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Critical exponents of the yielding transition of amorphous solids
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We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external
shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description
of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic
“plastic disorder” potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson
particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model
reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ̇ ∼ (σ − σc)β . Remarkably,
we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving
additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue
that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of “dynamical”
mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the
presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle
displays different values of the β exponent depending on the analytical properties of the microscopic potential,
thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that
depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents
are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic
models and to the widely used mean-field version known as the Hébraud-Lequeux model.
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I. INTRODUCTION

Amorphous solid materials are ubiquitous in everyday life
and of great practical importance in many industrial processes
[1]. They consist of a collection of elementary units that accom-
modate in space without a well-defined ordering (contrary to
what happens with crystals). The nature of the elementary units
that form the material may span a wide range, roughly from
∼ 0.1 nm to ∼ 1 m [1]. The fact that in many cases these units
are not microscopic leads to the fact that thermal fluctuations
may be negligible in explaining the mechanical properties of
these materials, which are then termed “athermal.”

In recent years, there has been an increasing effort aimed
at elucidating the mechanical properties of amorphous solids.
One main piece of the phenomenology of amorphous materials
is the existence of a yielding transition: In the absence of
appreciable thermal activation effect, the material remains rigid
if the applied stress is below some threshold, and it flows
continuously if this threshold is exceeded. The properties of
the material around this critical stress σc, or yield point, have
attracted much attention. It is experimentally found [2,3] that
the strain rate in the system γ̇ as a function of stress excess
σ − σc follows in many cases a power-law behavior of the
form γ̇ ∼ (σ − σc)β . The flow exponent β is an important
parameter characterizing the problem. Other important critical
exponents emerge when one considers the nature of the
dynamics close to the transition. This dynamics proceeds
through abrupt rearrangements in the system [4–25], which
share many features with the avalanches observed in the related
model of depinning of an elastic interface [26,27]. This allowed
the application of tools used in the depinning problem to the

analysis of the yielding transition [28]. In particular, one can
define for yielding additional critical exponents associated to
the statistics of avalanches close to the transition.

Since the universal aspects of the depinning transitions
are well known, the issue of the universality of the yielding
transition has attracted much interest. In particular, are the
values of the critical exponents independent of details of the
model and only dependent on some very general characteristics
as dimensionality, for instance? And if this is not the case, what
are the system features that determine the differences?

In this work we argue that there are differences in the
values of some critical exponents in the yielding problem,
related to the form of the plastic yielding potential that is
used to model the plastic rearrangements in the system. In this
way, we confirm and extend the results already presented in
Ref. [29]. This is an interesting finding since it does not occur
in the (short-range) depinning problem. We find evidence that
this result is related to the long-range nature of the elastic
interactions in the yielding problem, which leads to a sort
of effective “dynamical mean-field” description. In fact, in
mean-field depinning the same dependence of exponent β on
the form of the pinning potential is well known [26,30].

The paper is organized as follows. In Sec. II we present
the model, which was previously derived in Ref. [29] and
represents a reduction to a scalar problem of a tensorial model
of the yielding transition. In Sec. III the main numerical results
are presented, showing the dependencies of some critical
exponents on the form of the plastic disorder potential. Section
IV contains the arguments leading to a “mean-field-like”
description of the problem and then to the justification of the
different values of the critical exponents found numerically.
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In Sec. V we discuss to what extent the present model
is comparable to the elastoplastic models discussed in the
literature. Finally, in Sec. VI we summarize and conclude.

II. MODEL

We motivate here the model in an heuristic way, emphasiz-
ing the physical ingredients it incorporates. In Ref. [29] there
is a derivation of the model from a full tensorial description
of the elasticity of the material. In addition, in the Appendix,
we present an alternative view in which a very similar model
is deduced assuming the displacement field of the material
is strictly one-dimensional, under a simple shear imposed
deformation.

The mesoscopic model we present describes the evolution
of the system under a homogeneous external deviatoric de-
formation. The goal is to predict the evolution of the corre-
sponding local deformation e(r) compatible with the externally
applied load. The dynamics to be used is an over-damped
dynamics in which the rate of change of e(r) is equalled to
an effective force acting at r . There are two main parts of this
force. One is a local term encoding the internal dynamics of
the element at r . This part is derived from a potential function
Vr (e). The form of Vr (e) takes into account both the local
elasticity of the material and also the possibility of different
locally stable configurations: Vr (e) has minima at a sequence
of e values, corresponding to equilibrium configurations. The
transition between consecutive minima correspond to plastic
events in the system. Around each minima Vr (e) behaves
quadratically, reflecting the elasticity at the actual configura-
tion. In addition, there is a term in the evolution equation that
reflects the elastic interaction between elements at different
spatial positions. This part is written in terms of a kernel
G(r − r ′), which is usually referred to as the Eshelby kernel.
The model reads (using a discrete spatial representation)

ηėi = −dVi(ei)

dei

+
∑

j

Gij ej + σ, (1)

where σ is the applied stress. From now on we will set the
viscous damping coefficient η to η = 1. Gij depends only on
the distance between i and j and is more compactly described
by its Fourier transform Gq:

Gq = −2μB
(
q2

x − q2
y

)2

μq4 + 2Bq2
xq

2
y

(2)

and Gq=0 = 0. Note that the zero modes of G occur along the
lines at ±45 deg, corresponding to the applied deformation
being a compression (expansion) along the x axis and a
expansion (compression) along the y axis. B and μ are the bulk
and shear modulus of the material. These two equations define
the model completely. Since

∑
i Gij ∼ Gq=0 = 0, spatially

averaging Eq. (1) we obtain

ė = −dVi(e)

de
+ σ, (3)

which determines the instantaneous value of the deformation
rate γ̇ ≡ ė. Alternatively, in an implementation that fixes the
value of the deformation rate γ̇ , Eq. (3) defines the value of

FIG. 1. Schematic forms of the two plastic potentials used:
parabolic (a) and smooth (b). Circles indicate the transition points
(maximum force) under a global force pointing to the right. �n is the
well’s width which is stochastically chosen from a flat distribution.

the instantaneous stress as

σ = γ̇ + dVi(e)

de
. (4)

Note that in the present formalism there is a single quantity
ei for each site describing the state of the system, and the
separation between elastic strain and plastic strain usually done
in elastoplastic models is not made. We will come back to the
relation with other elastoplastic models later on.

The V (e) are stochastic potentials chosen to be uncorrelated
among different spatial positions. The values of e at which V (e)
has local minima correspond to locally stable configurations of
the system. The form of V (e) is quadratic around these minima
to model an elastic material. To fully define the form of V (e) we
must specify how the wells corresponding to different minima
are connected. We consider two qualitatively different forms
of the V (e) potentials (see Fig. 1). In the first case the wells are
connected sharply, at points in which dV (e)/de has jumps. In
the second case the connection is made smoothly.

In concrete, to define a potential V (e), the e axis is divided
in intervals [an,an+1] (n integer), in such a way that �n ≡
an+1 − an is stochastically chosen from a flat distribution
between �min = 2 and �max = 4 (we have checked that the
use of an exponential distribution does not affect the results).

The intervals are centered at an ≡ (an+1 + an)/2. At each
interval n, V (n) is defined as

Vn(e) = 1

2

[
(e − an)2 −

(
�n

2

)2
]

(5)

for the case in Fig. 1(a), and as

Vn(e) = −5

(
�n

2π

)2[
1 + cos

(
2π (e − an)

�n

)]
(6)

for the case in Fig. 1(b). The first case will be referred to as
the “parabolic” potential and the second case as the “smooth”
potential. The qualitative main difference between the two
cases concerns the behavior at the transition points between
different wells. These are the points of maximum force, which
are indicated as green dots in Fig. 1. In the parabolic case
these points coincide with the potential maxima, where there
is a discontinuity in the force. In the smooth potential case,
the maximum force occurs at points where the curvature of the
potential changes sign continuously.
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FIG. 2. Strain rate vs. stress curves for smooth and parabolic
potential. System size is L = 128. (a) Linear scale. (b) Logarithmic
scale with the value of σc subtracted. Continuous black lines are the
linear fits which provide exponents indicated.

III. RESULTS OF NUMERICAL SIMULATIONS

In this section we present results of simulations of the
model, to elucidate the effect of the form of the potential on the
critical exponents of the transition and the avalanche statistics.
To do this, we consider a square system of linear dimension L

(that it will be referred to as the size of the system) with periodic
boundary conditions. Also, we set units such that B = 1 and
work in the case μ = B.

We focus first on the value of the flow exponent β. The
value of β can be measured straightforwardly by driving the
system at a constant strain rate and measuring the stress as it
is defined in Eq. (4). As a result, we obtain the flow curves
shown in Fig. 2. This graph displays clearly the existence of
a critical stress and a monotonic growth for larger stress. The
logarithmic plot in Fig. 2(b) clearly indicate that the values of
β are dependent on the form of the potential. We obtain βp =
1.51 ± 0.07 for parabolic potentials and βs = 2.00 ± 0.06 for
smooth potentials. [31]

Motivated by this difference between the two kinds of
potentials, we moved to study the exponents characterizing
the avalanche dynamics. To calculate these quantities and
to see in particular if they depend on the kind of potential
used, we ran quasistatic simulations in the following way (see
Fig. 3). In a simulation with a small γ̇ , the maximum value of

FIG. 3. Schematic examples of the evolution of stress in the
system under the quasi-static protocol described in the text (adapted
from Ref. [29]). Right part corresponds to parabolic potentials, and
left part to smooth potentials. In (a) we see the stress-strain plot and
in (b) the stress-time one. Strain rate is zero in the grey regions (when
Vmax, shown in panel (c), is larger than a threshold value highlighted
with a dashed line), whereas it is a fixed small γ̇ outside these periods.
Each grey region corresponds to one avalanche. The size S of each
avalanche is obtained from the strain drop as S = �σL2. Avalanche
duration T is determined using a threshold criterion in Vmax (see text).
�γ corresponds to the strain increase that has to be applied after one
avalanche to trigger a second one.

de/dt across the system is calculated: Vmax ≡ maxi(dei/dt).
This quantity stays lower than a small threshold as long the
system is stable. However, when an avalanche is developing
this quantity becomes order 1. When the avalanche finishes
Vmax becomes very small again. In this way we can identify
individual avalanches in the system. It is important to point out
that to obtain more precise results we stop the driving while
an avalanche is taking place. This avoids spurious additional
avalanche triggering by the driving.

As indicated in Fig. 3, avalanche size S is proportional to the
global stress drop that the avalanche causes, and its duration
T is measured as the time between the first jump of any site
from one minimum to another and the last one. Additionally,
we also monitor the strain increases �γ that have to be applied
after one avalanche to trigger a second one.

Results for the avalanche size distribution (Fig. 4) display
a power law P (S) ∼ S−τ , with τ = 1.40 ± 0.02 for parabolic
potentials and τ = 1.38 ± 0.02 for smooth potentials. These
values are greater than those obtained in Ref. [29] using the full
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FIG. 4. Histogram of avalanche size distribution, in systems of
different sizes, for (a) parabolic and (b) smooth potentials. The dashed
lines display the power-law behavior of the distributions. In the insets,
the rescaling of avalanche size distributions using df = 1.01 allows
to collapse data from different system sizes.

tensorial model, however, they are consistent with those found
in other works [28]. Since lower values of τ have been observed
for small systems in Ref. [28] and taking into account that a well
defined (normalizable) distribution requires τ > 1, the results
presented here look more reliable than those in Ref. [29]. The
power laws are cut off at large avalanche size by the system size.
This cut off defines the fractal dimension df of the avalanches
which describes how the maximum size of avalanches grows
with the linear size of the system as Smax ∼ Ldf . To determine
Smax from the simulation we use a relation of Smax with the
average size of S and S2 that reads [32] Smax ∼ S2/(2S).

We obtain from the simulations that df = 1.01 ± 0.02
for parabolic potentials and df = 1.01 ± 0.08 for smooth
potentials. Taking into account the numerical uncertainties, we
conclude that both τ and df are independent on the potentials
being of the smooth or parabolic type.

The next analyzed aspect was the relation between the dura-
tion of the avalanches and their linear extent, which is expected
to be described by a power law whose exponent is named the
dynamical exponent z. To calculate z, we first plot the relation
between duration and size of avalanches. This is done in Fig. 5.
The data show a wide dispersion, but averaging over avalanche
size windows of logarithmic width, a well defined power

FIG. 5. Avalanche duration vs. avalanche size, for (a) parabolic
and (b) smooth potentials, in a system of L = 1024. The light-color
dots correspond to individual avalanches. The darkest dots correspond
to an average over logarithmic width avalanche size windows, and they
are shown to display the overall behavior. Finally, black lines show
the power-law fitting of the average behavior.

law T ∼ Sp is obtained. The values of p that are obtained
from fitting are pp = 0.53 ± 0.01 for parabolic potentials and
ps = 0.41 ± 0.01 for smooth potentials. From these values and
the definition of the dynamical exponent z as z = pdf [28],
it is obtained that zp = 0.53 ± 0.01 for parabolic potentials
and zs = 0.42 ± 0.03 for smooth potentials. These values are
slightly lower than those obtained with the tensorial model
[29], and we do not have a clear explanation of the origin
of this difference. But the main point is that, as in Ref. [29],
the difference between the values for parabolic and smooth
potentials appears to be significant, so we conclude that the
dynamical exponent z is different in both cases.

The last exponent that was calculated is the θ exponent,
measuring the distribution of distance-to-instability at different
position of the sample. If x is the additional stress that has to
be added to a given site to become unstable and jump to the
next potential well, then θ is defined through the probability
distribution of x for x close to zero, as P (x) ∼ xθ . It is
not straightforward (particularly in the smooth potential case)
to calculate θ from a given equilibrium configuration in the
system. However, the following trick can be used [28]: θ can
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FIG. 6. Average amplitude of strain increment �γ to trigger a
new avalanche as a function of L. Black dashed lines are linear fits
whose exponents allow to determine θ from �γ ∼ L

−d
1+θ .

be calculated by following the average strain increase �γ

that has to be applied to activate consecutive avalanches. The
result is that �γ ∼ L

−d
1+θ , where d is the system dimension. By

calculating �γ for different values of L, θ can be determined.
The corresponding graph is presented in Fig. 6 and we obtain
that θ = 0.44 ± 0.01 for parabolic potentials and θ = 0.47 ±
0.02 for smooth potentials. The two values coincide within the
numerical precision.

The conclusion from the numerical simulations is that the
“dynamical” exponents β and z (those that crucially depend
on the time that particles take to jump between consecutive
potential wells) depend on the kind of potential used, whereas
static exponents such as τ, df , and θ do not [33]. The analysis
of the next section rationalizes this behavior. Yet, an additional
unexpected difference between smooth and parabolic poten-
tials was observed. Figure 7 shows curves of average avalanche
duration versus size for different system sizes. In the parabolic
case as the system size increases we simply observe that the
data extend to larger values of S and T . In the smooth potential
case, we observe that the curves for different system sizes do
not overlap even for small avalanches. This indicates that there
is a non-trivial dependence of the avalanche duration with L.
If we suppose that the L dependence can be factorized as a
power of L, then we can define a normalized time as

Tn(S) = T (S,L)

Lψ
. (7)

Using ψ = 0.30 we obtain the curves for the normalized times
seen in Fig. 8. The collapse of all these curves is an indication
that the Eq. (7) is well satisfied.

The additional dependence of duration T on system size
L that was observed in the case of smooth potentials allows
an alternative definition of the dynamical exponent z. Instead
of comparing the duration of avalanches with different sizes
for a fixed L, we can compare the duration of the largest
avalanche that occur for different system size. This allows to
define an alternative exponent zs

∗ = zs + ψ . Consequently, we
have zs

∗ = 0.72 ± 0.04.

FIG. 7. Average avalanche duration vs. avalanche size, in systems
of different sizes, for (a) parabolic and (b) smooth potentials.

IV. MEAN-FIELD DESCRIPTION

We want to explore here the reasons why there are two
different values of the dynamical exponents β and z for
smooth and parabolic potentials, whereas those describing

FIG. 8. Normalized average avalanche duration vs. avalanche
size, in systems of different sizes, for smooth potential. The curves
shown correspond to ψ = 0.3. The collapse of all these curves is an
indication that the Eq. (7) is well satisfied.
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static properties, such as τ, df , θ , are the same. Let us first
analyze in more detail the form of the equations of the model
[Eqs. (1) and (2)] in real space. Since Gq � 0, we see that
Gii ∼ ∑

q Gq < 0. Noting k ≡ −Gii we can write Eq. (2) as

ėi = −dVi

dei

− kei +
∑
j �=i

Gij ej + σ. (8)

Now we separate Gij in the last term as it average value, and
its fluctuating part:

Gij = k

(N − 1)
+ G̃ij . (9)

The equations of the model are then written as

ėi = −dVi

dei

+ k(ei − ei) +
∑
j �=i

G̃ij ej + σ. (10)

The kernel G̃ij still has the (ri − rj )−2 decay with distance,
and the quadrupolar angular symmetry. But we emphasize that
its spatial average vanishes:

∑
j �=i G̃ij = 0. Equation (10) is an

appropriate starting point to study the model in a sort of mean-
field approach. In Sec. IV A, we analyze the consequences of
simply dropping the G̃ij in Eq. (10). In Secs. IV B and IV C
we take this term as an external perturbation, finding result
that compare favorably with the full simulations presented
previously.

A. Naive mean field: The Prandtl-Tomlinson problem

Neglecting the fluctuating term proportional to G̃ij in
Eq. (10), it reduces to

ėi = −dVi

dei

+ k(ei − ei) + σ. (11)

To obtain the flow curve (σ versus γ̇ ) for this equation, we note
that in the thermodynamic limit ei must follow smoothly the
driving, and we can choose ei ≡ γ̇ t . Defining also

w(t) ≡ γ̇ t + σ/k, (12)

it is obtained

ėi = −dVi

dei

+ k[w(t) − ei]. (13)

Written in this form, we see that ei is driven by the applied
w(t) on top of the potential Vi(ei) through a spring of constant
k. According to Eq. (12), the stress can be calculated as the
average force on the driving spring: σ = k[w(t) − ei]. This is
just the Prandtl-Tomlinson (PT) model used to qualitatively
describe the origin of a friction force between sliding solid
bodies [34–36]. A pictorial description of the model is sketched
in Fig. 9.

In the absence of thermal fluctuations—as it is the case
here—the PT model has a critical stress σc for γ̇ → 0 (as long
as there are points at which −d2Vi/de2

i > k), and a power-law
increase of σ for finite γ̇ ; i.e., γ̇ ∼ (σ − σc)β . The value of
β turns out to be dependent of the kind of potential that is
used. For smooth potentials β = 3/2, whereas for parabolic
potentials (with points at which the first derivative has jumps)
the value β = 1 is obtained [30]. Namely, Eq. (13) provides a

FIG. 9. A mechanical representation of the Prandtl-Tomlinson
model described by Eq. (13).

simple case in which the value of β depends on the form of the
potential.

To qualitatively consider the avalanche statistics and its
possible dependence on the kind of potential in this mean-field
approach, we will go back to Eq. (11), and replace the uniform
force σ by driving at a constant speed γ̇ through a spring of a
small stiffness k0:

ėi = −dVi

dei

+ k(ei − ei) + k0(γ̇ t − ei). (14)

The fluctuations of ei go to zero in the thermodynamic limit.
However, they are enough to produce non trivial avalanches in
the system. In fact, the statistics of the avalanches produced by
a model like Eq. (14) is well known. Avalanches distribute with
a cutoff power law P (S) ∼ S−τ g(S/Smax), where g is a cut off
function, τ = 3/2, and the cut-off value Smax depends on k0

as Smax ∼ k−2
0 . As the value of k0 is progressively reduced,

avalanches with a critical size distribution P (S) ∼ S−3/2 are
obtained. The 3/2 value of the τ exponent hold both for smooth
and parabolic potentials.

However, differences appear between smooth and parabolic
potentials when considering the duration of the avalanches.
For the calculation of this time, it becomes crucial to take into
account the time that an unstable site actually takes to move to
the new equilibrium position in the next potential well. In the
case of parabolic potentials, the pushing force is finite as soon
as the instability point is overpassed, and this implies that this
time is independent of the stress excess �σ . The situation is
different for smooth potentials. A site that becomes unstable
feels a pushing force that is strongly dependent on the stress
excess �σ , over the local threshold for instability. It turns out
that the time an unstable site takes to reach the new equilibrium
position at the next potential well scales as ∼ �σ−1/2 [37].
An analysis based on this difference between smooth and
parabolic potentials (to be presented elsewhere [38]) leads to
the conclusion that for parabolic potentials, avalanche duration
T scales with the avalanche size S as T ∼ S1/2, whereas for
smooth potentials T ∼ S1/4.

Thus in addition to β, the dynamical exponent z is different
for parabolic and smooth potentials in mean field. This is a
remarkable result. It shows that even in mean field, and in
addition to the already discussed difference in the β exponent,
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there are differences in the dynamical exponent when compar-
ing parabolic and smooth potentials. We remark that the static
exponents are the same for both potentials in mean field. The
exponents that are different are those related to the dynamical
characteristics of the avalanches, and the difference originates
in the qualitatively different way in which a particle jumps
from one potential well to the next, for smooth or parabolic
potentials.

B. A “dynamical” mean-field approach: Stochastically
driven Prandtl-Tomlinson particles

By introducing the definition of w(t) into Eq. (10) we obtain

ėi = −dVi

dei

+ k(w(t) − ei) +
∑
j �=i

G̃ij ej . (15)

This defines a set of coupled PT models, in which the variable ei

evolves under the external uniform drivingw(t) on the potential
Vi , and it is affected by all other ej through the coupling term
G̃ij . We will now make a description in which this term is
decoupled and treated as an external perturbation.

To begin with, we start with a brief digression. The accuracy
of a mean-field approximation depends essentially on the
range of the interaction. Let us consider for the moment a
standard, ferromagnetic Ising model in two spatial dimensions,
with interactions decaying as 1/rα . The values of the critical
exponents depend continuously on the value of α and move
towards mean-field values as α is reduced. When α = 2 (in
general, when α is equal to space dimensionality), the model
becomes mean field and the critical exponents are exactly given
by their mean-field values. A simple way to understand this
result is the following. A spin in a given position interacts with
a weighted sum of all other spins in the system. For α > 2
the influence of any individual spin on this sum has a nonzero
weight. However, for α � 2, the influence of any individual
spin on the effective field seen by any other spin is infinitesimal
(for an infinite size system). This means that fluctuation effects
are unimportant, and mean-field results are exact. Note that this
implies not only that the exponents are mean field, but that the
full solution to the problem is exactly given by the mean-field
approximation.

In our case, the interaction term in Eq. (15) has precisely
the ∼ 1/r2 decay. However, the sign is alternating with zero
average, and this prevents the application of the arguments of
the previous paragraph in a direct form. On average, the mean
value of the last term is zero, it is its fluctuation in time what is
relevant. In this sense, we note that although the sum of the last
term is zero on average, the contribution of any individual ei to
the fluctuation is still infinitesimal when α � 2. This suggests
that a “mean-field” description should be rather accurate, if not
exact, in the present case too. In this context the meaning of
“mean field” is that the last term can be treated as an externally
given fluctuating term, and in this way the evolution of each
local variable becomes a one particle problem.

In other words, we will write formally Eq. (15) as

ėi = −dVi

dei

+ k[w(t) − ei] + ξi(t), (16)

where

ξi(t) =
∑
j �=i

G̃ij ej . (17)

Now, ξi(t) will be taken to be an external noise. In the end, we
should require this noise to be compatible with the evolution
of the local variables, i.e., Eq. (17) be satisfied. However, as a
first step we will consider Eq. (16) on its own, assuming some
statistical properties of the stochastic noise ξi(t).

Taking into account that according to Eq. (17) the time
evolution of ξi depends on the variation rate of ej , the statistical
properties of the noise term must scale with the velocity
at which the system is driven. We are interested mainly in
the case in which driving is very slow. In this limit, ξi can
be considered to depend directly on the control variable in the
system, that is, on the applied external strain γ̇ t . This means
that the dependence of ξi on the strain rate can be explicitly
incorporated by writing

ėi = fi(ei) + k(wt − ei) + ξi(γ̇ t). (18)

This equation defines what we call the stochastically driven
Prandtl-Tomlinson model. The evolution of ei will depend on
the amplitude and correlations of the noise term ξi , as well as
on the form of the force fi(ei).

We will consider the case (that will be shown is relevant in
the yielding context) of a ξ (x) noise with correlation properties
characterized by the so called Hurst exponent H . This means
that, statistically,

ξi(λx) ∼ λHξi(x). (19)

Note that a standard random walk has H = 1/2.
The flow exponent of the model defined by Eqs. (18) and

(19) was worked out in Ref. [39]. There it was shown that

γ̇ ∼ (σ − σc)β, (20)

with a flow exponent

β = 1

H
− 1

α
+ 1, (21)

where α is related to the analytic form of the potential at the
transition point between consecutive potential wells: α = 1
for parabolic potentials and α = 2 for smooth potentials. [40].
Although we do not know for the moment what the appropriate
value of H is, we note that from Eq. (21), the difference
between β values for smooth and parabolic potentials is 1/2,
independently of the value of H . This is well satisfied by the
results of the full simulations presented in Sec. III.

The present independent particle analysis gives a prediction
also on the value of the θ exponent in the system. We remind
that this exponent characterizes the equilibrium distribution of
distances x to the instability point. This distribution P (x) is
expected to behave as P (x) ∼ xθ for small x. If there is no
stochastic term in the driving [ξ = 0 in Eq. (18)] the value of
x reduces linearly in time until destabilization, the distribution
P (x) is flat and we obtain θ = 0. If there is a stochastic term in
the driving the value of θ is determined from the distribution
P (x) of a Fractional Brownian Motion with an absorbing wall
at x = 0, which is [41,42] P (x) ∼ x

1
H

−1; i.e.,

θ = 1

H
− 1. (22)
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FIG. 10. Typical functions ξ (t) evaluated to Eq. (17) for the
parabolic and smooth case, in a quasistatic simulation of the model
described in Sec. III. The time variable represents the number of
avalanches. For comparison a standard random walk is also displayed.

Note that this result is independent of the potential being of
the parabolic or smooth type. It is interesting to eliminate the
(still undetermined) value of H from the expressions of β and
θ to obtain that in this mean-field situation they are related by

β = θ + 2 − 1

α
. (23)

We notice again that the numerical values obtained in Sec. III
for θ and β quite closely satisfy Eq. (23).

C. Finding the value of H

To check the consistency of our approach, and in particular
the value of β predicted by Eq. (21), we must calculate the
H value of the signal ξ . To do this, we generate time series
of ξ according to its definition as given by Eq. (17) running
a full simulation of the model as described in Sec. III. The
simulation is done in a quasistatic case, with γ̇ → 0. Examples
of the ξ (t) signals that are obtained both in the parabolic and
smooth cases are shown in Fig. 10 [43]. Overall, we generate
five signals that correspond to points of different regions of the
system, for each potential. The Hurst exponent of the signals
is then obtained using the Detrended Fluctuation Analysis
technique [44–46]. Essentially, the method studies how the
signal growths within windows of different widths allowing to
determine the value of H . The average result obtained is H =
0.67 ± 0.01 for parabolic potentials and H = 0.64 ± 0.02 for
smooth potentials. Within the numerical errors, the two values
coincide. This should come with no surprise at this point
since we do not expect differences between the two kinds of
potentials in the quasistatic limit. Moreover, when plugged
into Eq. (21) this value of H provides β values for parabolic
and smooth potential that perfectly fit those obtained in the
numerical simulations of Sec. III.

It remains to be understood why a value H � 0.65 shows
up in the simulations. To address this point, we notice that
according to its definition in Eq. (17), the fluctuating term ξ (t)
gets a cumulative contribution every time an avalanche occurs
in the system. So we can try to make an estimation of the form

FIG. 11. Effect of avalanches on the stress of a given site. The
stress increment on the central site (green dot) produced by avalanches
triggered everywhere in the system (blue lines) is calculated taking
into account the Eshelby interaction. Avalanches are assumed to be
linear objects along the two orthogonal easy directions in the system
and are distributed with the known power-law size distribution and
uncorrelated in time and space. The brown arrows indicate the periodic
boundary conditions used.

of ξ (t) by assuming a random and uncorrelated distribution of
avalanches in the system, with a size distribution characterized
by some exponent τ . Each avalanche will generate a contribu-
tion to ξ that we note δξ . Under the assumption of uncorrelated
avalanches, we can determine the distribution on increments
P (δξ ). If P (δξ ) happens to have a long tail, namely,

P (δξ ) ∼ 1

|δξ |ν+1
, (24)

(with ν < 2) for large |δξ |, then its random accumulation will
produce a generalized random walk ξ (t) characterized by a non
trivial Hurst exponent where H = 1/ν [47].

We consider a square system of linear size L with periodic
boundary conditions (Fig. 11), and we focus on the effect of
random avalanches in the system on the strain at the central
point. Avalanches are assumed to occur with a size distribution
S−τ and in the two orthogonal easy directions in the system.
The goal is to calculate the strain increment on the central
site produced by each avalanche and mediated by the Eshelby
propagator. In principle, this problem reduces formally to the
calculation of a (three-dimensional) integral, but we have not
been able to find a closed form of the result, so we first show the
result obtained using a Monte Carlo method. The numerical
implementation of this process generates the form of P (δξ )
observed in Fig. 12. P (δξ ) displays a power law for large δξ

that becomes more robust as the system size is increased. The
value of the decay exponent depends slightly on the value of τ

from which the avalanches were chosen, but using the actual
value of τ (τ ∼ 1.4), we find P (δξ ) ∼ δξ−(ν+1) with ν � 1.5
and thus H � 0.65, which coincides with the value directly
determined from the numerical simulations through [Eq. (17)].

In Ref. [47], Lin and Wyart also considered the strain
fluctuations at a given site caused by the rest of the system
(for the case of elastoplastic models, and thus akin to our
case of parabolic potentials, see below). Then, in a mean-
field approach, they were able to link the exponent ν in the

013002-8



CRITICAL EXPONENTS OF THE YIELDING TRANSITION … PHYSICAL REVIEW E 98, 013002 (2018)

FIG. 12. Histogram of stress increments produced by avalanches
in a site of the system, in systems of different size. The curves are
vertically shifted to improve the visualization of results. The main plot
shows the relevant region of the histograms which allows obtaining
the Hurst exponent. The dashed line shows a reference slope and it
corresponds to a H = 2/3. The inset presents the full histograms.

distribution P (δξ ) with the flow exponent β, finding a relation
that is compatible with our results for parabolic potentials,
namely, β = ν for 1 < ν < 2 (if ν = 1 they find the flow
curve has logarithmic corrections). However, they calculate
the statistics of δξ assuming it is formed by random kicks
from individual sites, with an intensity given by the Eshelby
kernel, ∼ ±1/r2, finding P (δξ ) ∼ δξ−2, i.e., ν = 1, which is
not the result we obtain. The reason of the difference is that
the contributions δξ that generate the stochastic noise cannot
be considered as generated in isolated points, since they are
typically produced by avalanches, that are extended objects.

The effect of avalanche size distribution on the value of ν can
also be estimated using the following argument. An avalanche
of size S located at a distance D from the origin produces
an increase δξ of strain at the origin with the following
characteristics. If D 	 S then δξ ∼ ±S/D2 (in this case the
avalanche behaves as a point-like object, the ± sign is a short
hand for the angular dependence of the Eshelby interaction).
This behavior prevails until D ∼ S. However, for D � S the
effect of the avalanche becomes proportional to 1/S, and
independent of D, as a direct integration shows. Then the
contribution to P (δξ ) from avalanches with a fixed value S0

takes the form

P (δξ |S0) ∼ S0

|δξ |2 for δξ � 1

S 0
, (25)

P (δξ |S0) ∼ S2
0δD(δξ − 1/S0) for δξ � 1

S 0
, (26)

where δD notes a Dirac Delta Function. Now the total P (δξ )
is obtained integrating this result over S0, considering the
probability distribution of S0:

P (δξ ) =
∫

P (δξ |S0)S−τ
0 dS0. (27)

The result is

P (δξ ) ∼ 1

|δξ |4−τ
, (28)

which modifies the result obtained in Ref. [47] in the right
direction: The value of H is H = 1/(3 − τ ), which provides
(using τ ∼ 1.4 from the simulations in Sec. III) H � 0.62,
quite close to the value H � 0.65 directly measured before.

All these verifications of self-consistency indicate that the
treatment of the interaction term in Eq. (10) as a mean-field
fluctuating noise is a consistent and quantitatively accurate
approach.

V. RELATION WITH ELASTOPLASTIC MODELS

It was already mentioned that one of the characteristics
of the present model is that there is a single strain variable
e, and no clear-cut separation is made between elastic and
plastic strains, contrary to what is usually done in EP models.
However, for the case of parabolic potentials this separation
can in fact be proposed, and it is possible to discuss in detail
the relation between EP models and the present one.

We consider our model with parabolic potentials. In this
case, the central position of parabola at site i (to be noted γ

pl
i )

can be identified with the plastic deformation at site i, and
Eq. (1) can be written as

ėi = μ
(
γ

pl
i − ei

) +
∑

j

Gij ej + σ, (29)

where μ is the curvature of the potential. Note that this
curvature is assumed to be equal at every potential well. We
will suppose that γ̇ is so small that it can always be assumed
that ei is in an equilibrium position; i.e., ėi = 0. In this case
we can write

σi ≡ −μ
(
γ

pl
i − ei

) =
∑

j

Gij ej + σ, (30)

where the local stress σi has been introduced. Since all parabola
have the same curvature, if the average strain increases at a rate
γ̇ , the value of σi increases uniformly in the system with the
same rate, as long as no particle goes out of its local parabola.
Namely,

δσi = μγ̇ δt. (31)

If σi becomes larger than the maximum stress that site i

can sustain, the corresponding γ
pl
i changes to a new value

γ
pl
i + δγ

pl
i and the strains ei will accommodate to new values

satisfying Eq. (30). Upon changes in γ
pl
i , the corresponding

changes δσi in the stresses can be obtained from that equation.
Working in Fourier space the result is

δσq = μGq

μ − Gq
δγ pl

q ≡ Hqδγ
pl
q , (32)

where Gq is given in Eq. (2). Since the denominator is strictly
positive for all q,Hq still has the same zero modes that the
original Gq and its cos(4θ ) symmetry, and being independent
of the norm of q (as Gq itself), it has a decay in real space as
1/r2.

In this way, the previous equation gives the effect of an
increase in plastic deformation on the stress in the sample.
The kernel for this influence has the Eshelby structure ∼
cos(4θ )/r2. Such an influence of the plastic strain on the
stress [Eq. (32)], plus the linear increase of stress with applied
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strain [Eq. (31)], are exactly the ingredients used for instance
in the implementation of EP models given by Ref. [28]. Yet
an additional consideration is necessary. In EP models it is
typically (sometimes implicitly) assumed that there is a fixed
timescale for a site that has overpassed its maximum stress,
to move to a state with σ � 0 (this typically occurs at a
constant rate, or in a single time step). In our case, plastic
strains change instantaneously when strain reaches the crossing
between successive parabola, however, the starting Eq. (29)
has in fact a typical time scale τ ∼ 1/μ for an unstable
site to reach its new equilibrium position. It is thus clear
that qualitatively, our model with parabolic potentials can
be interpreted as an elastoplastic model, and then it is not
surprising that we get the same critical exponents as found for
instance in Ref. [28]. The present comparison also suggests that
the phenomenology of our model with smooth potentials might
not be captured by usual elastoplastic models. But at the same
time it suggests the appropriate modification in EP models to
match this case too [48]. In fact, the main difference between
the dynamics of smooth and parabolic potentials seems to be
the different time that it takes for a particle at a given potential
well to reach the next one when it jumps over the barrier.
For parabolic potentials, as we argued before, this time τ0

is roughly constant, independently of the stress excess over
the critical value. This is what leads to consider a constant
transition rate, and what makes it possible the comparison with
standard EP models. For smooth potentials, however, the time
τ0 that it takes to reach the new equilibrium position strongly
depends on the stress excess σi − σ c

i over the critical value
σ c

i , actually τ0 ∼ (σi − σ c
i )−1/2[37]. In an implementation in

terms of transition rates, smooth potential would require to
consider stress dependent transition rates. With this additional
ingredient EP models can be used to reproduce also the results
we obtain here with smooth potentials [48].

Finally, we note that there are other kinds of EP models
(such as the model of Picard [49], or that used by Barrat et al.
[50]) that are directly defined in terms of its dynamics and
cannot be derived from the minimization of a Hamiltonian
function. Results on these models [51] show that a modification
of the transition rate produces a change in the dynamical
exponents β and z as we observe in the present case changing
from parabolic to smooth potentials.

A. Relation to the Hébraud-Lequeux mean field

The Hébraud-Lequeux model [52] is a further simplification
on an elastoplastic model, in which any plastic rearrangement
is assumed to produce a random variation of stress on any other
site. Note that the value of the random variation is renewed if
the same site yields plastically a second time.

In our model as described by Eq. (15) this random effect
can be mimicked by replacing in the last term the kernel G̃ by a
random coupling that is renewed every time ei jumps to a new
potential well. It is clear that this produces a noise term ξ (γ̇ t)
as in Eq. (16) that is the accumulation of random contributions
from all the strain jumps that occurred all across the system,
i.e., a standard random walk, with a Hurst exponent H = 1/2.
According to our previous analysis, we know that this case
provides (for parabolic potentials) β = 2, θ = 1 in fact, similar
to the values that are obtained in the Hébraud-Lequeux model.

Note that this approximation for the case of smooth potentials
produces a value β = 5/2 instead.

VI. CONCLUSIONS

In this paper we have investigated the critical properties of
the athermal yielding transition in a two-dimensional model
that includes structural disorder and long range elastic inter-
actions as two main ingredients. Our results strongly suggest
that some critical exponents depend on the form of the plastic
disorder potential, finding differences between the cases of
a “smooth” potential (in which minima are smoothly con-
nected) and a “parabolic” potential (in which the potential ia a
concatenation of parabolic pieces) with discontinuous forces
at the transition points. The exponents that differ between
the two cases are the flow exponent β and the dynamical
exponent z. Other exponents are the same in the two cases. We
interpret the differences as a consequence of the qualitatively
different dynamics of the system around the transition points
in the smooth and parabolic cases. We also claim that contrary
to what happens in the depinning problem (where the two
kind of potentials are known to produce no difference in the
critical properties) here the difference remains because of
the long range nature of the elastic interaction. In fact, this
long-range nature of the interaction transforms the problem
into an effective mean-field one. We constructed explicitly
the mean-field theory describing the problem and showed it
corresponds to a particle driven on top of the disordered plastic
potential. The driving incorporates the mechanical noise of
all other sites in the system as a stochastic contribution. We
gave the values of most of the critical exponents in terms of
the statistical properties of this noise, particularly its Hurst
exponent H . As a consistency check we measured directly the
value of H in the full simulation and also estimated it from
a simplified analysis, finding H � 2/3. Overall, the values of
the critical exponents found both for parabolic and smooth
potentials, and the value of H are totally consistent, giving
support to our mean-field interpretation of the transition.
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APPENDIX: AN ALTERNATIVE DERIVATION OF A
SCALAR MODEL UNDER THE ASSUMPTION

OF SIMPLE SHEAR

In addition to the heuristic presentation given in the main
text, and the derivation from a full tensorial model given in
Ref. [29], we present here an alternative derivation of the model
in a case in which the deformations in the material are assumed
from the beginning to be scalar. This derivation may be applied
to a case in which the material is submitted to an external
simple shear (instead of the deviatoric stress e assumed in the
main text, which is composed of two orthogonal shears). Under
these conditions (see Fig. 13) we will make the assumption
that the local displacements u ≡ (ux,uy) describing the sample
deformation occur only along the x direction, namely, uy ≡ 0.
We will refer to ux simply as u, and we will use two subindexes

013002-10



CRITICAL EXPONENTS OF THE YIELDING TRANSITION … PHYSICAL REVIEW E 98, 013002 (2018)

u
i+1,ji,ji−1,j

i,j+1

i,j−1

FIG. 13. Geometry assumed to derive a scalar model under a
simple shear assumption as represented by the top and bottom arrows.
Displacements u of the mesh points (represented by the circles) are
assumed to be restricted to the horizontal direction. Elastic and plastic
interactions are defined among nearest neighbor lattice points only.

to indicate spatial positions in the sample along x and y

directions.
We assume that the interaction between different uij is

local, i.e., it depends on the difference of uij on neighbor
sites. Along y, the interaction between ui,j and ui,j+1 must
allow for “slips” between consecutive planes. We introduce
corrugated potential energy functions V (ui,j+1 − ui,j ) with
these properties. Along x the interaction between ui,j and
ui+1,j is taken to be perfectly harmonic, i.e., described by an
energy term μ(ui+1,j − ui,j )2/2.

The actual form of V is stochastic and depends on the actual
values of i and j , but we do not indicate this in the notation.
The elastic energy of the system is

E =
∑
ij

μ

2
(ui+1,j − ui,j )2 + V (ui,j+1 − ui,j ). (A1)

We will write a first-order evolution dynamics for the model.
One may think to write something like

ηu̇ij = − δE

δuij

. (A2)

However, this equation relates the velocity of variation of uij to
the total force acting on uij , and breaks Galilean invariance. It
is more natural to postulate a dissipation mechanism in which
viscous forces appear when there are relative motions between
neighbor particles. In a mechanical analogy, instead of adding
a dashpot between position uij and a reference position as
Eq. (A2) implies, we add dashpots between neighbor sites on
the sample. This leads to write the force balance at position i,j

as

η(4u̇i,j − u̇i,j+1 − u̇i,j−1 − u̇i+1,j − u̇i−1,j )

= μ(ui+1,j + ui−1,j − 2ui,j )

−F (ui,j+1 − ui,j ) − F (ui,j−1 − ui,j ), (A3)

where F (x) ≡ −∂V (x)/∂x. This is already the model we are
seeking for. However, we need to rearrange its terms to display
its similarity with the model presented in the text. We define
ei,j ≡ ui,j+1 − ui,j , in such a way that combining the previous
equations at sites i,j , and i,j + 1 we obtain

η(4ėi,j − ėi,j+1 − ėi,j−1 − ėi+1,j − ėi−1,j )

= μ(ei+1,j + ei−1,j − 2ei,j )

−F (ei,j+1) − F (ei,j−1) + 2F (ei,j ). (A4)

By introducing the notation ∂2
xU ≡ Ui+1,j + Ui−1,j − 2Ui,j ,

and ∂2
yU ≡ Ui,j+1 + Ui,j−1 − 2Ui,j , we can write the previous

equation in the compact form

η
(
∂2
x + ∂2

y

)
ė = −μ∂2

x e + ∂2
yF (e). (A5)

Note that this equation does not fix the evolution of the mean
value e, which must be determined according to the driving
mechanism that is assumed to hold.

Going to Fourier space and dividing by q2
x + q2

y , Eq. (A5)
can be written (for q �= 0) as

ηėq = −μ
q2

x

q2
x + q2

y

eq + q2
y

q2
x + q2

y

F (e)|q, (A6)

which can also be written as

ηėq = − q2
x

q2
x + q2

y

(μeq + F (e)|q) + F (e)|q. (A7)

In real space this equation reads (introducing the applied stress
σ )

ηėr = −dV

der

+
∑
r ′

Grr ′

(
er ′ − 1

μ

dV

de′
r

)
+ σ, (A8)

where Gr,r ′ is the real space form of

Gq ≡ −μq2
x

q2
x + q2

y

. (A9)

In this form, the structure of this model is seen to resemble
that of Eqs. (1) and (2). There is a difference in the fact that
is not only er but er − 1

μ
dV
der

that is propagated through G.

This is not a crucial difference as dV
der

is an oscillating term (on
er ) added on the linearly growing er . The second difference
is in the form of the kernel Gq: Note that the kernel we find
here has the property Gq � 0, as it was the case for Eq. (2).
The only difference is in the symmetry of G, which is now
dipolar instead of quadrupolar. This is naturally originated in
the simple shear geometry assumed in this restricted version.
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