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Influence of flexoelectric effect on the Fréedericksz transition in chiral nematic liquid crystals
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Electric field driven Frèedericksz transition in chiral nematic (cholesteric) planar liquid crystal cell is studied
in the presence of flexoelectric effect. An inhomogeneity of electric field and finiteness of anchoring energy
are considered. The extra contribution to the electric field induced by flexoelectricity is taken into account
as well as the common contribution arising from the applied voltage U . Equilibrium director distribution is
obtained in dependence on voltage and flexoelectric coefficients by numerical minimization of the free energy.
The threshold voltage was found to decrease with the increase of the flexoelectric coefficients within the range of
high flexoelectric coefficients. Thus flexoelectricity promotes the transition. The orientational structure becomes
asymmetric about the center of the cell due to flexoelectricity, even in the case of symmetric boundary conditions.
The equilibrium structure was also shown to be different for U > 0 and U < 0. It was found, that for sufficiently
high flexoelectric coefficients the director distribution can be described by a simple function. In this case the
planar helicoidal structure transfers into a hybrid-aligned one as the voltage increases. This transformation may
form the basis for new flexoelectricity-based switching devices. The nonmonotonic behavior of threshold voltage
can be observed in the case of small flexoelectric coefficients. An analytical form of the stability conditions was
obtained for the planar helicoidal configuration. We have shown that the Frèedericksz transition can be either
continuous or discontinuous depending on the material constants and thickness of the liquid crystal cell.
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I. INTRODUCTION

Molecular reorientation effect in the liquid crystal (LC)
cells induced by an external field attracts attention of re-
searchers due to its applications. This phenomenon known
as the Fréedericksz transition (effect) was discovered in the
end of 1920’s. Among the devices based on the Fréedericksz
transition, we can point to LC displays, switchable diffraction
gratings, mirrorless lasers, and others [1]. The Fréedericksz
transition was studied for different types of inducing fields:
static electric and magnetic fields, oscillating electric field,
laser radiation; and for different types of LC phases: nematics,
cholesterics, smectics, etc. [2–4].

The simplest way of accounting for anchoring effects in
the Fréedericksz transition is to use rigid boundary conditions.
Weak anchoring is usually described by the Rapini-Popular po-
tential [5]. It is important to note that theory of the Fréedericksz
transition in electric and magnetic fields is quite different, due
to the spatial inhomogeneity of the electric field inside the LC
cell [6–10]. The Fréedericksz transition in nematics has earlier
been treated as an orientational phase transition of the second
order [11], i.e., the continuous phase transition. However, in
chiral nematics (cholesterics) it turns to be either continuous
or discontinuous depending on the material constants [12].
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Recently, there has been observed growing interest in study-
ing the influence of flexoelectricity [13] on threshold effects in
liquid crystals, e.g., switching in bistable nematic LC devices
[14–16]. Flexoelectricity provides additional distortions to the
electric field, thus it also affects the Fréedericksz transition.
Such transition in a nematic LC was studied in [17–19]. The
analysis was restricted to the rigid boundary conditions and to
the lowest harmonic approximation for the director and for the
electric field spatial distributions.

In this work the Fréedericksz transition for a static electric
field in the plane-parallel cholesteric LC cell is investigated
theoretically accounting for the flexoelectric effect, finite
surface anchoring energy, and spatial inhomogeneity of the
electric field. Three issues are in the focus of our attention:
the threshold voltages, the director configuration above the
threshold, and the type of the orientational transition. Special
emphasis is given to the stability of equilibrium structures and
to phase diagrams.

The paper is organized as follows. In Sec. II the free energy
functional of a plane-parallel LC cell is derived as a sum
of bulk and surface inputs. The bulk free energy includes
elastic, electric field, and flexoelectric terms. Electric field
spatial inhomogeneity induced by dielectric anisotropy and
by flexoelectricity is taken into consideration. The surface free
energy is described with the Rapini-Papoular–type potential.
In Sec. III the equilibrium spatial distribution of the director
is found for a wide range of material parameters. The phase
diagrams, including stability and metastability zones, are found
using the numerical variation analysis. In Sec. IV the stability
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of the planar helicoidal structure is studied analytically. In
Sec. V the type of the Fréedericksz transition (continuous or
discontinuous) is analyzed within the two-parametric Landau-
type model. Section VI contains summary and discussions.

II. DISTORTION FREE ENERGY

We consider a chiral nematic liquid crystal contained
between two parallel flat electrodes with a weak surface
anchoring. Consider that the liquid crystal occupies the layer
0 � z � L with the z axis directed normally to the boundaries.
The system is assumed to be homogeneous in x, y directions;
in particular, the director n(r) = n(z), thus excluding from the
consideration the Helfrich-type instabilities [3] and the edge
effects. We parametrize the director n in the form

nx = sin θ cos ϕ, ny = sin θ sin ϕ, nz = cos θ, (2.1)

with polar and azimuthal angles θ and ϕ, respectively.
The distortion free energy of a chiral nematic cell can be

expressed as a sum of three terms:

Ftot = Fe + Fsf + Ff . (2.2)

The first term presents the Oseen-Frank elastic energy [3]:

Fe = S⊥
2

∫ L

0
[K11(div n)2 + K22(n · curl n + q0)2

+K33(n × curl n)2] dz, (2.3)

where S⊥ is the area of boundary plates, Kii are the Frank
constants, π/q0 is the helix period (half of the helix pitch).
Inserting Eq. (2.1) into (2.3), we obtain

Fe = F(0)
e + S⊥

2

∫ L

0
[A(θ )θ ′2 + B(θ )ϕ′2 − 2C(θ )ϕ′]dz,

(2.4)

A(θ ) = K11 sin2 θ + K33 cos2 θ,

B(θ ) = sin2 θ (K22 sin2 θ + K33 cos2 θ ), (2.5)

C(θ ) = q0K22 sin2 θ,

where F(0)
e = V K22q

2
0/2, and V = S⊥L is the volume of the

cell; the prime denotes the derivative with respect to z.
In Eq. (2.3) there should exist extra surfacelike terms

F13 = K13

∫
V

div(n div n)dr,

F24 = −K22 + K24

2

∫
V

div(n div n + n × curl n)dr,

where K13 and K24 are the splay-bend and the saddle-splay
modules [20,21]. In the case of n = n(z) we obtain [21]

F13 = − 1
2S⊥K13θ

′ sin 2θ

∣∣∣L
0
, F24 = 0.

Note that K22 + K24 = 0 in chiral nematics, according to [4].
The LC elastic free energy occurs to be unbounded from below
due to F13 term, producing the so-called Oldano-Barbero
paradox [22]. There are several principal ways of solving this
problem [20,21,23]. The first one is based on a modification of
the volume and/or the surface elastic free energy. The second

one involves deriving the equality K13 = 0. The latter relation
has been obtained in some of the LC molecular models as
well as in a continuous medium approach. The third approach
asserts that the first derivatives of the director at the boundaries
obey the bulk equilibrium equations, hence, θ ′(0) and θ ′(L) are
not free parameters. In fact, the K13 problem is still cyclically
closing-unclosing. In this work, in what follows we omit F13

term as it is usually done in analysis of the Fréedericksz
transition.

The second term in Eq. (2.2) presents the surface anchoring
energy. We approximate it as

Fsf = S⊥
2

∑
α=1,2

[
W

(α)
θ sin2

(
θ − θ

(α)
0

) + W (α)
ϕ sin2

(
ϕ − ϕ

(α)
0

)]
.

Here, α = 1, 2 correspond to the boundaries z = 0, L, re-
spectively. Constants W

(α)
θ,ϕ > 0 are the elastic modules of

the surface anchoring energy, and the angles θ
(α)
0 and ϕ

(α)
0

describe the easy directions at the boundaries. This formula is
an anisotropic version of Rapini-Papoular potential [5]. Rigid
boundary conditions correspond to the limit W

(α)
θ,ϕ → ∞.

The third term arises due to the external electric field

Ff =
∫

V

Ff dr, Ff = − 1

4π

∫
D · dE, (2.6)

where E is the electric field and D is the displacement field
[3,24]. The electric displacement field takes the following form
in the presence of flexoelectricity:

D = ε̂E + 4πPflex, (2.7)

where

εαβ = ε⊥δαβ + εanαnβ, (2.8)

Pflex = e1n div n + e3 curl n × n, (2.9)

εa = ε‖ − ε⊥, ε‖ and ε⊥ are permittivities along and across
with respect to n; e1 and e3 are flexoelectric coefficients [3].
Assuming that the field E is homogeneous in XY plane, E(r) =
E(z), we obtain

Ff = −S⊥
8π

∫ L

0
E · ε̂E dz − S⊥

∫ L

0
Pflex · E dz. (2.10)

As follows from the Maxwell equation curl E = 0 and bound-
ary conditions Ex,y (0) = Ex,y (L) = 0, the vector E has only
one nonzero component Ez = E(z). Thus,

Ff = −S⊥
8π

∫ L

0
E2(z)E(θ )dz + S⊥ē

∫ L

0
sin 2θ θ ′E(z)dz,

(2.11)
where

E(θ ) = ε⊥ + εa cos2 θ, ē = (e1 + e3)/2. (2.12)

The z component Dz is independent of z due to identity
div D(z) = 0. Equation (2.7) gives

Dz = E(θ )E(z) − 4πē sin 2θ θ ′, (2.13)

and so we get

E(z) = (Dz + 4πē sin 2θ θ ′)/E(θ ). (2.14)
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The magnitude of Dz and the voltage U applied to the
electrodes are related as follows:

U =
∫ L

0
E(z) dz = DzJ

−1 + 4πēJ1, (2.15)

where

J−1 =
∫ L

0

dz

E(θ )
, J1 = ε−1

a ln
E(θ (0))
E(θ (L))

. (2.16)

It is notable that the factor J1 depends on θ (z) only via its
values at the boundaries θ (0) and θ (L). Thus, we have

Dz = (U − 4πēJ1)J, (2.17)

and the electric field takes the form

E(z) = [UJ + 4πē(sin 2θ θ ′ − J1J )]/E(θ ). (2.18)

Note that Eq. (2.17) is analogous to Eq. (3) in Ref. [17], though
our result differs by a factor ē instead of sum e1 + e3.

Substituting Eq. (2.18) into (2.11), we obtain

Ff = −S⊥
8π

U 2J + S⊥ēUJJ1

+ 2πS⊥ē2

(∫ L

0

(sin 2θ θ ′)2

E(θ )
dz − JJ 2

1

)
. (2.19)

Here, the spatial inhomogeneity of the electric field induced by
flexoelectricity is taken into account. In the case of LC without
flexoelectricity, ē = 0, we obtain (cf. Refs. [6,7,12])

Ff = −S⊥U 2J/8π. (2.20)

If (εa/ε⊥) cos2 θ � 1, Eq. (2.20) reduces to the simpler form
[3]

Ff = F
(0)
f − S⊥εaU

2

8πL2

∫ L

0
cos2 θ dz, F

(0)
f = −S⊥U 2ε⊥

8πL
,

accounting for the inhomogeneity of the director n(z) and
ignoring the inhomogeneity of the electric field.

Note that Ff depends on the sign of the voltage U

due to the flexoelectric term S⊥ēUJJ1 in Eq. (2.19). In
the case of rigid symmetric boundary condition θ (0) =
θ (L), this term vanishes since J1 = 0. We assume that

ē > 0. The case ē < 0 can be reduced to the case ē > 0 by
changing (ē, U ) → (−ē,−U ). It is notable that in accordance
to Eq. (2.18) the nonzero electric field appears in flexoelectric
inhomogeneous system even if U = 0. This electric field
induced by the director distortion gives rise to the last term
in Eq. (2.19).

It is noteworthy that the last term of Eq. (2.19) describing
the contribution of the electric field to the free energy can be
rewritten as

2πS⊥ē2
∫ L

0

(sin 2θ θ ′ − JJ1)2

E(θ )
dz. (2.21)

Hence, for large ē and for not too high voltages U the electric
field contribution takes the minimum value if sin 2θ θ ′ −
JJ1 = 0. This functional integrodifferential equation can be
solved in an explicit form. Its general solution can be presented
as

cos2 θ (z) = az + b (2.22)

with both constants a and b being surprisingly arbitrary. This
formula defines the θ (z) profile form for sufficiently high ē.

Collecting the elastic, anchoring, and electric field terms we
obtain the ultimate total distortion free energy

Ftot = F(0)
e + S⊥

2

∫ L

0
[A(θ )(θ ′)2 + B(θ )(ϕ′)2 − 2C(θ )ϕ′]dz

+ S⊥
2

∑
α=1,2

[
W

(α)
θ sin2

(
θ − θ

(α)
0

)

+W (α)
ϕ sin2 (

ϕ − ϕ
(α)
0

)] − S⊥U2J/8π, (2.23)

where

A(θ ) = A(θ ) + 4πē2sin2 2θ/E(θ ), U = U − 4πēJ1

(2.24)
can be treated as functions renormalized by flexoelectricity.

III. EQUILIBRIUM STRUCTURE

A. Euler-Lagrange equations and elimination
of azimuthal angle

The first variation of the distortion free energy can be
presented as

δFtot = S⊥

{ ∫ L

0

[
1

2

dA

dθ
θ ′2δθ + Aθ ′(δθ )′ + 1

2

dB

dθ
ϕ′2δθ + Bϕ′(δϕ)′ − dC

dθ
ϕ′δθ − C(δϕ)′

]
dz

+ 1

2

∑
α=1,2

[
W

(α)
θ sin 2

(
θα − θ

(α)
0

)
δθα + W (α)

ϕ sin 2
(
ϕα − ϕ

(α)
0

)
δϕα

] + εa

8π
U2J 2

∫ L

0

sin 2θ

E2(θ )
δθ dz + ēUJ

sin 2θ

E(θ )
δθ

∣∣∣∣
L

0

}
,

where θα = θ (lα ), ϕα = ϕ(lα ), and l1 = 0, l2 = L. Equating
δFtot to zero for arbitrary variations δθ and δϕ in the bulk
and at the boundaries, we obtain a set of two Euler-Lagrange
equations and two boundary conditions. Integrating by parts
the elastic term in δFtot, we get the equation set

dA

dθ
θ ′2 + 2Aθ ′′ = dB

dθ
ϕ′2 − 2

dC

dθ
ϕ′ + εaU

2J 2 sin 2θ

4πE2(θ )
, (3.1)

d(Bϕ′ − C)/dz = 0, (3.2)

with the boundary conditions

(
2(−1)α[A(θ )θ ′ + ēUJ sin 2θ/E(θ )]

+W
(α)
θ sin 2

(
θ − θ

(α)
0

))∣∣
z=lα

= 0, (3.3)(
2(−1)α (Bϕ′ − C) + W (α)

ϕ sin 2
(
ϕ − ϕ

(α)
0

))∣∣
z=lα

= 0, (3.4)
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where α = 1, 2. Note that Eq. (3.1) is the functional integrod-
ifferential equation since the factor J1 contains values θ (0) and
θ (L) and the factor J depends on the function θ (z) within the
bulk. It should be noted as well that Eqs. (3.3) are integral
nonlocal boundary conditions. These features have arisen due
to the flexoelectricity. The first integral of equation set (3.1)
and (3.2) is given by

A(θ )θ ′2 + B(θ )ϕ′2−U2J 2/(4πE(θ )) = C1, (3.5)

B(θ )ϕ′ − C(θ ) = C2, (3.6)

where C1,2 are arbitrary constants. The particular integrals can
be found from the boundary conditions (3.3) and (3.4).

We are going to find the LC equilibrium structure by the
variational method minimizing the free energy numerically.
The equilibrium and boundary conditions (3.6) and (3.4) will
be used for the simplification of Ftot, and Eqs. (3.5) and (3.3)
to control accuracy of the minimization results. Restricting
ourselves to the equilibrium distributions of θ (z) and ϕ(z), we
can present Ftot as a functional of the function θ (z) only.

Substituting Eq. (3.6) into (2.4), we obtain

Fe = F(0)
e + S⊥

2

∫ L

0

[
A(θ )θ ′2 + C2

2 − C2(θ )

B(θ )

]
dz. (3.7)

Integration of Eq. (3.6) over the interval [0; L] gives

ϕtot = C2I1 + I2, (3.8)

where ϕtot = ϕ(L) − ϕ(0), and

I1 =
∫ L

0

dz

B(θ )
, I2 =

∫ L

0

C(θ )

B(θ )
dz.

Inserting Eq. (3.6) into (3.4), we get

2
(
ϕ(lα ) − ϕ

(α)
0

) = (−1)α+1 arcsin
(
2C2/W (α)

ϕ

)
, (3.9)

α = 1,2, and hence

2
(
ϕ

(0)
tot − ϕtot

) = arcsin
(
2C2/W

(1)
ϕ

) + arcsin
(
2C2/W

(2)
ϕ

)
,

(3.10)

where ϕ
(0)
tot = ϕ

(2)
0 − ϕ

(1)
0 . Here, we assume that

|ϕ(lα ) − ϕ
(α)
0 | � π/4. It is a regular situation which excludes

the effects of jumps in a cholesteric pitch [25].
Equations (3.8) and (3.10) yield the equation for C2,

C2 = (
ϕ

(0)
tot − I2

)/(
I1 + k1/W (1)

ϕ + k2/W (2)
ϕ

)
, (3.11)

where kα = (W (α)
ϕ /2C2) arcsin (2C2/W (α)

ϕ ), 1 � kα � π/2.
The inequalities |C2|/W (α)

ϕ � 0.5 must be valid for the solution
of Eq. (3.11). For |C2|/W (α)

ϕ � 1 we get the explicit formula

C2 = (ϕ(0)
tot − I2)

(
I1 + 2/WH

ϕ

)−1
(3.12)

with WH
ϕ = 2W (1)

ϕ W (2)
ϕ /(W (1)

ϕ + W (2)
ϕ ).

Substituting Eq. (3.11) into (3.7) and using Eq. (3.9) we
find Ftot as a functional of θ (z):

Ftot (θ ) = F(0)
e + S⊥

2

[ ∫ L

0

(
A(θ )θ ′2 − C2(θ )

B(θ )

)
dz

+W
(1)
θ sin2

(
θ (0) − θ

(1)
0

)

+W
(2)
θ sin2

(
θ (L) − θ

(2)
0

)
+C2

2

(
I1 + κ1/W

(1)
ϕ + κ2/W

(2)
ϕ

) − U2J

4π

]
, (3.13)

where κα = 2/(1 +
√

1 − (2C2/W (α)
ϕ )2 ), 1 � κα � 2. The

next-to-last term in Ftot (θ ) for |C2|/W (α)
ϕ � 1 takes the ex-

plicit form

S⊥
2

(
ϕ

(0)
tot − I2

)2(
I1 + 2/WH

ϕ

)−1
. (3.14)

The error of this approximation is about 2% for |C2|/W (α)
ϕ �

0.25 and about 15% for the whole area |C2|/W (α)
ϕ � 1/2.

Assuming the equilibrium function θ (z) being determined
one can find the equilibrium function ϕ(z) from Eqs. (3.6),
(3.4), and (3.11):

ϕ(z) = ϕ
(1)
0 + 1

2
arcsin

2C2

W
(1)
ϕ

+
∫ z

0

C(θ ) + C2

B(θ )
dz. (3.15)

B. Numerical analysis

Equilibrium orientational structure in the LC cell is obtained
by a numerical minimization of the free energy (3.13) using
the following easy directions at the boundaries:

θ
(1)
0 = θ

(2)
0 = π/2, ϕ

(0)
tot = q0L. (3.16)

These conditions correspond to the unstressed twisted LC in
the absence of the electric field. The function θ (z) is described
by the trial function

θ (z) = π/2 + δψ (z, δ1, δ2) +
N∑

n=1

cn sin(πnz/L). (3.17)

Here, the term π/2 corresponds to the undistorted state. The
function δψ (z, δ1, δ2), given by Eq. (4.12), arises from the
orientational distortions at the boundaries: θ (0) = π/2 + δ1,
θ (L) = π/2 + δ2. The Fourier sum describes bulk distortions
of the director. Fourier coefficients cN and cN−1 can be obtained
explicitly as functions of δ1,2 and {cn}N−2

n=1 using boundary
conditions (3.3). Thus, the angles δ1, δ2, and the coefficients
cn, n = 1, . . . , N − 2, are adjustable parameters.

We restrict ourselves to N = 20 in the Fourier series (3.17).
Accounting for more than 20 terms would change the relative
deviation of θ less than by 0.5% for all z. In multidimensional
numerical minimization there exists the problem of being
trapped by saddle points or maxima. We use small random
shifts of obtained parameters δ1,2, {cn} to distinguish real
minima. If the minimization algorithm leads to a different
point, we have a saddle point or a maximum. For minima,
the minimization always returns back.

Let us change the voltage U , keeping other LC cell param-
eters fixed. Three cases are found:

(a) The single minimum case corresponds to the planar
helicoidal structure, where δ1,2 = 0 and cn = 0, i.e., θ (z) =
π/2, and ϕ(z) = q0z.

(b) The three minima case. The first of them corresponds
again to the planar helicoidal “phase.” Two extra minima M1

and M2 correspond to the distorted “phases,” where some of
the parameters δ1,2, cn are nonzero. The points M1 and M2 are
transferred into each other by the substitution (δ1, δ2, cn) →
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P                     PD     DP                  D U

U

(I)

(II)      P                                           D

U ** Uc U *

Uc = U *=U **

   planar state    distorted state 

FIG. 1. A sketch illustrating discontinuous (I) and continuous (II)
Fréedericksz transitions for U > 0. (I) The stability areas for the
distorted (D) “phase” U > U ∗∗, and for the undistorted planar (P)
“phase” U < U ∗. In the interval PD, U ∗∗ < U < Uc, the D phase
is metastable, and in the interval DP, Uc < U < U ∗, the P phase
is metastable. (II) The stability intervals for the distorted “phase”
U > Uc, and for the undistorted planar “phase” U < Uc.

(−δ1,−δ2,−cn). The states M1 and M2 correspond to the same
director distribution due to the symmetry n ↔ −n.

(c) Two minima M1 and M2 correspond to the distorted
“phases.” The planar helicoidal “phase” does not exist in this
case.

1. Phase diagram

The case (a) occurs for voltages |U | below the threshold
value U ∗∗. Two possible situations can be observed when the
voltage exceeds U ∗∗. They correspond to the discontinuous (I)
and continuous (II) Fréedericksz transition:

I. There exists one more thresholdU ∗ > U ∗∗ producing the
case (b) for |U | ∈ (U ∗∗, U ∗). Here, U ∗∗ is the lowest voltage
at which the distorted “phase” can exist as a metastable state,
and, in its turn, U ∗ is the highest voltage at which the planar
helicoidal “phase” can exist as a metastable state. In the interval
(U ∗∗, U ∗) one of the “phases” can exist as a metastable one.
The system energy in the distorted “phase” decreases with the
increase of the voltage |U |. Eventually, the energies of the
system in the distorted and in the planar “phases” become equal
at some voltage |U | = Uc, and the discontinuous Fréedericksz
transition takes place. For |U | < Uc the system is in the
undistorted state, and for |U | > Uc it is in the distorted state.
Finally, for |U | > U ∗ we have case (c).

II. There exists only one threshold voltage |U | = Uc. This
case corresponds to situation I with U ∗ = Uc = U ∗∗ and the
Fréedericksz transition is continuous. For |U | < Uc we have
case (a) and for |U | > Uc – case (c).

The stability and metastability voltage intervals are pre-
sented in Fig. 1. Here and elsewhere, we use the term “stable”
for equilibrium states corresponding to local minima of the
free energy. The term “metastable” is used for a stable state
with the free energy exceeding that of another stable state.

In order to examine the flexoelectricity effect on the
Fréedericksz transition, we calculated the voltages U ∗∗,
Uc, U ∗ depending on ē. Note that the account for the
flexoelectricity makes the values U ∗∗, U ∗, and Uc different for
U > 0 and for U < 0 if W

(1)
θ �= W

(2)
θ . The material constants

were taken the same as in Ref. [12]: K11 = 0.42 × 10−6

dyn, K22 = 0.23 × 10−6 dyn, K33 = 0.53 × 10−6 dyn,
q0 = 500 cm−1, L = 60 μm, W

(1)
θ = 2.5 × 10−3 erg/cm2,

W
(2)
θ = 0.5 × 10−3 erg/cm2, W (1)

ϕ = 2.5 × 10−4 erg/cm2,
W (2)

ϕ = 1.0 × 10−4 erg/cm2, ε⊥ = 7.2, ε‖ = 16.2. The

FIG. 2. Phase diagram. The voltages U ∗, Uc, and U ∗∗ as functions
of the mean flexoelectric coefficient ē: dashed line, U ∗∗; solid line,
Uc; dashed-dotted line, U ∗. The stability and metastability areas are
schematically shown in the insets. The tricritical points are denoted
by TP, other notations are the same as in Fig. 1. The lines U ∗, Uc, and
U ∗∗ coincide to the right of TPs.

parameters q0 and L correspond to the supertwisted LC cell
with q0L = 3 > π/2. We have chosen sufficiently different
anchoring constants in order to demonstrate the influence of
the boundary asymmetry. In Fig. 2 we present the calculated
phase diagram in the (ē, U ) plane for both directions of
the electric field. It is noteworthy that in the case of U > 0
the voltages U ∗, Uc, and U ∗∗ decrease with the increase of
ē, thus, flexoelectricity promotes the transition. However,
the dependencies of voltages on ē are nonmonotonic for
U < 0 (the minimum point is denoted by M0). In the
case of symmetric boundary conditions, W

(1)
θ = W

(2)
θ and

W (1)
ϕ = W (2)

ϕ , the curves U ∗, Uc, and U ∗∗ are symmetric with
respect to the ē axis. The Fréedericksz transition turns out to
be discontinuous at lower ē and continuous at higher ē. Such
a change of the transition type occurs in the tricritical point
TP. The vicinity of the tricritical point is shown schematically
in the inset of Fig. 2.

2. Equilibrium state

Equilibrium θ (z) and ϕ(z) profiles are presented in Fig. 3
with the same material parameters as in Fig. 2 for different
values of ē. It is interesting to point out to several specific
features of these plots. First, the shape of the curves θ (z) and
ϕ(z) changes considerably as ē rises. The dependence θ (z)
is described by a simple formula (2.22) for sufficiently high
values of ē. Second, the asymmetry of θ (z) profile with the
respect of the center z = L/2 increases significantly for high
ē; in particular, θ (0) → π/2 and θ (L) → 0 if ē → ∞. Here,
we have the planar → hybrid aligned Fréedericksz transition
for a system with strong flexoelectricity instead of planar →
homeotropic one for a system without flexoelectricity.

It is important to note that due to flexoelectricity the θ (z)
profiles remain asymmetric even in systems with the same
anchoring modules at both boundaries. This phenomenon is
illustrated in Fig. 4: it is notable that if U > 0, then θ (0) ≈ π/2
and θ (L) ≈ 0 for large ē. It can be explained as follows:
the profile θ (z) obeys Eq. (2.22) for high ē, and so the last
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FIG. 3. Equilibrium profiles θ (z) and ϕ(z) calculated via
Eq. (3.17) for U = 1.2 V. Lines 1 correspond to the LC without
flexoelectricity, ē = 0; lines 2 are for ē = 10−4 statC/cm, lines 3
are for ē = 10−3 statC/cm, lines 4 are for ē = 3 × 10−3 statC/cm,
and lines 5 are for ē = 10−2 statC/cm (we use the statcoulomb unit,
statC, for electric charge in cgs system). Dashed lines (red online) are
calculated via formulas (3.18) and (3.19).

term in the free energy (2.19) is close to zero. Hence, the
main input into Ff is given by the second term S⊥ēUJJ1 ≈
S⊥ēU sin 2θ θ ′ = −S⊥ēU (cos2 θ )′ ≈ −S⊥ēUa. In order to
minimizeFf , one should have the maximal value of a sgn(ēU ).
Note that aL = cos2 θ (L) − cos2 θ (0). So, the minimum ofFf

is attained when θ (0) ≈ π/2, θ (L) ≈ 0 for ēU > 0 and θ (0) ≈
0, θ (L) ≈ π/2 for ēU < 0. Hence, according to Eqs. (2.22)
and (3.15), the profiles for large ē have the form

θ (z) �
{

arccos
√

z/L, ēU > 0

arccos
√

1 − z/L, ēU < 0
(3.18)

ϕ(z) �
⎧⎨
⎩

ϕ
(1)
0 + q0L

ζ
ln

(
1 + ζ z

L

)
, ēU > 0

ϕ
(2)
0 − q0L

ζ
ln

[
1 + ζ

(
1 − z

L

)]
, ēU < 0

(3.19)

where ζ = (K33 − K22)/K22. Note that the first formula in
(3.19) is invalid in the vicinity of z = L, and the second one
is invalid in the vicinity of z = 0. In order to describe the
dependence ϕ(z) near these points, it is necessary to take into
account the small corrections ∼1/ē in Eq. (3.18).

Now, let us discuss how the continuity and discontinuity
of the Frèedericksz transition affects the director orientation
structure just above the threshold. It can be seen from Fig. 2
that the region of the phase coexistence is very narrow for
the material parameters given. In such a situation it seems
reasonable to expect that discontinuity of the transition does not
manifest itself in the director structure notably. For checking
purposes, we calculated the profiles for two different values of
ē, i.e., below and above ēTP at the different voltages applied.

2

1

3

4 5

0 20 40 60

θ
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ad
)
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1.5

(U > 0)

2

1
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4
5
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θ
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)
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1.5

(U < 0)

FIG. 4. Equilibrium profiles θ (z) for U = ±1.2 V in the case
of symmetric anchoring: W

(1)
θ = W

(2)
θ = 1.5 × 10−3 erg/cm2 and

W (1)
ϕ = W (2)

ϕ = 1.5 × 10−4 erg/cm2. The lines’ numbers, ē values,
and other material parameters are the same as in Fig. 3, except line
2, which corresponds to ē = 5 × 10−4 statC/cm. Dashed lines (red
online) are calculated via formula (3.18).

If the voltage is below Uc, the system remains in the planar
helicoidal state, after that the structure at the voltage above Uc

by 0.5% was explored. It was found that there is a significant
difference between θ (z) profiles for the cases of continuous and
discontinuous transitions (Fig. 5). Consequently, the disconti-
nuity of the transition radically changes the director structure
above the threshold even if there is only a very small difference
between U ∗ and U ∗∗.

2a

2b

1a, 1b

z (μm)

θ 
(r

ad
)

0 20 40 60
0

1.0

1.5

FIG. 5. Profiles θ (z) for continuous (a) and discontinuous (b)
transitions. Coinciding lines 1a and 1b refer to the planar helicoidal
structure (U = 0.999Uc) and lines with the number 2 correspond
to the distorted structures (U = 1.005Uc). For “a” profiles ē = 8 ×
10−4 statC/cm > ēTP and for “b” profiles ē = 2 × 10−4 statC/cm <

ēTP, where ēTP = 5.132 × 10−4 statC/cm. The threshold voltages are
(a)Uc = 0.6926 V, (b)Uc = 0.9396 V. Other material parameters are
the same as in Fig. 3.
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IV. STABILITY OF THE PLANAR HELICOIDAL
STRUCTURE. ANALYTICAL APPROACH

The pair of angle functions θ0(z) = π/2, ϕ0(z) = q0z with
z ∈ [0, L] describes the undistorted planar helicoidal struc-
ture. Investigating its stability we are to study the second
variation of the free energy Ftot (θ0, ϕ0). It has already been
obtained in Ref. [12] when flexoelectricity is absent:

δ2Ftot|ē=0 = S⊥
2

[ ∫ L

0
(K11(δθ ′)2 + Mδθ2 + K22(δϕ′)2) dz

+
∑

α=1,2

W
(α)
θ δθ2(lα ) +

∑
α=1,2

W (α)
ϕ δϕ2(lα )

]
,

(4.1)

where

M = K33q
2
0 − εaU

2/(4πL2). (4.2)

As long as J1|θ=θ0
= 0 and δJ1|θ=θ0

= 0, the flexoelectricity
contribution to the second variation of Ftot is given by

δ2Fflex = −S⊥ē(U/L)δθ2
∣∣L
0 . (4.3)

Hence, δ2Ftot = δ2Ftot|ē=0 + δ2Fflex turns to be a sum of two
independent variations corresponded to the angles θ and ϕ.
The part depending on ϕ is positive definite due to inequal-
ities K22 > 0 and W (1,2)

ϕ > 0. So, the stability of the planar
helicoidal structure is determined by the terms depending on
θ variation only:

δ2Fθ = S⊥
2

∫ L

0
(K11(δθ ′)2 + M (δθ )2)dz

+ S⊥
2

∑
α=1,2

W(α)δθ2(lα ), (4.4)

where

W(α) = W
(α)
θ − 2(−1)αēU/L. (4.5)

So, the contribution of flexoelectricity to δ2Ftot reduces to the
renormalization of the surface elastic modules, i.e., W

(α)
θ →

W(α). It is noteworthy that one of the “effective” anchoring
energiesW(α) increases and remains positive, while the second
one decreases and becomes negative when the applied voltage
|U | is high enough. The following notation will be used further:

W+ =
{
W(1), if U > 0
W(2), if U < 0

W− =
{
W(2), if U > 0
W(1), if U < 0.

(4.6)

As it follows from Eq. (4.4), the planar helicoidal configuration
can become unstable only if at least one of the values {M,W−}
is negative. In what follows, we restrict ourselves to the case
of εa > 0. It turns out that there are three cases of potential
instability:

I. M < 0, W− � 0,

II. M < 0, W− < 0,

III. M � 0, W− < 0.

(4.7)

FIG. 6. The curves ABCD and A′B ′C ′D′ plotted using formulas
(4.21) present the boundary of the stability zone of the planar
helicoidal configuration.

In terms of the voltage U these cases can be rewritten as

I. Ue < |U | � Uflex,

II. |U | > max(Ue,Uflex),

III. Uflex < |U | � Ue.

(4.8)

The areas corresponding to these cases can be seen below in
Fig. 6. Here, we used the notations

Ue = 2q0L

√
πK33

εa

, Uflex = L

2ē

{
W

(2)
θ , if U > 0

W
(1)
θ , if U < 0.

(4.9)

Analyzing δ2Fθ we separate δθ (z) into two parts:

δθ (z) = δψ (z) + δμ(z), (4.10)

where δμ(0) = δμ(L) = 0. The function δψ (z) =
δψ (z, δ1, δ2) is chosen in such a way that the following
equation and the boundary conditions are satisfied:

K11δψ
′′(z) − Mδψ (z) = 0,

δψ (0) = δ1, δψ (L) = δ2.
(4.11)

The solution of Eq. (4.11) can be represented as

δψ =

⎧⎪⎪⎨
⎪⎪⎩

δ1
sin ξ (L−z)

sin ξL
+ δ2

sin ξz

sin ξL
, M < 0

δ1(L − z)/L + δ2z/L, M = 0

δ1
sinh ξ (L−z)

sinh ξL
+ δ2

sinh ξz

sinh ξL
, M > 0

(4.12)

where the inverse length ξ is defined as

ξ =
√

|M|K−1
11 =

√∣∣K33q
2
0 − εaU 2/(4πL2)

∣∣K−1
11 .

(4.13)

Separating δθ into two terms given by Eqs. (4.10) and
(4.12), we present δ2Fθ as a sum of two independent quadratic
forms

δ2Fθ = 1
2S⊥(Qψ + Qμ), (4.14)
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where

Qψ =
∫ L

0
(K11δψ

′2(z) + Mδψ2(z))dz +
∑

α=1,2

W(α)δ2
α,

(4.15)

Qμ =
∫ L

0
(K11(δμ′)2 + M (δμ)2)dz. (4.16)

It is noteworthy that only Qψ depends on the boundary
distortions δ1,2. Such an approach dates back to Feynman [26]
and was used in Refs. [12,27,28] for liquid crystals in bounded
cells. Since K11 > 0, the quadratic form Qμ is obviously
positive definite in the case of M � 0 (|U | � Ue). For M < 0
(|U | > Ue), the positivity condition of Qμ is given by [12]

ξL < π. (4.17)

Substituting Eq. (4.12) into (4.15) we obtain

Qψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
α=1,2

(K11ξ cot ξL + W(α) )δ2
α

− 2K11(ξ/ sin ξL)δ1δ2,
if M < 0

∑
α=1,2

(K11/L + W(α) )δ2
α

− 2(K11/L)δ1δ2,
if M = 0

∑
α=1,2

(K11ξ coth ξL + W(α) )δ2
α

−2K11(ξ/ sinh ξL)δ1δ2,

if M > 0.

(4.18)

Using the Sylvester criterion for the quadratic form Qψ and
accounting for the inequality (4.17), we obtain the stability
conditions for the planar helicoidal structure of a chiral
nematic:

for |U | > Ue :

⎧⎨
⎩

0 < t < π,

w+ + t cot t > 0,

w(1)w(2) + 2w̄t cot t > t2,

(4.19a)

for |U | = Ue :

⎧⎨
⎩

t = 0,

w+ + 1 > 0,

w(1)w(2) + 2w̄ > 0,

(4.19b)

for |U | < Ue :

⎧⎨
⎩

t > 0,

w+ + t coth t > 0,

w(1)w(2) + 2w̄t coth t > −t2,

(4.19c)

where t = ξL, w+ = W+L/K11, w(α) = W(α)L/K11, and
w̄ = (W (1)

θ + W
(2)
θ )L/2K11 are dimensionless positive param-

eters. The last inequality in each of the inequalities (4.19)
produces the ultimate stability criterion:

w(1)w(2) + 2w̄t cot t − t2 > 0, if |U | > Ue

w(1)w(2) + 2w̄ > 0, if |U | = Ue

w(1)w(2) + 2w̄t coth t + t2 > 0, if |U | < Ue.

(4.20)

Inequalities (4.20) are transcendental in U . However they
are simply quadratic with respect to ē. Hence, the stability

conditions can be written explicitly

0 � ē � +∞, if U = 0 (4.21a)

0 � ē < e∗
+, if 0 < |U | < U1 (4.21b)

e∗
− < ē < e∗

+, if U1 � |U | < U2, U�w > 0 (4.21c)

ē ∈ ∅, if U1 � |U | < U2, U�w < 0 (4.21d)

ē ∈ ∅, if |U | � U2 (4.21e)

where �w = (W (2)
θ − W

(1)
θ )L/K11,

e∗
±(U ) = (K11/4U )(�w ± 2w̄ sgn U

√
1 + X(U )), (4.22)

X(U ) = 2

w̄
×

⎧⎨
⎩

t cot t − t2/2w̄, if |U | > Ue

1, if |U | = Ue

t coth t + t2/2w̄, if |U | < Ue

(4.23)

and

Ui =
√

4πK11ε
−1
a t2

i + U 2
e ,

i = 1, 2. Here, t1, t2 ∈ (0; π ) are the roots of the two equations

2t cot t − t2/w̄ = −wH, t tan(t/2) = w̄ (4.24)

correspondingly, where

wH = 2W
(1)
θ W

(2)
θ

W
(1)
θ + W

(2)
θ

L

K11
.

The first of Eqs. (4.24) follows from the requirement e∗
+ = 0

or e∗
− = 0, while the second one is caused by the condition

1 + X(U ) = 0. Note that in the case of symmetric bound-
ary conditions, the voltages U1 and U2 occur equal, and
Eqs. (4.21c) and (4.21d) are eliminated.

The asymptotics of t1 takes the form

t1 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
[
1 + 2

wH
− π2

(
8

3w3
H

− 2
w̄w2

H

)]−1
, wH � 1

π
2 + wH

π
− π

4w̄
− 2w2

H

π3 + π
8w̄2 , wH � 1 � w̄(

1
2w̄

+ 1
3 − wH

4w̄
+ 2w̄

45 − wH

6 + w2
H

8w̄

)−1/2
, w̄ � 1.

Quite a good approximation for t2 is [12]

t2 ∼=
{

π (1 + 2w̄−1 − 2.5w̄−3)−1, w̄ � 3.3

(0.5w̄−1 + 0.088)−1/2, w̄ < 3.3.

Accuracy of this formula is higher than 0.5% for all w̄.
In Fig. 6 the stability zone of the planar helicoidal con-

figuration in (ē, U ) plane is plotted using formulas (4.21)
with the same material constants as in Fig. 2. The stability
zone is localized between the curves ABCD and A′B ′C ′D′,
representing the dependence U = U ∗(ē). The areas above
the curve ABCD and below the curve A′B ′C ′D′ define the
instability zone for the planar configuration. Note that the
lines U ∗ in Fig. 2 obtained by the numerical minimization
of the free energy are in excellent agreement with the lines
U ∗ in Fig. 6 calculated by the analytical evaluation. The AC

and A′C ′ segments describe the case when the inequality in
the first line of Eq. (4.20) turns to the equality, and CD and
C ′D′ segments correspond to the equality in the third line.
The physical sense of different parts of the curves ABCD
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and A′B ′C ′D′ can be explained as follows. At AB and A′B ′
segments, the bulk distortions are energetically favorable and
the two surface distortions are unfavorable both. At CD and
C ′D′ segments, the surface distortions at one of the boundaries
are energetically favorable, while the bulk distortions and the
surface distortions at another boundary are unfavorable. At
BC and B ′C ′ segments, the bulk distortions and the surface
distortions on one of the boundaries are energetically favorable.
The surface distortions at another boundary are unfavorable.
Note that there is a minimumM0 in the curveA′B ′C ′D′ marked
as an open circle. The existence of the extremum in one of the
curves ABCD or A′B ′C ′D′ is the common property for the
nonsymmetrical case W

(1)
θ �= W

(2)
θ (minimum in A′B ′C ′D′ for

W
(1)
θ > W

(2)
θ and maximum in ABCD for W

(1)
θ < W

(2)
θ ). The

location of the extremum M0(ē◦, U ◦) is given by

ē◦ = ∣∣W (2)
θ − W

(1)
θ

∣∣L/4U2, U ◦ = U2 sgn
(
W

(2)
θ − W

(1)
θ

)
.

The asymptotics U ∗(ē) for ē → ∞ can be expressed as

U ∗(ē) ∼ (K11/4ē)(�w + 2w̄ sgn(U )
√

1 + X(0)), (4.25)

where X(0) = 2(t0/w̄) coth t0 + (t0/w̄)2, t0 =
q0L(K33/K11)1/2. From Eq. (4.25) for X(0) � 1 we obtain
U ∗ � Uflex sgn(U ), hence the lines U ∗(ē) become close to the
dashed lines in Fig. 6.

V. LOWER HARMONIC EXPANSION AND
TWO-PARAMETRIC LANDAU MODEL

The analysis of Sec. IV shows that the loss of stability by
the planar helicoidal configuration arises from the fluctuation
modes δ1,2. It provides a way to develop a simplified theory of
the Fréedericksz transition which accounts for the δ1,2 modes
only. For this purpose, we present the fluctuating angle θ (z) in
the form

θ̃ (z; δ1, δ2) = π/2 + δψ (z; δ1, δ2), (5.1)

where δψ is given by Eq. (4.12). Substituting θ̃ into Eq. (3.13)
and assuming that δ1,2 � 1, we obtain a Landau-type expan-
sion of Ftot. Restricting ourselves by the fourth-order terms it
yields

Ftot (δ1, δ2) ≈ F(0) + F(2) + F(4)

= F(0) + 1

2

2∑
k=0

Akδ
k
1δ

2−k
2 + 1

4!

4∑
k=0

Bkδ
k
1δ

4−k
2 ,

(5.2)

with F(0) = F
(0)
f . The explicit forms of coefficients Ak are

given by Eq. (4.18). The coefficients

Bk = ∂4Ftot (δ1, δ2)/∂kδ1∂
4−kδ2

∣∣
δ1=δ2=0, (5.3)

k = 0, . . . , 4, are rather cumbersome and we do not present
them here in detail.

Below, we assume that all the system parameters are
fixed except the voltage U and the flexoelectric coefficient
ē. At low voltage, the discriminant A2

1 − 4A0A2 < 0, so the
quadratic form F(2) is positive definite, and consequently the
planar helicoidal structure is stable. As the voltage magnitude
rises up with fixed ē, the discriminant of F(2) vanishes for
U = U ∗(ē), and as a result the appropriate inequality (4.20)

turns to the equality. If the discriminant becomes positive,
the planar helicoidal structure turns to be unstable. Along the
lines U = U ∗(ē) (plotted in Figs. 2 and 6), the term F(2)(U, ē)
vanishes for δ2 = �∗δ1 with

�∗(ē) = −A1(U ∗, ē)/2A0(U ∗, ē).

The director fluctuations in the planar helicoidal structure
are anomalously strong at U = U ∗. In this situation, the type
of the transition (continuous or discontinuous) is determined
by the sign of the fourth-order termF(4) at δ2 = �∗δ1. Inserting
U = U ∗ and δ2 = �∗δ1 into Eq. (5.2), we obtain

Ftot (δ1, �∗δ1) ≈ F(0) + 1

4!
δ4

1

4∑
k=0

Bk�
k
∗

≡ F(0) + 1

4!
B̃δ4

1 . (5.4)

For B̃ = B̃(ē) > 0, the transition is continuous at the critical
voltage Uc = U ∗. The opposite case B̃ < 0 means that the
system at U = U ∗ is already in a distorted state with the free
energy less than F(0). Hence, the transition is discontinuous
and occurs at U = Uc with |Uc| < |U ∗|. Note, that the Landau
model for systems with B̃ < 0 requires to include the sixth
or higher even order terms in the free energy expansion in
order that the free energy being positive in the area of large
order parameter components [29]. However, the fourth order
expansion is sufficient for analyzing the type of the phase
transition. Note that a similar one-parametric Landau model
in the same LC cell geometry was studied in [12] for the case
ē = 0 with symmetric boundary conditions W

(1)
θ = W

(2)
θ , and

continuous and discontinuous transitions had also been found.
The tricritical point TP = (ēTP, UTP) can be obtained from

the equations

U = U ∗(ē), B̃(ē) = 0.

Note that B̃ < 0 for ē < ēTP and B̃ > 0 for ē > ēTP. We
determine the sign of B̃(ē) using coefficients Bk derived from
Eqs. (5.3), (3.13), and (5.1) numerically. The results are shown
in Fig. 7. The tricritical points TP are defined by the change of
B̃ sign: ēTP = 5.132 × 10−4 statC/cm for U > 0, and ēTP =
1.676 × 10−4 statC/cm for U < 0. These points are shown in
Fig. 6, and they are in excellent agreement with those obtained
by the numerical minimization of the free energy (see Fig. 2).

FIG. 7. The effective coefficient B̃ of the Landau model vs the
flexoelectric coefficient ē. The material constants are the same as in
Figs. 2 and 6. The circles correspond to the tricritical points.

012702-9



A. D. OSKIRKO, S. V. UL’YANOV, AND A. YU. VAL’KOV PHYSICAL REVIEW E 98, 012702 (2018)

VI. DISCUSSION AND CONCLUSION

In this paper we studied the influence of the flexoelectricity
on the Fréedericksz transition in the chiral planar nematic
liquid crystal cell with positive dielectric anisotropy. We take
into account the inhomogeneity of the external electric field,
the flexoelectric effect, and the finite anchoring energy.

Having used the free energy numerical minimization, we
obtained the orientational profiles. The stability of equilibrium
configurations was investigated numerically. The stability of
the planar helicoidal structure was also studied analytically.
The dependencies of the threshold voltages U ∗∗, Uc, and U ∗
on the mean flexoelectric coefficient ē were determined. As
a result, the phase diagram in (ē, U ) plane was plotted as
well. For the symmetric case W

(1)
θ = W

(2)
θ , the Fréedericksz

transition voltage Uc was found to decrease monotonously
with the coefficient ē increasing. In the asymmetric case
W

(1)
θ �= W

(2)
θ , the dependence of the threshold voltage Uc

on the coefficient ē differs significantly for U > 0 and for
U < 0. In this case, the dependence Uc(ē) is nonmonotonic
in one of the two cases, i.e., U > 0 or U < 0. The phase
diagram asymmetry with the respect to the axis U = 0 leads
to an interesting physical consequence. There exists a voltage
interval in which the change of the sign U ↔ −U results in
the change of the LC configuration from the planar helicoidal
structure to the distorted one and vice versa (P ↔ D). This
effect may be exploited in switching devices. For large mean
flexoelectric coefficient ē, the threshold voltage Uc is found
to decrease as 1/ē. So, the flexoelectricity can be used to
reduce the switching voltages in LC devices based on the
Fréedericksz transition. It should be noted that the measured
data for the flexoelectric coefficients disagree remarkably [13].
Obtained results for the dependence Uc(ē) can be used for a
more accurate e1 + e3 value estimation.

Flexoelectricity gives rise to one more asymmetry type.
Namely, the equilibrium profile θ (z) becomes asymmetric
with respect to the center of the LC cell despite the boundary
conditions being symmetric. It is interesting to note that for
systems with sufficiently high ē and relatively low Uc, the
distorted orientational profile, cos2 θ , may be approximated by
the following linear functions: z/L for ēU > 0 and 1 − z/L

for ēU < 0. Such profiles exhibit planar orientation at one
boundary and homeotropic orientation at another one. It means
that as the voltage increases, the LC cell orientational structure
changes from the planar helicoidal state to the hybrid-aligned
one. This feature may give rise to the development of new
flexoelectricity-based switching devices.

Another important issue considered is the type of the
Fréedericksz transition, namely, continuous or discontinuous.
We studied this problem initially by the numerical minimiza-
tion of the free energy and thereafter using the Landau-type
model with two-parametric order parameter. It was found
that the Fréedericksz transition can be either continuous or
discontinuous, depending on the cell size and on the LC
material parameters. In the phase diagram, the line of con-
tinuous phase transitions is separated by the tricritical point
from the line of discontinuous phase transition. Note that in
the case of discontinuous transition, the phase coexistence
region can be very narrow. Despite its narrowness, there is a
significant difference between θ (z) profiles for continuous and
discontinuous transitions providing U is above the threshold
voltages.
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