
PHYSICAL REVIEW E 98, 013106 (2018)

Estimating stable and unstable sets and their role as transport barriers in stochastic flows
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We consider the situation of a large-scale stationary flow subjected to small-scale fluctuations. Assuming
that the stable and unstable manifolds of the large-scale flow are known, we quantify the mean behavior and
stochastic fluctuations of particles close to the unperturbed stable and unstable manifolds and their evolution in
time. The mean defines a smooth curve in physical space, while the variance provides a time- and space-dependent
quantitative estimate where particles are likely to be found. This allows us to quantify transport properties such as
the expected volume of mixing as the result of the stochastic fluctuations of the transport barriers. We corroborate
our analytical findings with numerical simulations in both compressible and incompressible flow situations. We
moreover demonstrate the intimate connection of our results with finite-time Lyapunov exponent fields, and with
spatial mixing regions.
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I. INTRODUCTION

Lagrangian coherent structures [1–3] have a well-
established importance in fluid flows. Loosely speaking, they
consist of fluid regions which move “almost” coherently, and
their boundaries act as transport barriers separating the inside
of the structure from the outside, at least for some time.
The boundaries of Lagrangian structures are analogs of stable
and/or unstable manifolds. In applications these boundaries
are identified using a variety of different techniques which
take into account that data are usually only known for finite
times [4,5]. The analysis of these time-varying boundaries
(which, confusingly, are themselves sometimes referred to as
Lagrangian coherent structures) between coherent fluid blobs
has seen many recent applications, ranging from geophysical
[6] to microfluidic [7] scales. Environmental applications
include oil spills [8], garbage in the ocean [9], coral protection
[10], plankton distribution [11], ozone depletion [12], transport
of biological spores [13], and atmospheric wind hazards
near airports [14]. Additional applications include determin-
ing a “skeleton for turbulence” [2,15], microfluidic mixing
optimization [7], and fisheries [6]. In essentially all these
applications, the velocity field is considered deterministic.

Most realistic flow situations are, however, typically of a
stochastic nature, related to the uncertainties present in any
data, model, or simulation [16–19]. The stochasticity naturally
enters coarse-grained macroscopic degrees of freedom, that is,
those which we observe, in a multiscale setting. Recent work
has extended the classical deterministic framework of Eulerian
partial differential equations for fluid flows to stochastic partial
differential equations [20–25] where the stochasticity enters on
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the side of the Lagrangian particle dynamics. The stochasticity
arises as the integrated effect of the fast small-scale degrees
of freedom by the process of homogenization [25–28], and
describes the effect of the unresolved fast processes onto the
resolved slow degrees of freedom. Thus, there is a need to
incorporate the effect of stochasticity into the deterministic ap-
proaches for understanding and quantifying transport between
coherent structures. The natural extension from deterministic
intuition may be to think of stable and unstable manifolds of
the stochastic system to demarcate transport barriers. While
there exists deep theory for defining stable and unstable mani-
folds in stochastic differential equations (usually falling under
“random dynamical systems” approaches) [29–38], there is
at present little insight on how such theory can be adapted
to quantify transport barriers, and/or determine mixing across
these.

In this paper, we restrict to two-dimensional flows, moti-
vated by the fact that oceanic flows are weakly two dimensional
in that there is dominant flow on two-dimensional isopycnal
surfaces [39]. Since these surfaces are not necessarily uni-
formly spaced, three-dimensional incompressibility does not
translate to two-dimensional divergence-free velocity fields
on each surface, and therefore we allow for general com-
pressibility in our work. We consider the following idealized
situation: We assume that there is a large-scale flow which is
slowly varying in time and which can be viewed as steady
for some characteristic time scale τc. The large-scale flow
is subjected to small-scale disturbances which we model as
a stochastic forcing of the large-scale flow, along the lines
described above. Let us assume that we have knowledge of the
stable and/or unstable manifold of the deterministic large-scale
flow from some coarse-grained measurements at some time t1.
Our aim here is to describe the effect of the stochasticity on
the temporal evolution of these manifolds. More specifically:
extending the notion of stable and unstable manifolds in this
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setting, and quantifying transport and mixing properties and
their uncertainty.

The presence of stochasticity destroys the natural notions
of stable and unstable manifolds, necessitating a definition
of what a backward-time or forward-time flow barrier is.
Following a recently developed idea for general curves in
two-dimensional flows [40], our approach here is to study
the statistics of the initial-time flow barrier over many real-
izations of the noise. For each realization we define stable and
unstable sets which are determined by flowing in time the
initially known locations of the stable and unstable manifolds.
Depending on an interpretation of how the driving noise is
implemented, these sets can take different forms. If the same
noise realization is used across all initial conditions, we are
in the classical domain of random dynamical systems, in
which the stable and unstable sets are indeed smooth curves
for each realization, and therefore can be termed (random)
stable and unstable manifolds [29–38]. On the other hand,
we introduce in this paper an alternative scenario, in which
the noise realizations are nonuniform across initial positions.
This corresponds to the viewpoint that each fluid particle is
subject to a different noise realization. The stable and unstable
sets in this case will consist of an uncountable collection of
points which do not form a curve. The statistical behavior of
the stable and unstable sets in either case is characterized by
their mean, a smooth curve in space, and their variance. The
former identifies the average location of particles, while the
latter quantifies the width or uncertainty of the mean behavior.
It is this uncertainty quantification of transport barriers, albeit
in a simplified setting, that forms the main contribution of this
article.

We remark that uncertainty quantification of propagating
structures typically has two aspects: the uncertainty in the
identification at the initial time, and the uncertainty engendered
through propagation by uncertain velocities. We address here
the latter aspect, assuming that the stable and unstable mani-
folds are known at some initial time. In identifying transport
barriers (i.e., analogs of stable and unstable manifolds) over
a finite-time duration, we note that this is nonunique even
in deterministic flows [41]. This has led to the preponder-
ance of different methods, often called “Lagrangian coherent
structure” (LCS) methods, which continue to be developed to
identify these (for reviews, see [1,3,41,42]). These methods
include ridges of finite-time Lyapunov exponents (FTLEs)
[1,43–50], curves or surfaces towards which there is extremal
repulsion or attraction [1,51–56], sets which are “almost
coherent” with respect to the operation of a transfer operator
[57–61], identification of vorticity cores or oscillations [62,63],
etc. Thus, the very definition of “transport barrier” at some
finite time is ambiguous. If following finite-time Lyapunov
exponent ideas, for example, one is seeking the infinite-time
property of stable (unstable) manifolds as initial conditions
which decay exponentially in forward (backward) times; how-
ever, in finite-time situations, any continuous function f of
time t in a finite-time interval can be bounded in the form
|f (t)| � Aeλt , where λ is any given positive constant, by
choosing A appropriately. Thus, exponential stretching is no
more than a diagnostic for determining (an analog of) a stable
or unstable manifold; using ridges of finite-time Lyapunov
exponents does not constitute a watertight way of defining

stable and unstable manifolds [50,51]. On the other hand, it
has come to be expected that some types of transport barriers
in finite-time flows (those which are analogous to stable and
unstable manifolds) carry an exponential stretching signature.
We verify this property in the first example that we consider, an
incompressible flow in Sec. III, in validating our uncertainty
theory for transport barriers under stochastic perturbations.

An advantage of our approach is that it enables a spatial
quantification of the mixing imparted by the stochasticity,
complementing the notion of partitioning space into regions
which are dominantly coherent under noise [58,59,64,65]. The
fluctuations around the mean curve lead to the potential for
transport between regions which, in the absence of stochas-
ticity, would be identified as separate physical regions. We
argue that the variance (with respect to realizations of the
noise) describes the leakiness between the regions separated by
the mean curves. The leakiness is an averaged mean quantity
and does not describe the behavior of a single particle but
rather of an ensemble of particles. From a practical perspective,
the crucial insight is that, under the assumption of ergodicity
of the stochastic dynamical system, the variance is related
to the relative volume of mass of an initial distribution of
particles that will be leaking at a specified finite time. This
quantity is important, for example, when estimating the spatial
distribution of oil spills and knowledge of the time-dependent
spatially varying variance around the mean curve can be used
to assess the extent of further oil contamination. Our second
example, focusing on Taylor-Green flow in Sec. IV, validates
that our theory correctly identifies mixing regions and their
evolution with time.

The paper is organized as follows. In Sec. II we present
the theory for the time evolution of stochastically perturbed
stable and unstable manifolds. This provides explicit analytical
formulas for the mean of the stable and unstable sets as well
as their variances. We show that the variance, as a measure
of uncertainty, saturates under generic conditions. Section III
applies the theory to an example of a compressible flow and
presents numerical simulations illustrating the ability of our
framework to capture the statistics of Lagrangian particle
dynamics near stochastically perturbed stable and unstable
manifolds. Moreover, we show that our analytical framework
identifies structures which are aligned with FTLE ridges,
with the ridge thickness variation being predicted by our
theoretical variance. Section IV then treats an incompressible
flow example, and shows how the ideas of transport barriers
developed in the deterministic situation can be extended to the
stochastic case. We show that the interchange of fluids across
the transport barrier is spatially correlated to the variance of
the stable and unstable sets. We conclude in Sec. V with a
discussion and an outlook.

II. MANIFOLD UNCERTAINTY

A. Stable and unstable sets

Let x ∈ �, where � is a two-dimensional connected open
set. Let v : � → R2 be (sufficiently) smooth, and consider the
deterministic dynamical system

ẋ = v(x). (1)
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FIG. 1. Stable (�s) and unstable (�u) manifolds of the fixed point
a of (1).

If v is a velocity field of a fluid, then solutions to (1) are flow
trajectories. We restrict here to a slowly varying large-scale
flow which can be considered as steady for times smaller
than some characteristic time scale τc. For such flows, (1)
can be considered the leading-order approximation. Suppose
(1) possesses a hyperbolic fixed point a to which is attached
a one-dimensional stable manifold �s and a one-dimensional
unstable manifold �u [66]. These are shown by the thick curves
in Fig. 1, and are respectively parametrized by xs(t) and xu(t),
both solutions of (1). In deterministic systems (1) manifolds
of this sort are specifically important since they are flow
separators (flow barriers, transport barriers) in terms of particle
trajectories. Consider, for example, a blob of fluid placed on
top of the stable manifold �s as shown in Fig. 1. As this blob
evolves according to (1), it eventually gets close to a. At this
point, it is strongly influenced by the unstable manifold �u,
and the blob gets stretched (exponentially fast) along �u. Thus,
particles in the blob which were on one side of �s get stretched
in one direction, while those on the other side of the blob
are stretched in the other direction. In this sense, �s is a flow
separator in forward time. Similarly, �u is a flow separator in
backward time. We remark that these interpretations continue
to hold when v is unsteady; in this instance a is not a fixed
point, but a time-varying trajectory to which is attached stable
and unstable manifolds. The flow-barrier property is well
known, and is a fundamental reason why finite-time analogs of
stable and unstable manifolds (e.g., strong ridges of finite-time
Lyapunov exponent fields [3], curves to which there is maximal
attraction [1], etc.) are investigated numerically as flow barriers
in realistic flows.

We want to determine the intuitive counterparts to these,
i.e., intuitive flow barriers, when the coarse-grained large-scale
flow (1) is subjected to small-scale fluctuation. We model the
resulting flow by a stochastically perturbed version of (1). We
assume that the unstable and stable manifolds are known at
some time t1, and aim to determine their subsequent evolution
and uncertainty up to some time t which is smaller than the
characteristic time scale of the large-scale flow τc. We will
discuss this under two slightly different interpretations of the
perturbing stochastic differential equation (SDE).

We first consider the Itô stochastic differential equation
(SDE)

dy = v(y) dt + ε σ (y,t)dWt (2)

for y ∈ � for initial condition y(t1) = ζ . Here, ε is a di-
mensionless parameter representing the size (|ε| � 1) of the
stochasticity, dWt is two-dimensional Brownian motion, and σ

is a 2×2 matrix with components σij , in general both spatially
and temporally dependent, incorporating anisotropic diffusion.
In the form (2) above, the first term is the “drift” and the second
the “diffusion” associated with the variable y. The SDE (2),
if interpreted as the Lagrangian description of fluid parcels,
assumes the same realization of noise Wt for all fluid particles.
This model is what is usually studied in the framework of slow
manifolds in random dynamical systems, which establishes
the existence of smooth manifolds for each noise realization
[29–38]. The manifolds can be initialized at time t1 by choosing
a collection of initial conditions for the ζ . The time t , until
which we plan to describe the manifold evolution can be any
value such that |t − t1| � τc, the characteristic timescale of the
large-scale flow, to assure steadiness of the manifolds �u,s . The
unstable manifold is propagated forward in time with t > t1
whereas the stable manifold is propagated backward in time
with t < t1.

We also consider a slightly different viewpoint in which
each initial condition is allowed to be driven by independent
noise realizations. In particular, we consider

dy(ζ ) = v(y(ζ )) dt + ε σ (y(ζ ),t)dW
(ζ )
t , (3)

where y(ζ ) denotes conditioning on the initial value y(t1) = ζ ,
and the noise realization is independent with E[W (ζ )

t W
(ξ )
s ] =

δ(ζ − ξ )δ(t − s). This is a broader modeling framework in
which a correlation between the noise experienced by all
particles, as in (2), is not assumed. A principal computational
advantage of this viewpoint is the ability to efficiently capture
many stochastic realizations simultaneously when doing a
forward simulation in time. For brevity, we will call (2) an
SDE driven by uniform noise and (3) driven by nonuniform
noise, to refer to the fact that the noise realization used in each
simulation is uniform or nonuniform in the initial condition,
respectively. In the remainder we use the term “simulation” to
express one implementation of (2) or (3) over a time interval,
for a given collection of initial conditions.

The systems (2) and (3) can alternatively be thought of
in the weak sense via the same corresponding Fokker-Planck
equation

∂ρ

∂t
+ ∇ · (ρv) = ε2

2
∇ · ∇ · (ρ σσ�), (4)

which encodes how densities ρ(y,t) evolve under the flow [67].
Since solutions y to (2) or (3) are random processes, any

entities analogous to stable and unstable manifolds of the
deterministic system (1) are themselves random. There are
well-established methods to account for stable and unstable
manifold displacements due to deterministic perturbations
using, for example, the Melnikov function [4]. Here, we extend
this notion to stochastic perturbations.

We first consider stochastically perturbed unstable mani-
folds. For the deterministic flow, �u is defined in terms of the
set of points which approaches a as t → −∞. Thus, setting
σ (y,t) = 0 for t < t1 is a technical trick which enables the
identification of the random unstable manifold at time t1 to
be precisely �u. Its continuation in time is then obtained
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by flowing forward in time from t1 onwards. To formalize
the definition, we first note that the deterministic unstable
manifold �u can be parametrized as a solution xu(t) of (1),
where xu(t) → a as t → −∞. (This highlights the necessity
of requiring infinite times in order to define the unstable
manifold �u in the standard way for deterministic systems.)
Thus, �u := ⋃

p∈R xu(p). The random unstable set Gu(t) is
now defined by

Gu(t) :=
⋃
p∈R

{yu(p,t) : yu(p,t) solves (2)/(3)

with yu(p,t1) = xu(t1 − t + p)}. (5)

The initial condition yu(p,t1) = xu(t1 − t + p) is chosen to
ensure that the time-evolved state yu(p,t) will be close to xu(p)
at time t [for the deterministic case with σ = 0 we would
have yu(p,t) = xu(p)]. Upon varying the initial condition
xu(t1 − t + p) over p, the full deterministic unstable manifold
�u is used as the initial condition at time t1. Since points on
�u at t = t1 asymptote to a as t → −∞ (because there is no
stochasticity imposed when t < t1), so will points on Gu(t)
for any t . Thus, our definition complies with the notion of
pullback attractors (see for example [29]). We note moreover
that definition (5) is generalizable to the situation where the
ODE (1) is in Rn, and the perturbed unstable set is associated
with an (any-dimensional) unstable manifold of any invariant
submanifold a, as long as the stochasticity is assumed to be
zero for t < t1.

Depending on whether the stochastic system employs uni-
form noise as in (2) or nonuniform noise as in (3), the unstable
set Gu(t) will have different characteristics. If the same noise
realization is used for every initial point on the manifold for
each forward-time simulation as in (2), Gu(t) will be a smooth
curve for fixed time slice t . Indeed, in this situation, it is
possible to define Gu(t) as the random unstable manifold for
(2), and there are many results which establish its smoothness
in more generality [29,30,33–38]. We show in Fig. 2(a) a
schematic for Gu(t) (green curve) at a time instance t , in this
situation.

On the other hand, if we use (3) to define the random
unstable set Gu(t), then it will not be smooth because each

initial point xu(t1 − t + p) experiences a different noise real-
ization in a forward-time simulation. We display in Fig. 2(b) a
schematic of the set Gu(t) in this case, bearing in mind that this
is a finite representation of the uncountable number of points
comprising Gu(t). We note that while the random unstable
set associated with uniform noise using (2) could be de-
fined for infinite-time stochasticity using alternative methods
[29–31,33–38], it cannot be extended to infinite times in an
obvious way for nonuniform noise using (3). Moreover, the
actual computational construction of stochastic slow manifolds
in the sense of [29] for the uniform noise case (2) is based on
noise convolutions which involve unknown anticipating future
noise terms. The most lucid construction is provided by a
normal form transformation [32,68] but requires knowledge
of future unknown noise which may be heuristically replaced
by additive noise terms. The restriction to a finite value
of t circumvents this problem, suggesting a straightforward
computational construction which works equally well for
describing the statistics associated with random unstable sets
for uniform and for nonuniform noise.

Next, we provide an analogous definition for the finite-time
random stable set Gs(t) for t < t1. The stable manifold �s

is defined at time t = t1 for the deterministic flow (1) by
�s := ⋃

p∈R xs(p), in which xs(t) is a solution to (1) obeying
xs(t) → a as t → ∞. For the stochastic flow (2), we take �s

as an “initial” condition at time t1, and run (2) backwards in
time to time t . This requires viewing the SDEs (2) and (3) as
backward stochastic differential equations which, like their
forward counterparts, have well-defined solutions over a finite
time under certain smoothness assumptions [69]. Using this
backwards time approach, the random stable set Gs(t) is the
set of points which asymptotically approaches a as t → ∞.
We therefore define the random stable set Gs(t) by

Gs(t) :=
⋃
p∈R

{ys(p,t) : ys(p,t) solves (2)/(3)

with ys(p,t1) = xs(t1 − t + p)}. (6)

The set Gs(t) will be either a smooth random stable manifold,
or an uncountable collection of points depending on whether
the noise is uniform as in (2) or nonuniform as in (3).

�u

Gu(t)

a

xu�p�

n
�u
�p�

Nu�p,t�

�u

Gu(t)

a

xu�p�

n
�u
�p�

Nu�p,t�

(a) (b)

FIG. 2. Illustration of the geometry of the finite-time random unstable set Gu(t) (green curve) in a time slice t and the deterministic unstable
manifold �u (dashed yellow curve). (a) For the SDE (2) with uniform noise, Gu(t) is a smooth curve. (b) For the SDE (3) with nonuniform
noise Gu(t), is an uncountable collection of random points.
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B. Uncertainty of stable and unstable sets

The random stable and unstable sets differ for each re-
alization of noise. To enable a statistical description of this
variation, we characterize their mean and variance with respect
to realizations of the driving Brownian noise. We first examine
the uncertainty associated with the unstable set Gu(t). While
the geometric nature of the sets Gu(t) is inherently different for
uniform and nonuniform noise (cf. Fig. 2), our theory applies to
either case. To define the displacement from the deterministic
manifold �u, we fix p ∈ R, and let

n̂u(p) := v⊥(xu(p))
|v(xu(p))| (7)

be the unit normal vector to �u at the location xu(p). Here, the
⊥ operation on vectors in R2 denotes rotation by +π/2, that
is,

h⊥ :=
(

0 −1
1 0

)
h. (8)

Let t > t1 be finite. For yu(p,t) ∈ Gu(t), we define the random
normal displacement by

Nu(p,t) := [yu(p,t) − xu(p)] · n̂u(p) (9)

which represents the normal displacement of Gu(t) with
respect to �u, at locations parametrized by p, and at times

t > t1. The reader is referred to Fig. 2 for a geometric depiction
of the displacement.

We now look at the statistics of the displacement in terms
of averaging over different realizations of the driving noise. To
elucidate the leading order behavior of Nu, we consider the
random variable

Ñu(p,t) := lim
ε→0

Nu(p,t)

ε
. (10)

By adapting the stochastic curve theory of [40], we show in
Appendix A that the leading-order expectation of the normal
displacement is zero, i.e.,

E[Ñu(p,t)] = 0 for all p, (11)

where the expectation value is taken with respect to all
Brownian driving paths. This relies on Itô’s lemma [70,71]
being applied to (2) to determine the evolution equation
for the random variable yu(p,t) to first order. The mean
over realizations of the unstable set Gu(t) is therefore the
deterministic unstable manifold �u, independent of t .

Next, we define the standard deviation, a measure for the
uncertainty, of the leading-order normal displacement by

wu(p,t) :=
√

Var[Ñu(p,t)]. (12)

Appendix A shows that the methods of [40] (which rely on the
Itô isometry [70,71]) can be adapted to obtain

wu(p,t) =
[ ∫ t

t1
e2

∫ t

τ
[∇·v](xu(ξ−t+p))dξ

∣∣σ�(xu(τ −t+p),τ )v⊥(xu(τ −t+p))|2dτ
]1/2

|v(xu(p))| , (13)

in which σ� is the transpose of the matrix σ . Thus, εwu(p,t)
gives an expression for the leading-order uncertainty of the
normal displacement between Gu(t) and �u at a location p,
and at a time instance t . In contrast with the random variable
Nu(p,t), wu(p,t) is smooth in p even for nonuniform noise
as in (3). We note that the expressions (11) and (13) work for
either of the interpretations (2) or (3) because in deriving the
expressions, p is considered fixed (see Appendix A).

The uncertainty (13) associated with the unstable set mono-
tonically increases with time t , representing the accumula-
tion of stochastic effects as time progresses. However, under
generic conditions (σ is bounded), we show in Appendix B
that as t increases, wu(p,t) approaches a constant value at
any particular point xu(p) on �u, and does so exponentially
fast. The saturation of the uncertainty of the flow barrier
is related to approaching the invariant density of the cor-
responding Fokker-Planck system (4). If the time required
to reach statistical equilibrium is less that the characteristic
timescale τc of the large-scale flow, we may set in our
formulas t → ∞. We numerically verify that this saturation
occurs rapidly in the Taylor-Green example we analyze in
Sec. IV.

The limit p → −∞ in (13) provides the uncertainty at the
saddle point a. This limit is computed exactly as described
in Sec. 3.5 of [72], where a similar limit is computed for a
comparable expression (this argument is similar in spirit to

that presented in Appendix B for the limit t → ∞ as well).
We find that

wu(−∞,t) = eλs t

(∫ t

t1

e−2λsτ
∣∣σ�(a,τ )ê⊥

u

∣∣2
dτ

)1/2

, (14)

and this uncertainty is measured in the direction ê⊥
u from a

[i.e., n̂u(p) → ê⊥
u as p → −∞]. The vectors ês and êu are the

normalized eigenvectors of the Jacobian matrix ∇v(a) with
corresponding eigenvaluesλs < 0 andλu > 0, tangential to the
stable and unstable manifolds at a, respectively. The appear-
ance of the complementary eigenvalue λs when considering an
uncertainty of the unstable manifold in the v⊥

u direction is to
be noted.

Let us return to the general expression (13) for the un-
certainty wu(p,t). There are two simplifications which occur
under regularly considered cases:

(i) If the fluid is incompressible with ∇ · v = 0, the entire
exponential factor in (13) simplifies to 1.

(ii) If the diffusion is isotropic and independent of space
and time, then σ = Id (but let us suppose it retains the
appropriate dimensions). This allows theσ term to be discarded
from (13). Moreover, since |v⊥| = |v|, the ⊥ symbol on the v

in the integrand can be removed.
If both the above simplifications are in operation, then the

uncertainty formula (13) reduces to the particularly simple
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form

wu(p,t) =
[ ∫ t

t1
|v(xu(τ − t + p))|2dτ

]1/2

|v(xu(p))| . (15)

This is the temporal L2 norm of the quantity
|v(xu(τ − t + p))|/|v(xu(p))|, which represents the fractional
speed at a time-varying point in relation to that at the final
point xu(p) (occurring at τ = t). The along-manifold velocity
variations therefore impact the across-manifold uncertainties;
an intuitive explanation is that the along-manifold velocity
variation is directly linked to that across the manifold because
of incompressibility.

If only simplification (ii) applies, the uncertainty at a

[Eq. (14)] is explicitly integrated to give

wu(−∞,t) = eλs t

(
e−2λs t − e−2λs t1

−2λs

)1/2

, (16)

and if additionally ∇ · v = 0, the condition λs = −λu can be
applied.

The general expression for the standard deviation (13)
allows for the definition of uncertainty regions around �u. At
any time instance t , we define

Ru
α(t) :=

⋃
p

{xu(p) + αrε wu(p,t)n̂u(p) : r ∈ [−1,1]}. (17)

The parameter α represents how many standard deviations
around �u the region is, and therefore Ru

α defines a region
of uncertainty of the stochastic unstable sets Gu(t), to leading
order in ε. While there is no obvious reason to expect that

the unstable sets are normally distributed around the unstable
manifold �u (indeed, in our numerical simulations they are
not), a choice α = 2 (which would represent a 95% confidence
interval for an assumed normal distribution) appears reason-
able for capturing the bulk of the uncertainty.

An analogous characterization is possible for the displace-
ment of the random stable set Gs(t). We define

n̂s(p) := v⊥(xs(p))
|v(xs(p))| (18)

and for t < t1 consider

Ns(p,t) := [ys(p,t) − xs(p)] · n̂s(p). (19)

As before, we expect E[Ns(p,t)] = O(ε), motivating the
definition

Ñ s(p,t) := lim
ε→0

Ns(p,t)

ε
. (20)

The proofs for the unstable manifold furnished in Appendix A
go through for the stable manifold with no substantive change.
In particular,

E[Ñ s(p,t)] = 0 for all p, (21)

implying that the mean of the stable sets over different
realizations of the Brownian driving noise is given by the stable
manifold �s . The standard deviation defined by

ws(p,t) :=
√

Var[Ñ s(p,t)] (22)

yields the uncertainty measure

ws(p,t) =
[ ∫ t1

t
e2

∫ t

τ
[∇·v](xs (ξ−t+p))dξ

∣∣σ�(xs(τ −t+p),τ )v⊥(xs(τ −t+p))|2dτ
]1/2

|v(xs(p))| . (23)

Our previous discussions on simplifications under incom-
pressibility and isotropic diffusion for wu apply equally for
(23). Moreover, saturation of ws(p,t) is to be expected as
t → −∞ for bounded σ . The uncertainty at a in the direction
ê⊥
s is obtained by taking the limit p → ∞ in (23), which leads

to

ws(∞,t) = eλut

(∫ t1

t

e−2λuτ |σ�(a,τ )ê⊥
s |2 dτ

)1/2

. (24)

The corresponding expression under σ = Id is

ws(∞,t) = eλut

(
e−2λut − e−2λut1

2λu

)1/2

. (25)

In general, the region of uncertainty is

Rs
α(t) :=

⋃
p

{xs(p) + αrε ws(p,t)n̂s(p) : r ∈ [−1,1]}, (26)

which quantifies the fuzziness of the stable manifold when
subjected to a (small) stochastic perturbation.

In the next two sections, we consider two specific examples.
In the first example in Sec. III, we examine the perturbations
to the stable manifold for uniform and nonuniform noises as
in (2) and (3) for a velocity which is not area preserving. Our

focus here is directly on the manifolds and their uncertainty, but
we will also compare our uncertainty measures to the spatial
structure of a noise-averaged exponential stretching measure.
In the second example, we study a stochastically perturbed
area-preserving flow and show how our analytical expressions
can be used to quantify fluid transport across stochastic
Lagrangian structures. Specifically, this example relates our
measures to spatial mixing regions near the stable manifold.

III. STOCHASTIC SETS RESPECT EXPONENTIAL
STRETCHING: A COMPRESSIBLE EXAMPLE

The deterministic base flow we consider for this example is
given by

ẋ1 = −4x1 + x2
1

ẋ2 = 3x2 − x3
2

}
, (27)

which is not area preserving. The part of the phase plane of
interest to us is shown in Fig. 3. The focus shall be on the
stochastic perturbation to the stable manifold �s of (0,0) as
shown in green. The relevant parametric representation for this,
as a solution to (27), is

xs(p) =
(

4/(1 + e4p)
0

)
; p ∈ R.
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�s

�0,0� �4,0�

�0, 3 � �4, 3 �

0,� 3 4,� 3

FIG. 3. The phase plane of (27), with the stable manifold of
interest �s shown in green.

The analytical formula (23) for the uncertainty measure ws

along the stable curve requires the calculation of the quantities

v(xs(τ − t + p)) =
(−16e4(τ−t+p)/(1 + e4(τ−t+p))2

0

)

and

[∇ · v](xs(τ − t + p)) = −1 + 8

1 + e4(τ−t+p)
.

After some algebra (not shown), the leading-order uncertainty
of the stable manifold (23) reduces to

ws(p,t) = e3t

{∫ t1

t

e−6τ

[
σ 2

21

(
4

1 + e4(τ−t+p)
,0,τ

)

+ σ 2
22

(
4

1 + e4(τ−t+p)
,0,τ

)]
dτ

}1/2

, (28)

where σij represent the components of the diffusion matrix.
For the computations in this section, we choose

σ11 = 1, σ12 =0, σ21 =x2 − 1 and

σ22 = 3 sin (2πx1)e0.8x1

which support a nontrivial dependency along the deterministic
stable manifold x2 = 0.

We will now study the stable set Gs(t) with t1 = 2. To
numerically solve the SDEs (2) and (3), we employ the Euler-
Maruyama scheme [73,74]. There are two competing issues in
choosing ε and the time step �t for the numerical simulations:
ε
√

�t must be much smaller than �t (i.e., |ε| � √
�t) to

ensure that the stochasticity appears as a perturbation, while
�t must itself be small for better accuracy of the method. In the
following, we use ε = 0.02 and �t = 0.01 unless otherwise
specified.

Let us first compute the stable curve Gs(t = 0) for the
system (27) driven by uniform noise, in which each initial
condition is propagated with the same realization of the noise
as in (2). To do so, we seed 4000 particles along y2 = 0, equally
spaced between x1 = 0 and 0.004 at time t1 = 2, and advect
(2) backward in time to t = 0. The stable curve Gs(0) (green)
associated with one single simulation is shown in Fig. 4(a).
We now show that the average behavior of the stable curves
Gs(t) with respect to different realizations of the noise is well
described by our theory, where the mean is given by �s [up
to O(ε2)] and the standard deviation by ws(p,t). In Fig. 4(b),
we present a histogram using 100 000 independent simulations
(each seeded with 4000 initial particles), formed by counting
the proportion of the 4×108 points within each bin of size
(0.0525×0.01) in the displayed domain at time t = 0. It is
clearly seen that the contour lines of the histogram align well
with the regions Rs

α(0) of the uncertainty.
We next numerically generate the random stable set Gs(t =

0) for the system (27) driven by nonuniform noise, as in the
class of SDEs (3). Figure 5(a) shows Gs(t = 0) obtained for a
single simulation; it is now a collection of points as opposed to
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5

(a) (b)

10-3

FIG. 4. Smooth stable set Gs(t = 0) of the stochastic flow associated with (27) driven by uniform noise with ε = 0.02 from time t1 = 2. (a)
Single simulation (green). (b) Histogram from 100 000 simulations. The black curves depict the α = 1 (thick dashed line), α = 2 (thin dashed
line), and α = 3 (dotted line) standard deviation envelopes Rs

α(t = 0) [cf. (26) using the analytical expression (28) for ws(p,t)].
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FIG. 5. Stable set Gs(t = 0) of the stochastic flow associated with (3) driven by nonuniform noise with ε = 0.02 from time t1 = 2. (a)
Single simulation (green dots). (b) Histogram from 1000 simulations. The black curves depict the α = 1 (thick dashed line), α = 2 (thin dashed
line), and α = 3 (dotted line) standard deviation regions Rs

α(t = 0) [cf. (26) using the analytical expression (28) for ws(p,t)].

the smooth curve depicted in Fig. 4(a). The histogram over real-
izations of the noise is shown in Fig. 5(b) and resembles the his-
togram obtained for the SDE (2) driven by uniform noise shown
in Fig. 4(b). Note that the average is taken here only with 1000
realizations whereas in the uniform nosie case we used 100 000
realizations. As the Fokker-Planck equation (4) is identical for
the two SDEs (2) and (3), we can interpret the simulation of
the nonuniform noise case (3) as an effective computational
tool to determine the statistical behavior of an ensemble of
realizations of the noise for the uniform noise case (2).

Our theory gives the mean and standard deviations of the
instantaneous normal distance Ns of the stable curve Gs(t)
to the stable manifold �s [cf. (19)]. We now numerically
verify these expressions, validating also that these expressions
are correct to order ε. To determine the statistics of scatter
around the point (1.5,0) on the stable manifold at time t = 0,
we advect backwards from time t1 = 2 from the point
(0.000 696 8,0). This is the point from which (1.5,0) maps
under deterministic advection from t = 0 to t1 = 2, and is
associated with p = 0.127 71. Since we are considering only
one initial condition, the systems (2) and (3) are equivalent
for this experiment. The quantity Ns (in this case Ns = x2

because n̂s is the unit vector in the x2 direction) is computed
for each of M = 104 simulations. The empirical probability
density function f (Ns) is shown in Fig. 6 for several values
of ε together with a normal probability density function with
the mean and variance given by our theoretical predictions;
the mean is zero according to (21) and the standard deviation
εws(0.127 71,0) is computed from (23). The simulations also
illustrate the interesting fact that the actual density function
clearly does not converge to a Gaussian; in all our simulations
we observed a sharper peak at zero. The spread of the density,
however, clearly exhibits convergence as ε → 0. Our theory
provides an O(ε) expression for the standard deviation, and
thus this value should be accurate up to O(ε2). We explore this
in Fig. 6(d), where we use M simulations for each ε to plot the

logarithm of the error

E =
∣∣∣∣∣∣
√√√√ 1

M

M∑
j=1

(
x

(j )
2 (0)

)2 − εws(0.127 71,0)

∣∣∣∣∣∣ (29)

between the theoretical and numerical standard deviations
against ε, where x

(j )
2 (0) is the x2 coordinate at time t = 0 of the

j th ensemble member with initial condition x1(t1) = 0.127 71
and x2 = 0. In this region, the error appears to go as ε2.5,
confirming the scaling O(ε2) as discussed above.

We next compute the finite-time Lyapunov exponent
(FTLE) field, whose strong ridges help identify stable man-
ifolds in the deterministic setting. Forward-time FTLE fields
are the relevant diagnostics for stable manifolds since particles
on the stable manifold will be exponentially stretched apart
by the complementary unstable manifold attached to (0,0)
as visible in Fig. 3. The FTLEs at a time t are the finite-
time averages of the maximum expansion rate for a pair
of particles propagated by (2) over the time interval [t,t1]
(see, for example, [3] on the computation of FTLEs). Monte
Carlo methods for FTLE fields are now emerging as a tool
in stochastic situations [18,19,75–79]. Following these ideas,
we seed 200×400 particles in the same domain displayed in
Fig. 4 at time t = 0. The particles are then advected forward in
time with the dynamics (2) to time t1 = 2, and the resulting
FTLE field is computed. Figure 7(a) shows a clear ridge
of the FTLE field, indicative of the stable manifold curve
Gs(t = 0). Exactly as for deterministic flows, this sharp ridge
is an indication that for that particular realization of noise, the
stable curve is smooth. Since recent work legitimizes taking
the expectation over many simulations [79], in Fig. 7(b) we
show the averaged FTLE field across 100 000 simulations, of
which (a) is one. The statistical spread of the stretching fields
displays a “fattening” associated with the uncertainty of the
stable set. We have used a nonlinear scaling on the color bar to
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FIG. 6. (a)–(c) Analysis of the normal statistics of Ns = x2 at the (1.5,0) for the stochastic flow associated with (27) driven by uniform
noise from time t1 = 2 to t = 0, for the values (a) ε = 0.02, (b) ε = 0.007, and (c) ε = 0.002. Shown is the empirical probability density
function f (Ns) of the simulation (red circles) using M = 104 simulations, and a reference normal probability density function with variance
given by the theoretical values εws(0.127 71,0) as computed from (23) and mean zero as computed from (21) (blue curves). (d) The error E in
the standard deviation versus ε in these simulations (red circles), in a log-log plot. The slope obtained by linear regression is 2.48.

FIG. 7. The forward FTLE field computed at time t = 0 for the stochastic flow associated with (27) driven by uniform noise until time
t1 = 2, using identical conditions and notation as in Fig. 4. (a) One single simulation, and (b) the mean of 100 000 simulations using a nonlinearly
scaled color bar. The black curves depict the α = 1 (thick dashed line), α = 2 (thin dashed line), and α = 3 (dotted line) standard deviation
regions Rs

α(t = 0) [cf. (26) using the analytical expression (28) for ws(p,t)].
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elucidate the variation in the (rarely visited) outer flanges, for
an effective comparison with the theory even up to the three
standard-deviation level. Our theoretical regions Rs

α(0) capture
the undulating nature of the averaged FTLE field excellently,
implying that the spatial structure of the exponential stretching
statistics is well recovered by our theory.

We remark that performing the FTLE calculation using
the nonuniform model (3) does not make sense because the
presence of different noise realizations in adjacent trajectories
generates a flow map which is not smooth. The spatial gradients
of the flow map then acquire large values which are additional
to those arising from exponential separation.

IV. STOCHASTIC SETS GOVERN TRANSPORT:
TAYLOR-GREEN FLOW

The previous example illustrated that the theory for the
uncertainty of stochastic stable sets was consistent with both
the actual stochastic evolution of a curve positioned on the
stable manifold �s at some final time, as well as the distribution
of exponential stretching as quantified by FTLEs. We now
explore the implications associated with the uncertainties to
quantitatively understand transport across the deterministic
flow barriers.

The deterministic base flow we examine here is the area-
preserving Taylor-Green flow [4], also known as planar cellular
flow:

ẋ1 = − sin (πx1) cos (πx2)
ẋ2 = cos (πx1) sin (πx2)

}
. (30)

Its phase portrait, which consists of a periodic array of counter-
rotating vortices, is depicted in Fig. 8. We wish to relate the un-
certainty of the heteroclinic manifold (shown in green in Fig. 8)
with the transport occurring between the upper and lower cells
under stochastic perturbations. Particles within the cells get fed
into the transport region by coming in towards the point (1,0)
and then getting pulled along by this heteroclinic manifold;
hence for the study of how particles are advected in forward
time and diffuse across these two cells, it is their location with
respect to the unstable manifold �u which is pertinent.

�u

�0,0� �1,0�

�0,1� �1,1�

0,�1 1,�1

FIG. 8. The phase plane of the Taylor-Green flow (30), with the
transport barrier between the upper and lower cells shown in green.

We note that here ∇ · v = 0, and moreover

xu(p) =
(

2
π

tan−1(e−πp)
0

)
and

v(xu(τ −t+p)) =
(−2 sech[π (τ −t+p)]

0

)
.

For general σ , performing the algebra on (13) leads to

wu(p,t) =
( ∫ t

t1
sech2[π (τ −t+p)]

[
σ 2

21(x1(τ −t+p),0,τ ) + σ 2
22(x1(τ −t+p),0,τ )

]
dτ

)1/2

sech(πp)
, (31)

where

x1(p) := 2

π
tan−1(e−πp) (32)

is the relationship between the x1 coordinate along �u and its
p parametrization.

We examine the case σ = Id, in which case (31) can be
integrated explicitly to yield

wu(p,t) = cosh (πp)

(
tanh [πp] − tanh [π (t1 − t + p)]

π

)1/2

.

After using the relationship (32) to represent wu in terms of
the location x1 ∈ (0,1] along �u rather than p, the explicit
uncertainty measure is evaluated as

w̃u(x1,t) := wu(p,t) = 1√
π{coth [π (t − t1)] − cos (πx1)} .

(33)

This is not zero as x1 → 1, and the limiting value coincides
with the unstable manifold uncertainty expression wu(−∞,t)
“at saddle-point” given in (14). However, w̃u becomes un-
bounded as x1 → 0+, influenced by the stable manifold at
(0,0). This can be understood by realizing that any small pertur-
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bation near x1 � 0 will be impacted by the strong exponential
stretching in backward time due to the unstable manifold.
Another interesting observation is that w̃u in (33) is mono-
tonically increasing in t at each fixed location x1 (representing
an increase in uncertainty with time), but saturates rapidly to

w̃u(x1,∞) = 1√
2π

csc

(
πx1

2

)
, (34)

defining a long-term uncertainty with respect to the location
x1 on �u. This is a special case of the expected convergence to
a limiting long-term uncertainty as shown in Appendix B. The
existence of a constant limiting long-term uncertainty reflects
the fact that the number of particles leaving a cell equals on
average the number of particles entering a cell, allowing for a
statistical equilibrium.

We now relate these expressions for the uncertainty to
mixing. Specifically, we focus on the fact that, in the absence
of stochasticity, the unstable manifold �u forms a flow barrier
between the upper and lower cells in Fig. 8. Fluid which swirls
around in each cell and approaches x2 = 0 from near x1 = 1
remains separated by �u as it travels near x2 = 0. The inclusion
of stochasticity destroys the “flow barrier,” thereby causing
mixing between the fluids of the upper and lower cells. The
spatial distribution of this mixing is directly controlled by the
uncertainty regions Ru

α given by our theory, as we now verify.
For our numerical verification, we seed the entirety of the upper
cell with a uniform grid of 1000×2000 particles at time t1 = 0,
and advect it with the stochastically perturbed flow (with
σ = Id and ε = 0.1), using the Euler-Maruyama scheme with
�t = 0.01. To obtain an efficient statistical description, we
choose the SDE driven by nonuniform noise (3) rather than (2)
driven by uniform noise, and perform only one simulation. In
effect, we perform a Monte Carlo approximation of the Fokker-
Planck equation (4) with the initial density being the Lebesgue
measure on the two cells. [We cross validated this computation
by directly simulating the Fokker-Planck equation (4) using a
spectral scheme with Crank-Nicolson time stepping, using as
our initial density each of (i) uniform density in the top cell,
(ii) uniform density in the bottom cell, and (iii) Dirac density
supported on �u (not shown).]

Since our focus is on particles which escape into the lower
cell, we use periodic boundary conditions for x1 ∈ [0,1] to
ensure that particles escaping from the left and right sides
are fed back into the cell. We focus on a mixing zone near
x2 = 0, in particular choosing the region (x1,x2) ∈ [0.1,0.9] ×
[−0.1,0.1] (we exclude regions near x1 = 0 and 1 to minimize
periodic boundary condition effects). We bin this region into
boxes of width 0.025 and height 0.005. We show in Fig. 9(a) the
histogram of the particles at time t = 2 which were initially
at t1 = 0 in the upper cell. The dashed blue curves are the
α = 1 (thick) and α = 2 (thin) standard deviation envelopes of
Ru

α(t) computed using (33); that is, the curves x2 = ±εw̃(x1,t)
(thick) and x2 = ±2εw̃(x1,t) (thin). These curves, which
demarcate the uncertainty around the mean of the unstable set,
align well with the density contour lines of the simulation.
The larger density in the upper-right region is associated
with regions well divorced from the mixing region, that is
outside the uncertainty region Ru

α(t). The “leakage” of the
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FIG. 9. Mixing characterization of Taylor–Green flow from time
t1 = 0 to t = 2, using uniformly seeded particles in the upper and
lower cells. In all cases, the blue dashed lines depict the α = 1
(thick) and α = 2 (thin) standard deviation envelopes Ru

α(t) computed
using (33). (a) Upper fluid histogram, (b) Lower fluid histogram, (c)
Histogram of the covariance function ci(t = 2) as given in (35).
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upper fluid into the lower cell is seen to be spatially correlated
with the fact that the uncertainty region Ru

α(t) extrudes into
the lower cell. Moreover, the fact that the uncertainty region
Ru

α(t) also ventures into the upper cell is displayed by the fact
that there is a smaller density in the region defined by Ru

α(t)
about x2 = 0 in comparison to regions well above x2 = 0.
Figure 9(b) is a similar histogram, but now of the lower fluid,
i.e., particles seeded uniformly in the lower cell at time t1 = 0,
and advected stochastically until t = 2. Once again, the ability
of the uncertainty regions of the unstable set to describe the
probability density function of the fluid particles is apparent.

To further quantify mixing between the cells, we define a
covariance-like quantity as follows. Let ui and li represent the
number of “upper” and “lower” fluid particles which are in bin
i at time t , and ū and l̄ be the average number of particles in
each bin, with the average taken over all the bins in our mixing
zone. Then, we define the covariance function

ci(t) := [ui(t) − ū(t)][li(t) − l̄(t)] (35)

for each cell i. One or the other of the two terms in (35) is close
to zero in regions in which only one of the fluid types dominate,
and therefore ci is expected to be small in such regions. In
contrast, ci will be larger in regions in which both fluid types
are present, i.e., regions of strong mixing between upper and
lower fluids. The histogram of ci(2) is shown in Fig. 9(c).
As expected, the spatial distribution of the mixing measure ci

indeed strongly correlates with the uncertainty envelopes of the
unstable set. The dashed blue curves identifying Ru

α=1(t) align
with these contours of the covariance. That is, we have verified
that the uncertainty measure Ru

α(t) quantifies the spatial mixing
regions between cells.

Next, we analyze the temporal evolution of the mixing.
Figure 10 shows the covariance function ci(t) as a function
of the final time t . The solid green curves drawn in each
figure are the curves x2 = ±εw̃u(x1,∞), with the saturated
variance of the unstable set w̃u(x1,∞) as given in (34). At
each time pictured in Fig. 10, the blue dashed curves Ru

α(t)
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FIG. 10. Mixing characterization of Taylor-Green flow from time t1 = 0, using the contours of the covariance ci (t) [cf. (35)], with parameters
and curve descriptions as in Fig. 9. The final times for the figures are (a) t = 0.1, (b) t = 0.4, (c) t = 1, and (d) t = 7. The solid green curve
represents the saturated uncertainty as defined by (34), to which Ru

α=1(t) is seen to converge as t increases.
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FIG. 11. Exactly as in Fig. 10, the covariance ci(t) is shown for the temporally and spatially varying diffusion σ as defined in (36) rather
than σ = Id. The final times are (a) t = 0.1, (b) t = 0.4, (c) t = 1, and (d) t = 7.

(for each t) describe the spatial variation of the covariance
(35) remarkably well. As time increases, the increase in
uncertainty is captured by the fact that the blue dashed curves
are progressing outwards. However, this increase in uncertainty
saturates rapidly with time. Specifically, Ru

α=1(t) appears to
have converged by t = 1 to the green curves, which mark
the saturation. Moreover, the dominant characteristics of the
covariance contours at t = 1 are not very different from those
at t = 7, and in both these situations the thick blue dashed
curves associated with Ru

α=1(t) are virtually indistinguishable
from the solid green curve representing the saturated variance
around the unstable manifold �u.

Finally, we illustrate that our theory also describes the
spatial mixing for diffusion matrices which are temporally and
spatially varying. We choose here

σ11 = 1, σ12 = 0, σ21 = 0,

σ22 = sech
(
x1 − 1

2

)
cos (5πx1) tanh (t)

}
. (36)

In this case, an explicit expression as in (34) for the saturated
uncertainty cannot be given. However, it can be numerically
computed using (31) for t 	 1. Figure 11 displays the covari-
ance field ci(t). The highly mixing region expands from being
compressed near x2 = 0 at t = 0.1, and saturates as expected
(at a slower rate than for σ = Id). The spatial variation of
the uncertainty region Rα(t) at each time t , and its temporal
evolution describes the numerically observed spatial mixing
remarkably well.

V. DISCUSSION AND OUTLOOK

We have developed a framework to study the effect of small
stochastic noise on the transport and mixing properties of two-
dimensional fluid flow situations. We considered the idealized
situations of a well-defined slowly varying large-scale flow
subjected to small-scale noise, where we have access to the
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associated stable or unstable manifolds at some fixed time. We
extended the notion of stable and unstable invariant manifolds
to noisy stable and unstable sets, by tracking the evolution
respectively in backward and forward time. These sets are
smooth curves for stochastic dynamical systems which employ
the same noise realization for each initial condition, but are an
uncountable collection of points when each initial condition
is evolved with its own Brownian noise driver. The mean
and variance of the displacement of these curves from the
associated deterministic stable and unstable manifolds at any
finite time are calculated in the presence of small noise. The
mean displacement is, to leading order in the noise parameter,
zero, consistent with the heuristic expectation that the mean
stable and unstable sets remain close to their deterministic
counterparts. The variance is a measure of the fuzziness of
these stable and unstable sets and quantifies how different
realizations of the noise vary around the mean. As such,
we provide an easily expressible theoretical quantification
of statistical properties of the random stable and unstable
manifolds. The theory can also be applied for an unsteady
velocity field v(x,t) as long as we are able to identify the stable
and unstable manifolds at a given time t1. In other words, the
theory works to quantify the uncertainty due to propagation,
assuming that at an initial time, the manifold is known.

We validate in numerical simulations that the coherent
sets identified by the mean of the stable and unstable sets
coincide with the ridges of the FTLEs. Whereas this is well
established in the deterministic context, the application of
FTLEs in the stochastic, or equivalently diffusive [18,77,78],
context is less well explored. Moreover the variance the-
ory that we developed was shown to capture the spatial
structure of the averaged FTLE field, thereby providing an
explicit method for ascribing an uncertainty in the location of
ridges.

From a practical perspective, our formulas quantify the
expected transport of Lagrangian tracers across stochastically
perturbed transport barriers. In particular, we use the variance
of stable and unstable sets around their mean to determine the
physical region in space which on average will be mixed at a
given time. These well-defined mixing regions Rα(t) allow
us to specify, via α, the probability of finding mixing and
leakage across the mean of the stable and unstable sets. This
can be used to determine, for example, the possible extent of
environmental pollution such as oil spills, together with an
uncertainty quantification based on any given model for the
diffusivity matrix σ .

The analytical expressions we found require knowledge
about the deterministic vector field as well as the diffusive
behavior (for example, by means of eddy dispersion, drifter
separation, or alternative model for stochasticity [80–83]).
Conversely, information about the extent of the mixing region
and the fuzziness of the transport barriers may allow us to find
estimates on the diffusion tensor given only measurements
of the mean flow and the mixing region. This can be used

to cross validate the estimation of the diffusion tensor by
oceanographers using eddy dispersion or drifter separation.
Although this does not allow for the determination of each
individual component of the diffusion tensor, the estimation of
the variance allows for the estimation of the diffusivity across
the mean stable and unstable curves. In the case presented in
Sec. IV, the formula (31) for the width of the transport barrier
allows to determine, for example, σ 2

12 + σ 2
22.

ACKNOWLEDGMENTS

We thank T. Roberts for numerous stimulating discussions
and his generous sharing of his expertise. The authors acknowl-
edge partial support from the Australian Research Council:
S.B. through Grants No. FT130100484 and No. DP170100277,
and G.A.G. through Grant No. DP180101385.

APPENDIX A: PROOF OF THE EXPECTATION
AND UNCERTAINTY EXPRESSIONS (11) AND (13)

It will be necessary to first describe the results obtained
in [40] in the notation of this paper. The idea in [40] is to
determine the difference between an advected curve of

ẋ = v(x,t) (A1)

and

dy = v(y,t)dt + εσ (y,t)dWt (A2)

from the time t1 to a general time t . The initial condition (at
time t1) for both equations is a curve C given parametrically
by x(q,t1) where q is a parameter, and any parametric repre-
sentation is permitted. Let x(q,t) represent the final advected
curve at time t according to the deterministic advection (A1),
and y(q,t) be the stochastically advected curve according to
(A2), subject to the condition y(q,t1) = x(q,t1). From this
point onwards, we treat q as fixed. Define a moving normal
on the deterministic curve at a general time τ ∈ [t1,t] by

n̂(q,τ ) := ∂x(q,τ )

∂q

/∣∣∣∣∂x(q,τ )

∂q

∣∣∣∣
and the normal displacement at time t by

N (q,t) := [y(q,t) − x(q,t)] · n̂(q,t).

Then, using an application of Itô’s lemma, it was shown in [40]
that

N (q,t) =
ε
∫ t

t1
e
∫ t

τ
[∇·v](x(q,ξ ),ξ )dξ

([
∂x(q,τ )

∂q

]⊥)�
σ (x(q,τ ),τ)dWτ∣∣ ∂x(q,t)

∂q

∣∣ ,

to leading order in ε. It is immediately clear that
E[N (q,t)]/ε = 0 since the integrand is of a deterministic
function with respect to Brownian motion and yields zero
[70,71], and thus (11) will result. Moreover, it is shown in
[40] with the help of the Itô isometry [70,71] that

√
Var[N (q,t)] =

ε
( ∫ t

t1
e2

∫ t

τ
[∇·v](x(q,ξ ),ξ )dξ

∣∣σ�(x(q,τ ),τ )
(

∂x(q,τ )
∂q

)⊥∣∣2
dτ

)1/2∣∣ ∂x(q,t)
∂q

∣∣ (A3)
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to leading order in ε. The task is to now convert (A3) into
(13) since slightly different conditions are in operation in this
paper. The first is that v is steady; this is easily implemented by
simply neglecting the second argument of v. The more subtle
issue is to decide on the proper parametrization for C [which
is parametrized by q in the form x(q,t1)], which in the present
context must be the unstable manifold �u. We know that the
trajectory xu(p) parametrizes �u, and so we define for τ ∈
[t1,t]

x(q,τ ) := xu(τ − t + p). (A4)

Therefore, x(q,t1) = xu(t1 − t + p), and thus we set q =
p + t1 − t as the (linear) relationship between the q and the
p parametrizations. In fact, this is the reason why xu in
the definition for Gu in (5) is associated with the argument
t1 − t + p, i.e., q. Differentiating (A4), we get

∂x(q,τ )

∂q
= ∂xu(τ − t + p)

∂p
= v(xu(τ − t + p)),

where we have used the fact that xu is a solution to (1). There-
fore, ∂x/∂q can simply be replaced by v (with appropriate
arguments as obtained from the above expression) in (A3).
Because of the definition (10), what is shown in (13) is the
O(ε) term of (A3), and thereby (13) has been derived. We note
in particular that this works at each fixed p.

The results of (21) and (23) associated with stochastic
perturbations to the stable manifold �s are similarly derived;
here the main difference is that the curve C is �s instead and we
need to propagate backward in time. Hence, we take x(q,τ ) =
xs(τ − t + p) for τ < t1, and we relate the parameters by
q = p + t1 − t because x(q,t1) = xs(t1 − t + p).

APPENDIX B: SATURATION OF UNCERTAINTY
EXPRESSION (13)

Here, we provide a quick heuristic justification for our claim
that if the diffusion matrix σ is bounded, the uncertainty (13)
saturates as t increases. In examining (13) at large t , we observe
that xu(τ − t + p) → a. Indeed, for large t it is true that

xu(τ − t + p) ∼ a + c eλu(τ−t+p)êu

for some constant c (reflecting a choice of the parametrization
along �u). Then, v(xu(τ − t + p)) is simply the τ derivative
of this, and so

v(xu(τ − t + p)) ∼ cλue
λu(τ−t+p)êu.

Next, we observe that as t → ∞, ∇ · v → λs + λu, which is
the value at the fixed point a. Inserting all these approximations
into (13) yields

wu(p,t)

∼
√∫ t

t1
e2(λs+λu)(t−τ )|σ�(xu,τ )cλueλu(τ−t+p)ê⊥

u |2dτ

|v(xu(p))|

∼
cλue

λup

√
e2λs t

∫ t

t1
e−2λsτ |σ�(xu(τ − t + p),τ )ê⊥

u |2dτ

cλueλup

� K

√
e2λs t

∫ t

t1

e−2λsτ dτ = K

√
1 − e2λs (t−t1)

−2λs

. (B1)

In the above formal computations, we have assumed a bound
K for σ , and demonstrated that wu(p,t) remains bounded as
t increases (note the exponential decay because λs < 0). In
general wu(p,t) will saturate towards a p-dependent value
arising from the presence of xu(τ − t + p) in the integrand.
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