
PHYSICAL REVIEW E 98, 012903 (2018)

Thermal conductivity at the high-density limit and the levitating granular cluster
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The granular Leidenfrost state consists of a dense granular cluster levitating above a hot granular gas. The
density of particles inside the cluster can be very high and even close to the density of crystalline packing. To
describe this state theoretically, one needs to know the density dependence of constitutive relations (pressure, heat
losses, thermal conductivity) at these very high densities. However, the accurate expression for the coefficient
of thermal conductivity is lacking. In this work, the constitutive relations were measured at high densities in
molecular dynamics simulations in three different settings: a uniform freely cooling dense granulate (to measure
heat losses), a uniform ensemble of elastically colliding particles (to measure pressure), and a dense granular
medium between two thermal walls under gravity (to measure thermal conductivity). Next, the hydrodynamic
equations with the resulting expressions were solved to describe the levitating cluster state in various parameter
regimes. Separate molecular dynamics simulations were performed to test the theoretical predictions and measure
the density and temperature profiles of the granular Leidenfrost state, and a good agreement with theoretical results
was observed.

DOI: 10.1103/PhysRevE.98.012903

I. INTRODUCTION

The validity of the hydrodynamics approach to granular
media (a matter consisting of a large number of inelastically
colliding particles) was questioned [1] soon after the granular
hydrodynamics equations were formulated [2]. A practical way
of testing the validity of this approach is to solve specific
problems and compare theoretical predictions with the results
of molecular dynamics (MD) simulations [3]. However, there is
a major difficulty: hydrodynamics equations should be accom-
panied by constitutive relations (equation of state, transport
coefficients, heat loss term), but these expressions were not
known at high densities, see Ref. [4] for review. How can we
theoretically describe granular systems, which often exhibit a
high-density contrast as the granular Leidenforst state [5,6],
where a dense cluster is levitating over a hot gas?

The first attempt in this direction was done in the pioneering
paper by Grossman, Zhou, and Ben-Naim [7], who came
up with simple arguments for the high-density behavior of
pressure P (n, T ), heat losses I (n, T ), and the coefficient
of thermal conductivity κ (n, T ) and proposed interpolation
functions for P , I , and κ between low density and the density of
close packing. These expressions (which included a few fitting
parameters) were adapted in subsequent works [5,8]; however,
they have never been tested in MD simulations. Another
approach was pioneered by Luding [9], who performed MD
simulations, measured the equation of state of an ensemble
of hard disks up to high densities, and suggested a theoretical
expression for the pressure that matched the observations. This
approach was expanded to measure the density dependence of
inelastic heat losses and shear viscosity [10], and the resulting
expressions were used to describe fluid-solid coexistence in
granular shear flows [11].

Granular clusters can present a crystalline order; this was
observed both for a levitating cluster in a system driven by
a thermal wall [5,12] and for a solid cluster in a plug flow

in a dense sheared system [11]. Without knowing constitutive
relations at such high densities (in particular, in the vicinity of
the dense close packing), one cannot accurately theoretically
describe such systems. However, measuring the coefficient of
thermal conductivity is challenging (it was measured only for
small and moderate densities [13]): it is difficult to come up
with a system exhibiting a nonzero temperature gradient but
nevertheless with a uniform density across the system, so that
the measured κ (n, T ) would correspond to a specific density.
In this work, we overcame this challenge and measured the
coefficient of thermal conductivity in a dense granular medium
between two thermal walls under gravity—a system that can
have a uniform density in some parameter regime (see Sec. II).
The same section also presents measurements of heat losses (in
a homogeneous freely cooling dense granulate) and pressure
(in a homogeneous ensemble of elastically colliding particles)
to check the previously obtained results. We also proposed a
theoretical expression for κ (n, T ) that matched the results of
MD simulations. In Sec. III, the hydrodynamic equations with
the resulting expressions forP , I , andκ were solved to describe
the levitating cluster state in various parameter regimes; these
theoretical predictions were tested in a separate set of MD
simulations. Section IV presents the summary and discussion
of our results.

II. MEASURING CONSTITUTIVE RELATIONS
AT HIGH DENSITIES

In this section, we perform molecular dynamics simulations
in three different settings to measure the density dependence
of pressure P (ν), inelastic heat losses I (ν), and the coefficient
of thermal conductivity κ (ν) at high densities close to νc =
π/(2

√
3), the area fraction of crystalline close packing. Here,

ν = n (π d 2/4) is the area fraction, n is the number density,
and d is the particle diameter. Next, we propose the expressions
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that fit the data and suggest interpolation functions between low
and high densities. Our goal is to accurately measure κ (ν), but
we start with testing the known results for P (ν) and I (ν).

A. Equation of state

We considered an ensemble of elastically colliding hard
disks without gravity. Periodic boundary conditions in the
y direction (−L/2 � y � L/2) were implemented; in the
x direction there were two elastic walls at x = −H/2 and
x = H/2. The total momentum transferred by particles to
the walls was measured as a function of time. The result-
ing curve is indistinguishable from a straight line, and the
pressure was computed as the slope of this straight line
divided by L. We checked that in all of the simulations
the system remained uniform and that the same pressure was
measured at the two opposite walls. The simulations were
performed for various area fractions ν relatively close to
the maximal crystalline close packing area fraction νc. The
results of the simulations were compared to the two theoretical
expressions existing in the literature. Grossman and coauthors
[7] suggested P = nT (nc + n)/(nc − n), while Luding [9]
proposed the following expression close the the density of
close packing: Pdense = nT [2νc/(νc − ν)]. The interpolation
function between the low- and high-density limits has been
also proposed, and the resulting equation of state can be written
as

P = nT (1 + 2ν gl ), (1)

with

gl = g + m

[
νc + ν

2ν (νc − ν)
− g

]
, (2)

where m is an interpolation function, given by m = {1 +
exp[(ν̄ − ν)/m0]}−1, with ν̄ = 0.70 and m0 = 0.0111 [9], and
g = (1 − 7ν/16)/(1 − ν)2 is the equilibrium pair correlation
function [14]. Both the theoretical and simulations results are
shown in Fig. 1. Since the pressure diverges as (νc − ν)−1,
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FIG. 1. Equation of state for an ensemble of elastically colliding
hard disks at high densities: the rescaled pressure as a function of
the area fraction for unit temperature. The blue solid curve given by
Eqs. (1) and (2) is in excellent agreement with the results of MD
simulations (squares); the black dash-dotted black curve presents the
expression proposed in Ref. [7] (see text).

we show P (νc − ν) on the vertical axis; the horizontal axis
shows ln(νc − ν) to make the high-density region more visible.
The squares show the results of MD simulations, the black
dash-dotted curve presents the expression proposed in Ref. [7],
and the blue solid curve corresponds to the expression given
in Eqs. (1) and (2) and is in an excellent agreement with the
measured pressure.

B. Inelastic heat losses

To measure inelastic heat losses in the MD simulations,
we considered a system of inelastically colliding hard disks.
The collisions were assumed to be binary and instantaneous;
the inelasticity of collisions was modeled by the coefficient of
normal restitution, r < 1. Particles’ velocities after a collision
are related to their velocities before the collision; their tangen-
tial velocities remain unchanged, while the normal velocities
after a collision are given by(

v′
i‖

v′
j‖

)
= 1

2

(
1 − r 1 + r

1 + r 1 − r

)(
vi‖
vj‖

)
, (3)

where the final velocities of two colliding particles i and j

are indicated by primes. Without an external energy input,
the temperature of the granulate decreases with time. If
the inelasticity of particle collisions is small enough, the
system remains homogeneous, and the temperature obeys
Haff’s law [2]: T = T0 (1 + t/t0)−2, where the characteristic
cooling time t0 depends on the form of inelastic heat losses
I (n, T ). Therefore, measuring t0 in simulations for various
densities provides information about I . This procedure was
performed in Ref. [10] for moderately high densities, and the
following interpolation between low and high densities for I

was suggested:

I (n, T ) = 8(1 − r )n T 3/2 ν gl

π1/2 d
, (4)

where gl is given by Eq. (2). Notice that a change of g to gl

is the only difference between the usual Enskog-type form
of pressure and heat losses [2] and the formulas given by
Eqs. (1) and (4). Equation (4) also assumes the limit of nearly
elastic collisions: 1 − r � 1. The inelastic heat losses term is
proportional to 1 − r2, but in this limit 1 − r2 � 2(1 − r ).

Figure 2 shows the results for inelastic heat losses close to
the maximal crystalline close packing. Similar to pressure, I (ν)
diverges as (νc − ν)−1; therefore we show I (νc − ν) on the
vertical axis. The results of MD simulations (squares) nicely
agree with the theoretical (rescaled) density-dependent part
of Eq. (4), I = (32/π3/2) (1 − r ) ν2 gl [10] shown by a black
solid curve. Figure 2 also shows the expression for inelastic
heat losses proposed in Ref. [7] (and still widely used [5,8]).
This expression shown by the blue dashed curve (see the
Appendix) is clearly much less accurate at moderate and high
densities.

C. The coefficient of thermal conductivity

For low and moderate densities, the coefficient of thermal
conductivity is given by the standard Enskog-type formula
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FIG. 2. Inelastic heat losses at high densities: rescaled I as a
function of the area fraction (see text). The solid line [Eq. (4), black
solid curve] shows an excellent agreement with the results of MD
simulations (squares). The vertical red dotted line marks ν = νc,
while the blue dashed curve presents the expression proposed in
Ref. [7] (see Appendix for details). The simulations were performed
for r = 0.999 99.

κE (ν)T 1/2/d [2,15], with

κE = 8ν2 g

π3/2

[
1 + 9π

16

(
1 + 2

3 ν g

)2
]

and g = (1 − 7ν/16)/(1 − ν)2 [14]. Here we aim at finding
the expression that works up to the density of close pack-
ing. To measure κ (ν), one has to consider a system with a
nonuniform temperature profile (so that heat conduction does
take place), but nevertheless a uniform density profile. This
major difficulty has prevented accurate measurements of κ (ν);
a few attempts have been made for low and moderate densities
[13,16]. To overcome this challenge, we considered a system
of inelastically colliding hard disks between two thermal walls
under gravity. Choosing different values for the gravitational
acceleration g and for the inelasticity of collisions r in our
molecular dynamics simulations allowed us to satisfy the
hydrodynamic equations [Eqs. (8), see the next section] with
the density that remained almost uniform across the system.
The key idea was to choose the hydrodynamic parameter F

for each average density in such a way that the hydrostatic
equation [the first equation in Eqs. (8)] may be satisfied,
had the temperature profile been linear and the density been
equal to the average density everywhere. Periodic boundary
conditions were implemented in the x direction, and the two
walls at y = 0 and y = H were thermal with temperatures
T1 and T2, respectively, with T1 < T2. In molecular dynamics
simulations, particles colliding with the thermal wall forgot
their previous normal velocities; the new normal velocities
were taken from the Maxwell-Boltzmann distribution with the
wall temperature. Gravity pointed in the negative y direction.
The heat flux was measured at each of the two thermal walls
by computing the energy gained (or lost) by particles colliding
with the wall as a function of time. The resulting curve is
indistinguishable from a straight line, and the heat flux was
computed as the slope of this straight line divided by L, the
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FIG. 3. Temperature profile: T 3/2 as a function of the rescaled
height y. Squares denote the results of MD simulations, and the two
dashed lines are linear fits at y = 0 and at y = 1. These simula-
tions were performed for area fraction ν = 0.87, gravity g = 0.5,
restitution coefficient r = 0.999 99, and total number of particles
N = 40 000.

length of the wall. The magnitude of the heat flux can be written
as (2/3) κ (ν) (d/dy)T 3/2. To proceed, the temperature profile
was measured in the simulations, and then T 3/2 was plotted as
a function of height; two linear fits were made in the vicinity
of the two walls (see Fig. 3).

Based on these measurements, κ (ν) was computed. We
checked that the system remained almost uniform (the largest
density contrast was about 2%, not too close to νc and
vanishingly small close to νc, as for parameters of Fig. 3).
We also checked that the values of κ (ν) measured at the two
walls were approximately the same. The simulation results can
be fitted by the following expression of the form κ (ν)T 1/2/d

that also interpolates between low and high densities:

κ = κE + m

[
3νc

2

(νc + 2ν)

νc − ν
− κE

]
, (5)

where the function m is the same as the one used in expressions
for pressure and heat losses [see text after Eq. (2)]. Figure 4
shows the measured coefficient of thermal conductivity (black
squares) together with the various expressions used in the
literature (the details are given in the Appendix). Again, as
κ (ν) diverges as (νc − ν)−1, we show κ (νc − ν) on the vertical
axis. The inset shows that the expression given by Eq. (5)
provides an excellent fit to the data, while some of the other
expressions for thermal conductivity can be wrong by a factor
of 4. Deriving the dense part of Eq. (5) analytically κdense =
(3νc/2) (νc + 2ν)/(νc − ν) looks tempting due to the relative
simplicity of this formula, but it still presents a challenge for
the theory.

Once the expressions for the constitutive relations are ob-
tained, one can employ them to analyze a variety of systems by
using the hydrodynamic approach. The next section considers
as an example the granular Leidenfrost state, where a very
dense cluster is levitating over a hot granular gas.
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FIG. 4. The coefficient of thermal conductivity at high densities:
rescaled κ (ν ) as a function of the area fraction. Shown is the
comparison between the results of MD simulations (squares) and
the expressions used in the literature (the red dashed line is from
Ref. [7] and the blue dash-dotted line is from Refs. [5,8], see the
Appendix for details). The inset zooms in on the results of MD
simulations (squares) and the proposed expression for κ [Eq. (5),
black solid line]. Since κ diverges as (νc − ν )−1, the vertical axis
shows the product κ (νc − ν ); the horizontal axis presents ln(νc − ν )
to make the high-density behavior visible. Each symbol from MD
simulations corresponds to a different set of parameters; the gravity
g ranged from 0.115 for ν = 0.75 to 6.88 for ν = 0.904 to ensure
that the density remained almost uniform across the system. The total
number of particles was N = 40 000, and in most of the simulations
the restitution coefficient was r = 0.999 99.

III. GRANULAR LEIDENFROST STATE:
THEORY AND SIMULATIONS

Consider an ensemble of moving hard disks that collide
inelastically; particles of mass m = 1 and diameter d = 1 are
placed into a two-dimensional system of width L and height H .
The bottom wall is thermal and is maintained at temperature Tb;
gravity points in the negative y direction. As before, we employ
periodic boundary conditions in the horizontal x direction.
Granular temperature decreases with height due to inelastic
collisions between the particles; as a result, in some parameter
regimes, one can observe denser granulate above a more dilute
gas [6]. In the extreme case, one can observe a solid cluster,
which is levitating above hot granular gas. It is known that this
state can become unstable, leading to convection [8,17]; the
cluster can also break due to a large fluctuation [12]. In this
work, we consider the regime of parameters where the cluster
is stable.

Equations of granular hydrodynamics are written for the
number density of grains n(r, t ), the granular temperature
T (r, t ), and the mean flow velocity [2]:

dn/dt + n∇ · v = 0,

(dv/dt ) = ∇ · P, (6)

n (dT /dt ) = −∇ · Q + P : ∇v − �.

Here P is the stress tensor, Q is the heat flux, and � is
the new term representing energy losses due to the inelas-
ticity of particle collisions. The stress tensor P is given by

P = [−P (n, T ) + μ(n, T )tr(D)]I0 + 2η(n, T ) D̂, where D =
(1/2)[∇v + (∇v)T ] is the rate of deformation tensor, D̂ =
D − 1

2 tr (D ) I0 is the deviatoric part of D, I0 is the identity
tensor, and η(n, T ) and μ(n, T ) are the shear (first) and bulk
(second) viscosities, respectively. Although the behavior of
shear viscosity at high densities is highly nontrivial [10,18], no
shear is present in the case of the granular Leidenfrost state.
In systems of inelastically colliding particles, the heat flux
depends not only on the temperature gradient but also on the
density gradient [19]. In the limit of nearly elastic collisions,
however, the density gradient term vanishes, and the heat flux Q
is given by Q = −κ (n, T )∇T , where κ (n, T ) is the coefficient
of thermal conductivity.

In the static case (zero mean flow velocity) and when the
density and the temperature depend on the vertical coordinate
y only, the equations are reduced to

dP

dy
+ mng = 0,

d

dy

(
κ (n, T )

dT

dy

)
− I (n, T ) = 0. (7)

The hydrodynamic equations are accompanied by the consti-
tutive relations obtained in Sec. II. Measuring y in units of the
system height H , T in units of the bottom wall temperature Tb,
n in units of nc, and P in the units of ncTb, we get the following
dimensionless equations:

dP

dy
+ Fn = 0,

d

dy

(
κ (n, T )

dT

dy

)
− RI (n, T ) = 0, (8)

where the parameter F = mgH/Tb is an analog of the Richard-
son number, the ratio of potential to thermal energies of a
particle, and R = (1 − r )H 2/d2 is the heat loss parameter.
The final dimensionless parameter is the average area frac-
tion, f = ν̄/νc = ∫ 1

0 n(y)dy. Below we consider the granular
Leidenfrost state for two completely different sets of these
dimensionless parameters (F,R, f ); one set was used in
Ref. [5], another one in Ref. [12], but with a different aspect
ratio (see Fig. 6). In addition to numerically solving Eqs. (8)
in MATLAB, we performed MD simulations that correspond
to these hydrodynamic parameters and compared the mea-
sured temperature and density profiles with the theoretical
predictions. A substantial temperature jump [16] was observed
in simulations at the bottom thermal wall, so we used the
measured gas temperature near the wall as the wall temperature
in the boundary conditions for the hydrodynamic equations.

Figures 5 and 7 present the temperature and density profiles
obtained by employing hydrodynamic theory, which incorpo-
rated the expression for pressure [Eqs. (1)–(2)], heat losses
[Eq. (4)], and the revised expression for thermal conductivity
[Eq. (5)]. The symbols show the results of MD simulations,
a very good agreement between simulations and theory was
obtained. It is worth emphasizing that although one can obtain
a good agreement with the simulation results even for a
very nonaccurate set of constitutive relations (using fitting
parameters, see the Appendix), this might work only for one
specific set of hydrodynamic parameters (R,F, f ). Correct
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FIG. 5. Granular Leidenfrost state: dense levitating cluster over
hot granular gas. Shown is the comparison between the results of
MD simulations (squares) and the theoretical predictions for both
the temperature profile (not rescaled, dashed line) and the density
profile (inset, dashed line). The parameters for the simulations are
as in Ref. [5]: g = 1, r = 0.988 15, N = 10 000, the aspect ratio
is H/L = 1.5625; this corresponds to the hydrodynamic parameters
R = 289.3066, F = 0.6793, and f = 0.5543.

constitutive relations, however, should provide good agree-
ment with simulations for any set of hydrodynamic parameters.

IV. SUMMARY AND DISCUSSION

In this work, we performed measurements of pressure P (n),
heat losses I (n), and the coefficient of thermal conductivity
κ (n) at high densities in molecular dynamics simulations. We
confirmed that all the constitutive relations diverge at νc as
(νc − ν)−1. We tested the expressions for P and I and proposed
an accurate expression for κ for a wide range of densities from
the dilute limit to the density of close packing. Interestingly,
to measure thermal conductivity of a hard disk’s fluid, an
ensemble of inelastically colliding particles was considered.
Once constitutive relations were obtained, these expressions
were employed to obtain hydrodynamic profiles of density
and temperature in a completely different setting: an ensemble
of inelastically colliding particles driven by a thermal wall
from below in the presence of gravity. Such a system presents
a fascinating phenomenon: a dense and cold solid cluster
levitating over a hot gas (Fig. 6). Overall, the theoretical density
and temperature profiles agree very well with the results of
the separately performed MD simulations for two completely
different sets of hydrodynamic parameters.

A small discrepancy, however, can still be observed in
the density profile: the theoretical curve shows a very sharp
decrease (the top of the cluster), while in MD simulations the
decrease is slightly smoother (see Fig. 7). This occurs since
the theory assumes a static solution, while in simulations, the
center mass of the system exhibits small amplitude oscillations;
these oscillations have already been observed in Ref. [5] and
were recently investigated in a separate work [20]. Accurate
constitutive relations obtained in this paper will allow for
a better theoretical analysis of such oscillations, helping to
clarify if this is an instability (analogous to one observed

FIG. 6. Snapshot of the system corresponding to Fig. 7. The red
line represents a thermal wall, and gravity is in the negativey direction.
The snapshot is a narrow vertical column, a slice of the system
considered in Ref. [12]. The parameters for the simulations are as
follows: g = 0.000 67, r = 0.992, N = 7500, and the aspect ratio is
H/L = 3.

without gravity between two thermal walls [21]) or if the cluster
is stable, but the decaying oscillatory mode gets a continuous
energy input due to the stochastic nature of the system [20].

The focus of the paper was on very dense systems, and
determining constitutive relations at the high-density limit
remained a challenge (even) for elastically colliding particles.
Therefore, in this paper we considered the quasielastic limit,
1 − r � 1. Theoretically, the dependence of pressure and
transport coefficients on the restitution coefficient r has been
derived for low and moderate densities [22], and testing this
dependence in simulations would be an interesting avenue of
future research. In order to see the effect clearly (for example,
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FIG. 7. Granular Leidenfrost state: dense levitating cluster over
hot granular gas; the snapshot is presented in Fig. 6. Shown is
the comparison between the results of MD simulations (squares)
and the theoretical predictions for both the temperature profile (not
rescaled, dashed line) and the density profile (inset, dashed line). The
hydrodynamic parameters are as follows: R = 360, F = 0.1414, and
f = 0.433.
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beyond 10% difference), the inelasticity of collisions needs to
be large enough. The difficulty that might arise in this case
in event-driven molecular dynamics simulations is related to
the phenomenon of inelastic collapse, which can occur even in
driven systems [23].

Trying the expand this approach to three-dimensional sys-
tems can be challenging. For low densities, the pressure and the
transport coefficients for granular gases in three dimensions are
known. Simulating the three-dimensional system at high den-
sities is significantly harder, as there are two possible packings
that reach the largest density: face-centered cubic (fcc) and
hexagonal close-packing (hcp). In simulations, mixtures of hcp
and fcc clusters may coexist for a long time [24]. It is likely that
the expressions for pressure and transport coefficients depend
on the specific ordering regime. Therefore, measuring the con-
stitutive relations for a specific phase might be a nontrivial task.

APPENDIX

As we discussed in the main text, a set of constitutive
relations was proposed in Ref. [7] to interpolate between the
low-density and high-density limits. It was a pioneering work
and the first attempt to apply a hydrodynamic approach to
dense systems. However, these relations were not tested in
MD simulations, and a careful analysis shows that they are
not accurate (see below). We discussed the equation of state in
detail in Sec. II A; now we present the expressions for the heat
losses and the coefficient of thermal conductivity from Ref. [7]
to explain the corresponding curves plotted in Figs. 2 and 4.
The heat losses for nearly elastic collisions (1 − r � 1) can
be written as

I (n, T ) = cI

(1 − r )n T 3/2

L
, (A1)

where cI is an unknown constant and L is the mean free path,
given by

L = 1√
8nd

nc − n

nc − (1 − √
3/8) n

. (A2)

Notice that in the limit of low densities the expression for the
mean free path tends to the correct formula. The dilute limit of
the heat losses was not discussed in Ref. [7], but it is not hard
to find the constant cI demanding that at low densities we get
the known expression

I (n, T ) = 8(1 − r )nT 3/2νgl

π1/2d
.

This leads to cI = (π/8)1/2. The formula given by Eq. (A1)
with this value for cI is plotted in Fig. 2 (dashed blue line), and
it is off approximately by a factor of 2 at high densities.

The expression for the coefficient of thermal conductivity,
suggested in Ref. [7], is

κ = cκ

√
T

n(αL + d )2

L
, (A3)

where cκ is an unknown constant, L is the mean free path, d is
the particle’s diameter, and α = 1.15 is a fitting parameter.
Again, cκ was not discussed in Ref. [7], but demanding
that in the dilute limit we get the standard expression κ =
2 T 1/2/(π1/2d ), one gets cκ = (32/π )1/2/α2. In subsequent
works, a different value for the fitting parameter α was adopted
(see, for example, Refs. [5,8]): α = 0.6. Figure 4 presents
the expression given by Eq. (A3) with the proper cκ for
both values of the fitting parameter α: the red dashed curve
corresponds to α = 1.15 (off by 25%) and the blue dash-dotted
curve corresponds to α = 0.6 (off by a factor of 5 at high
densities).
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