpe = 0.01 cm.

2 4 6 8 10

pe [cm] 10-3

0.4

0.6

0.8

1

1.2

1.4

1.6

av
er

ag
e 

pa
rt

ic
le

 d
is

ta
nc

e 
[n

m
]

n = 100
n = 1000
n = 4000

FIG. 5. Dependence of the mean particle distance for different
plasma wavelengths. The simulations were done at 125 MeV/c for
n = 100, 1000, and 4000 electrons.

as can be seen from the fit in Fig. 4. Here, 
rphy is the average
distance between the nearest neighbors in the lattice in cgs
units given by a Delaunay triangulation [31]. Regarding the
scaling of 
r in dependence of the plasma wavelength λpe,
Fig. 5 shows that


rphy ∝ λ2/3
pe . (32)

These numerical scalings are in excellent agreement with
our analytical approach in Eq. (23) in the section above.
Furthermore, they coincide with the findings of Ref. [28],
although our approach yields the correct prefactors.

For an increasing number of electrons we observe a decreas-
ing trend for the mean distance between particles which scales
like


rphy ∝ n−0.14. (33)

The corresponding fit in Fig. 6 shows an excellent correspon-
dence.

Due to the confinement of the electrons in the harmonic
bubble potential and their endeavor to repel each other, a
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FIG. 6. Dependence of the mean particle distance for a different
number of electrons and a constant momentum of 125 MeV/c with
λpe = 0.01 cm.

013201-5



LARS REICHWEIN, JOHANNES THOMAS, AND ALEXANDER PUKHOV PHYSICAL REVIEW E 98, 013201 (2018)

FIG. 7. Topological defects in a lattice consisting of 500
electrons. Marked as red triangles are electrons with a topological
charge of −1, and marked as blue squares are particles with a
topological charge of +1.

high amount of stress onto the lattice structure is produced.
In order to reduce this stress, topological defects can arise.
A topological defect is a deviation in the number of nearest
neighbors from the reference value. We find these again with
a Delaunay triangulation [31] such that we get the topological
charge Qtop of each electron:

Qtop = Q̃ − Qnn. (34)

Here Q̃ is the reference value (in the case of our ideally
hexagonal lattice Q̃ = 6) and Qnn is the actual number of
nearest neighbors. A topological defect exists if Qtop �= 0.
Especially eye-catching is the formation of defect chains
(alternating red triangles and blue squares in Fig. 7): electrons
with only five nearest neighbors hold at least one neighbor that
holds seven nearest neighbors of its own, etc. The increase of
topological defects with increasing momentum is among other
things explained by the higher stress put onto the lattice.

Regarding the density of our 2D distribution, we expect that
the number of particles grows quadratically with the radius of
the distribution for a constant density (Fig. 8). However, we can
see that there is a higher electron density in the middle of the
distribution, which declines towards the edge. This is mainly
due to the fact that a transition between the hexagonal structure
of the lattice and the circular symmetry of the confining
potential is needed. Differences between the density gradients
for different momenta or numbers of electrons, respectively,
are negligible.

Different from Ref. [28], where mean interparticle distances
in the range of 
rphy ≈ 1 nm were observed for p = 270
MeV/c and n = 4000 electrons at a plasma wavelength
of λpe = 11 μm, our current approach predicts an average
distance of 
rphy ≈ 0.18 nm. This is in good agreement
with our analytic comparison in the previous section. For
lower energies and larger plasma wavelengths, we observe
interparticle distances in the nanometer range (Fig. 4), since
on this scale electric and magnetic fields do not compensate
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FIG. 8. Depiction of the number of electrons in dependence of the
observed radius of the final distribution for different momenta. The
dashed line depicts the reference curve of a constant surface density.

completely. Since we are able to calculate tj with higher
accuracy, we incorporate more of the retardation effects and
therefore observe more deviations from a perfect hexagonal
lattice than in Ref. [28]; i.e., more topological defects arise.

V. CONCLUSION

We have presented a method to find an explicit expression
of the retarded time in terms of the actual system time, the
space variables, and the momentum variables in order to avoid
needing knowledge of the history of all electrons in a 2D
beam-load slice. After substituting the retarded time into the
Liénard-Wiechert potentials we introduced an ESM for rela-
tivistically moving pointlike test electrons as a superposition
of the Liénard-Wiechert fields and the confining field from a
quasistatic analytical bubble model. Since the model for the
retarded time defines the interaction of the electrons, it also
determines the equilibrium structure.

We derived scaling laws from a two-particle system of
alongside-propagating relativistic electrons. These scalings fit
perfectly to our numerical results even for a much higher
number of particles. The equilibrium structure for many-
particle systems is a hexagonal lattice, similar to the ones
observed [28]. However, our approach yields smaller mean
electron-electron distances. In the context of scaling laws we
also showed that the difference between the distances predicted
by models scales like 3

√
γ . This is a moderate deviation for

energies up to some hundreds of MeV. Finally, we discussed
the existence of topological defects as a mean of reducing the
stress onto the lattice, which is important for higher energies
since a transition between the hexagonal lattice structure and
the parabolic confinement of the external field needs to be
made.
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