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Discontinuous shear thickening in Brownian suspensions
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Discontinuous shear thickening in dense suspensions naturally emerges from the activation of frictional forces
by shear flow in non-Brownian systems close to jamming. Yet, this physical picture is incomplete as most
experiments study soft colloidal particles subject to thermal fluctuations. To characterize discontinuous shear
thickening in colloidal suspensions, we use computer simulations to provide a complete description of the
competition between athermal jamming, frictional forces, thermal motion, particle softness, and shear flow.
We intentionally neglect hydrodynamics, electrostatics, lubrication, and inertia, but can nevertheless achieve
quantitative agreement with experimental findings. In particular, shear thickening corresponds to a crossover
between frictionless and frictional jamming regimes which is controlled by thermal fluctuations and particle
softness and occurs at a softness dependent Péclet number. We also explore the consequences of our findings for
constant pressure experiments, and critically discuss the reported emergence of “S-shaped” flow curves. Our work
provides the minimal ingredients to quantitatively interpret a large body of experimental work on discontinuous
shear thickening in colloidal suspensions.
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I. INTRODUCTION

The flow behavior of industrially relevant complex fluids is
often nonlinear, with flow curves typically exhibiting multiple
rheological regimes, changing between Newtonian, shear-
thinning and shear-thickening behaviors depending on external
control parameters [1–3]. A central goal in rheology is to make
sense of these various regimes and to disentangle the compet-
ing physical origins of these nonlinearities in order to design
materials with desired rheological properties. Whereas shear
thinning typically stems from the “disruption” of the material
microstructure by the shear flow, shear thickening is interpreted
as the opposite trend of a shear flow that “enhances” some
underlying structural organization [1,2]. However, because an
imposed shear flow represents an external forcing, thickening
is less common and thus more difficult to understand than thin-
ning. Shear thickening is nevertheless observed experimentally
in many types of suspensions [1–9] that span a broad range of
particle sizes, shapes, and interparticle interactions. The fact
that it is a fun phenomenon observable in everyday life adds
to its appeal as an object of academic study.

A smooth and continuous increase of the shear viscosity
upon increasing the shear rate may be explained by several
physical processes, from hydrodynamic to inertial effects
[3,6,10–13]. A more severe form of thickening is the discon-
tinuous upward jump of the viscosity typically observed in
denser suspensions. A recent flurry of experimental [14–19]
and theoretical [20–30] activity has convincingly established
that discontinuous shear thickening can be interpreted as the
crossover from frictionless to frictional rheologies as the shear
rate is increased in the limit of athermal hard particles. Close
to jamming, frictional particles have a much larger viscosity
than frictionless ones [31–33], and a sharp mobilization of
frictional forces upon increasing the shear flow naturally
accounts for discontinuous shear thickening. Shear thickening

becomes weaker far from jamming, and other interpretations
may then become possible [3]. This scenario was illustrated
in specifically designed computer experiments, and received
ample experimental confirmation over the last few years. In
particular, the link between frictional forces and the existence
of discontinuous shear thickening was directly demonstrated in
very elegant experiments [14,17–19], as well as several com-
puter models [21,27,29,30] that involve a variety of choices for
interparticle interactions, microscopic dynamics, and various
levels of realism regarding hydrodynamic flows.

The central role played by frictional rheology relies on the
idea that the material lives somehow “close” to the jamming
transition observed in the limit of non-Brownian suspensions
with simple repulsive interactions [33]. Yet, a large number
of materials displaying discontinuous shear thickening are
composed of colloidal particles subject to thermal fluctuations.
This is a crucial point since the interplay between thermal
forces and shear flow near glass and jamming transitions gives
rise to complex rheological behaviors [34,35]. In particular,
jamming rheology is typically not pertinent for thermal col-
loidal particles over experimentally relevant timescales and
stress scales. Therefore, it is quite surprising that a fully
non-Brownian mechanism (mobilization of frictional forces
near athermal jamming) may dictate the rheology of Brownian
suspensions. Understanding why and how this may happen,
and under which physical conditions discontinuous shear
thickening may arise in Brownian suspensions, are the central
questions tackled in this work.

In this study we study the role of thermal fluctuations in
dense suspensions of soft repulsive particles, analyzing the
behavior of hard sphere suspensions as a mathematical limit
within our more general model. To make quantitative progress,
we intentionally make severe approximations and neglect
any other form of particle interactions (such as electrostatic
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repulsion or particle adhesion) as well as all interactions
generated by hydrodynamic forces. As a result, we are able to
propose a complete quantitative understanding of the rheologi-
cal behavior of Brownian soft repulsive spheres with frictional
interactions over the complete parameter space. To connect to
recent experimental findings, we perform simulations keeping
either the volume or the confining pressure constant, shed-
ding additional light on the role of dilatancy, potential flow
instability, and “S-shaped” flow curves in systems exhibiting
discontinuous shear thickening [24,27,36–38]. Our main find-
ing is that our model provides a robust minimal description
to understand quantitatively the various regimes of the flow
curves observed in shear-thickening colloidal suspensions. In
particular, we provide all details of the crossover between linear
and nonlinear rheologies, athermal and thermal rheologies,
and the onset of shear thickening for soft and hard particles.
We suggest that any additional physical ingredient will only
introduce minor quantitative changes to the behavior reported
here, and detailed work should be performed in an experiment
to actually expose clear deviations from the minimal modeling
analyzed here.

This article is organized as follows. In Sec. II, we present our
numerical model to investigate discontinuous shear thickening,
the numerical integration for both constant volume and con-
stant pressure simulations, and the key control parameters. In
Sec. III, we present the main features of the macroscopic flow
curves obtained in constant volume simulations, and derive a
dynamic state diagram of the model. In Sec. IV, the physical
origin of the discontinuous shear thickening activated by ther-
mal fluctuations is directly established. In Sec. V, we provide
quantitative comparison of our numerical model with exper-
imental work, and discuss the hard sphere limit. In Sec. VI,
we present the results of constant pressure simulations and
discuss the status of S-shaped flow curves. Finally, in Sec. VII
we summarize our results and provide some perspectives.

II. RHEOLOGY OF THERMAL SOFT
SPHERES WITH FRICTION

A. Langevin dynamics for harmonic spheres with friction

We perform overdamped Langevin dynamics simulations
of a simple model for Brownian suspensions with tangen-
tial frictional contacts and simple harmonic repulsive forces
[20,23,31,32], neglecting all other types of interactions and
hydrodynamic effects. In particular, tangential forces are di-
rectly related to contact forces in this model, whereas they
could in principle be mediated by the background fluid in real
suspensions, an effect that we can not describe, by construction.

Our model is an equimolar binary mixture of N particles
with two different diameters interacting via a harmonic re-
pulsive potential [39]. The diameters of the small and large
particles are a and 1.4a, respectively. That choice for the
size dispersity is known to efficiently suppress crystallization.
The resulting volume fraction is ϕ = πNa3(1 + 1.43)/12L3,
where L is the linear dimension of the system. Periodic
boundary conditions are used, and we make sure that the system
remains homogeneous for all reported conditions. We perform
simulations with a total number of particles N = 1000 for
most simulations, and we additionally simulate N = 10 000
particles when finite size effects need to be investigated.

The particles evolve according to the following Langevin
equations of motion based on the discrete element method [40],
with thermal fluctuations. The translational motion of particle
j ∈ {1, 2, . . . , N} obeys the following Langevin equation:∑

k

[ �f nor
jk (t ) + �f tan

jk (t )
] + �f drag

j (t ) + �f therm
j (t ) = �0. (1)

The first and second terms of Eq. (1) are the interaction forces
for the normal and tangential directions, respectively. For the
normal direction, the interaction force for two particles j and k

having diameters aj and ak is a harmonic repulsion represented
as

�f nor
jk = εnhjk �njk, (2)

where �njk = �rjk/|�rjk| and hjk = (ajk − |�rjk|)�(ajk − |�rjk|);
�(x) is the Heaviside function, ajk = (aj + ak )/2, and �rjk =
�rj − �rk , �rj is the position of particle j . The tangential force
is represented as �f tan

jk = εt�ξjk . Here, we follow previous work

and set εt = 0.25εn [31], while �ξjk is the vector of overlap
between the particles for the tangential direction defined as
�ξjk (t ) = ∫

t ′∈tcoll
dt ′ �ujk (t ′), where tcoll is the time spent since

the start of a binary collision between particles j and k, �ujk =
(
←→
1 − �njk �njk ) · {�vj − �vk − 1

2 (aj �ωj + ak �ωk ) × �njk}. We de-
fined �vj and �ωj as the translational and angular velocities of
particle j , respectively. In order to make the direction of the
tangential force exactly tangential, in each time step the vector
of tangential overlap is updated as [41]

�ξjk (t ) − [�ξjk (t ) · �njk]�njk → �ξjk (t ). (3)

The tangential force has an upper bound represented as∣∣ �f tan
jk

∣∣ � μC

∣∣ �f nor
jk

∣∣, (4)

which defines the friction coefficient μC. When the tangential
force does not satisfy Eq. (4), the overlap vector for the

tangential direction is scaled as μC
| �f nor

jk |
| �f tan

jk |
�ξjk → �ξjk . The third

term in Eq. (1) is the Stokes drag force. For a shear flow in
the xy plane, this is written as �f drag

j = ξn{�vj (t ) − γ̇ yj (t )�ex},
where Lees-Edward periodic boundary conditions are implied
[42]. Finally, the fourth term in Eq. (1) is the thermal force
acting on particle j . This thermal force is drawn from a random
Gaussian distribution with zero mean and variance obey-
ing the fluctuation-dissipation relation 〈 �f therm

j (t ) �f therm
k (t ′)〉 =

2kBT ξnδjk

←→
1 δ(t − t ′), where kB is the Boltzmann constant

and T is the temperature.
Next, we introduce the equations of motion of the particles

for the rotational degrees of freedom, which are represented
by ∑

k

�T tan
jk (t ) + �T drag

j (t ) + �T therm
j = �0. (5)

The first term is the torque of the tangential force, such that
�T tan
jk (t ) = �rjk × �f tan

jk . The second term is the dissipation torque,

which reads as �T drag
j (t ) = ξt ( �ωj + γ̇ �ez/2) where ξt = a2ξn.

The third term is the torque exerted by the thermal force acting
on particle j , which also satisfies a fluctuation-dissipation
theorem 〈 �T therm

j (t ) �T therm
k (t ′)〉 = 2kBT ξtδjk

←→
1 δ(t − t ′).
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B. Constant pressure simulations

The results shown in the first part of the paper, Secs. III–V,
are obtained by performing simulations at constant volume,
so that the volume fraction is by construction imposed during
these simulations, and the pressure fluctuates freely.

In the final part of the paper, Sec. VI, constant pressure
simulations [43,44] are performed. To this end, an additional
equation of motion needs to be considered, as the total volume
of the system now evolves dynamically with its own Langevin
dynamics

ξVV̇ (t ) − [P − P̂ (t )] + F therm = 0, (6)

where P is the prescribed pressure, and we set ξV = 10−4

[44,45]. The third term of Eq. (6) stands for thermal fluctuations
acting on the box size, and it again satisfies a fluctuation-
dissipation relation given by 〈F therm(t )F therm(t ′)〉 =
2kBT ξVδ(t − t ′). The instantaneous value of the pressure
P̂ (t ) is defined as P̂ (t ) = 1

3V (t )

∑
k<j �rjk · ( �f nor

jk + �f tan
jk ). By

construction, Eq. (6) imposes that P̂ (t ) fluctuates around the
prescribed value P , once steady state has been reached. In
that case, the volume fraction fluctuates freely.

C. Physical units and numerical protocols

As discussed above, the repulsive, frictional, and thermal
forces define the microscopic parameters that fully specify
our model and its dynamics. To describe the evolution of the
system, we first need to define the units used for all quantities.

Length scales are expressed in units of the particle diameter
a, and timescales are expressed in units of the quantity t0 ≡
a2ξn/εn, defined from the translational equation of motion.
The microscopic timescale t0 represents the typical dissipation
timescale in Eq. (1). As a result, shear rates are expressed in
units of t−1

0 . Pressures and shear stresses are expressed in units
of

σ0 = εn/a
3, (7)

which is constructed from the energy scale of the harmonic
repulsive force. Accordingly, the viscosity is given in units of
ξn/a. Finally, the temperature is expressed in units of εn/kB.

We integrate the equations of motion with a Euler algorithm
with an integration time step �t = 0.1t0. The accuracy of
the numerical integration is confirmed by decreasing the time
step at some selected state points. Because the system is
highly overdamped and subject to thermal motion with white
Gaussian noise, numerical errors do not accumulate over time
and numerical integration is found to be quite stable.

A typical simulation is decomposed into two parts. We
first run the simulation at the chosen state point during some
equilibration time teq. This is followed by the production run
with a duration tsim. We set teq = 1/γ̇ , so that the system has
effectively been deformed by 100% before any measurement.
The duration of the production run to analyze the data is set as
tsim = 9/γ̇ (for N = 1000) and tsim = 1/γ̇ (for N = 10 000).

We are interested in recording the flow curves describing
the evolution of the viscosity η with the imposed shear rate
γ̇ for a given state point. To this end, we measure the
shear stress σxy directly in the simulation as a time average
σxy = (1/tsim )

∫ teq+tsim

teq
dt σ̂xy (t ), where the instantaneous stress

is given by the usual expression σ̂xy (t ) = − 1
V (t )

∑
k<j (xj −

xk )(f nor
yjk + f tan

yjk ), where f nor
yjk and f tan

yjk are the y components
of the normal and tangential forces acting between particles j

and k. Once the shear stress is measured at an imposed shear
rate, we directly deduce the viscosity η = σxy/γ̇ . We typically
record the flow curves by successively decreasing γ̇ from the
highest to the lowest studied value using the final configuration
of a given γ̇ as initial condition for the equilibration for the next
γ̇ value. In case where we observe a discontinuous evolution of
the flow curve, the studied discontinuous shear thickening, we
also run upward runs where we successively increase the shear
rate using the same equilibration and production procedure
as described above. As discussed below and found in earlier
studies [20,22], these two procedures often result in hysteretic
behavior when discontinuous shear thickening is present.

We varied the packing fraction over a broad range, from the
dilute fluid at ϕ = 0.50 up to jammed packings at ϕ = 0.70.
The temperature was varied from large values T = 10−5 down
to very small ones T = 10−10, and the athermal case T = 0
was also studied independently, both with or without frictional
forces. These additional data will be more extensively analyzed
in a future article [46]. The friction coefficient is also varied
over a broad range from μC = 10−2 where packings are nearly
frictionless, up to μC = 10 which almost represents the limit
of large frictional coefficients (few experimental systems can
actually reach that limit). We mostly report numerical results
for the intermediate value μC = 1.0 since changing the value
of the friction coefficient does not affect our results in any
qualitative way.

D. Important control parameters

As described above, the studied model is described by only
few control parameters. The reason is that we have decided
to exclude several physical ingredients from our modeling.
The motivation is obvious, as this reduces considerably the
parameter space, and the physical behavior of the model
can be fully explored without the need to “fix” by hand
several additional parameters. Note in particular that we do not
introduce any additional repulsive force between the particles,
mimicking for instance electrostatic interactions or polymeric
degrees of freedom at the surface of colloids. This choice thus
differs from most earlier numerical studies [21].

For the unsheared system, we simply need to fix the
competition between the amplitude of thermal and elastic
forces, for a given value of the friction coefficient. This defines
a static “state point.” For the constant volume simulations,
a state point is characterized by temperature and volume
fraction (T , ϕ). For the constant pressure simulations, the
state point is instead defined by temperature and pressure
(T , P ). Because temperature is expressed in units given by
the energy scale of the harmonic repulsive force [T ] = εn/kB,
the value of the temperature actually controls the effective
softness of the particles, as the kinetic energy kBT quantifies
how much pairs of particles can overlap, the typical overlap
being δ ∼ a

√
kBT /εn, which can be easily derived from the

interaction force in Eq. (2).
In previous work, the physics of shear thickening was often

studied using “hard” spheres, but the numerical integration
scheme used in those papers was relying on approximating
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the hard sphere potential with a softer one allowing for a
finite overlap between particles [21,23,25]. In most cases,
the maximum allowed overlap was kept to a constant value
independently of the external parameters. In our language, this
corresponds to a particle softness that would change with the
shear rate, and thus to an ill-defined pair potential. Whereas
this approximation is presumably irrelevant for the athermal
studies in Refs. [21,23], this is not the case when thermal
fluctuations are included [25] since the introduction of an
effective softness then directly competes in an unwanted way
with Brownian forces. Therefore, the quantitative conclusions
from Ref. [25] need revision since they do not apply to hard
spheres, nor to any soft potential. In our work, the hard sphere
limit is obtained by taking the limits T → 0 and γ̇ → 0. We
shall see that this is a highly singular limit where the various
regimes found for a finite softness all shift to infinite γ̇ , but
with different scaling forms. The numerical value of the cutoff
used in Ref. [25] corresponds in fact to the softest particles
investigated here, indeed quite far from the hard sphere limit.

Beyond the softness of the particles, the temperature also
defines an important timescale [34]

τT = ξna
2/(kBT ). (8)

This corresponds to the time it takes a single particle to diffuse
over its own size a using thermal fluctuations. This timescale
τT, which is defined for the system at rest, becomes very
relevant when the rheological behavior is explored at finite
shear rate since one can then define the dimensionless Péclet
number

Pe = γ̇ τT. (9)

This allows us to distinguish between the low-Péclet regime
Pe � 1, where the shear rate is low enough that thermal motion
may influence the dynamics, and the large Péclet regime
Pe 
 1, where thermal fluctuations are too slow to affect the
physics and the system is essentially athermal. These two
regimes are useful since they separate the thermal glass physics
occurring at low Péclet from the athermal jamming physics
taking place at large Péclet [34,35]. The crossover between
the two regimes occurs near Pe ≈ 1, which in our reduced
numerical units corresponds to the simple expression γ̇ ≈ T .

In previous work, the role of frictional forces was mainly
investigated in the absence of thermal fluctuations, i.e., taking
Pe = ∞ from the outset. Here, we shall investigate how ther-
mal forces may change that picture. A naive expectation is that
the regime Pe < 1 is the only one affected by thermal forces,
leaving the athermal regime Pe > 1 essentially unaffected.
We shall see that this is not correct, as thermal forces also
introduce a typical force scale which can be estimated from
the fluctuation-dissipation theorem and can be converted into
an “instantaneous” thermal stress scale σ inst

T :

σ inst
T = σ0

√
kBT

εn
. (10)

Note that this instantaneous stress scale differs from the
typical stress scale that should be used when discussing glassy
solids for which the entropic contribution to the yield stress
is important, which reads as instead σT/σ0 = kBT/εn. The
thermal stress scale in Eq. (10) does not appear in previous

work discussing thermal effects near jamming [25,34,35]. We
shall see that it plays a crucial role in the mechanism of
shear thickening in Brownian suspensions. Its mathematical
expression makes it very clear that it is intimately linked to the
particle softness.

III. MACROSCOPIC FLOW CURVES

A. Density dependence of flow curves

We begin by showing typical flow curves obtained in
presence of both a finite amount of thermal fluctuations
T = 10−7, and a finite friction coefficient μC = 1.0. We then
vary the packing fraction from ϕ = 0.53 far below jamming, to
ϕ = 0.64, very close to the jamming transition of frictionless
particles [we have measured ϕJ (μC = 0) = 0.647]. For this
value of the friction coefficient, frictional particles jam near
ϕJ (μC = 1.0) = 0.60. For each packing fraction we vary the
shear rate over a broad range, from γ̇ ∼ 10−7 to γ̇ = 10−2. We
present our results in Fig. 1, where we show the evolution of the
viscosity, the shear stress, and the pressure as a function of γ̇ .

In each panel, the limit between athermal and thermal
regimes at Pe = 1 is indicated by a vertical dashed line at
γ̇ = T = 10−7 so that most data are effectively taken in
the athermal regime where Pe 
 1. In this athermal regime,
the system would essentially display Newtonian rheology
in the absence of frictional forces, as the system would
be unjammed up until ϕJ = 0.647. On the other hand, the
athermal system with frictional forces would jam earlier and
would display a finite yield stress above ϕJ = 0.60.

For each density we observe that the viscosity initially
decreases with increasing γ̇ . This shear-thinning regime has
its origin in the thermal glassy physics of the system, and it
corresponds to the shear thinning observed in dense colloidal
suspensions near glass transitions [34]. As γ̇ is increased
further towards the athermal regime, we observe for each
density a strong and sharp shear thickening occurring at a
packing fraction dependent shear rate, from γ̇ ∼ 10−4 at ϕ =
0.53 up to γ̇ ∼ 10−6 for ϕ = 0.62. The thickening is large
(about one order of magnitude) but continuous at ϕ = 0.53,
and becomes even larger (about three orders of magnitude)
and discontinuous for ϕ � 0.55.

Qualitatively, these flow curves are composed of the three
different pieces of physics that the model incorporates: (i)
shear thinning at small γ̇ due to thermal rheology of dense
suspensions, (ii) nearly Newtonian rheology at intermediate γ̇

as in athermal frictionless systems, (iii) yield stress rheology at
even larger γ̇ as in athermal frictional systems. The transition
between (i) and (ii) occurs near Pe = 1, as expected [34],
whereas the transition between (ii) and (iii) is very sharp and
corresponds to the discontinuous shear thickening that is the
central topic of this work. Strikingly, the transition between
regimes (ii) and (iii), which is completely ruled by thermal
fluctuations (as shown below) occurs deep in the athermal
regime at Pe 
 1. This suggests that in the presence of
frictional forces, the crossover between thermal and athermal
rheologies near jamming becomes much more complicated
than in the pure frictionless case [34,35].

Overall, these flow curves are qualitatively similar to experi-
mental observations in colloidal suspensions, with an interplay
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FIG. 1. Behavior of the system for μC = 1.0 and T = 10−7, as
the shear rate is deceased at constant packing fraction for N = 1000
particles. (a) The flow curves η(γ̇ ) display shear thinning at small γ̇

followed by discontinuous shear thickening at larger γ̇ . (b) The same
flow curves shown as σxy (γ̇ ), where discontinuous shear thickening
now appears as a discontinuous stress jump. (c) The evolution of the
pressure P (γ̇ ) mirrors the one of the shear stress. In all panels, the
vertical dashed line at γ̇ = 10−7 locates the shear rate where Pe = 1.

between shear thinning at low γ̇ followed by a discontinuous
shear-thickening behavior at larger γ̇ , these regimes being
strongly dependent on the packing fraction. This shows that
a simple model of soft repulsive particles with Brownian
fluctuations and frictional forces is enough to reproduce this
behavior without the need to introduce any other interactions
either of electrostatic or hydrodynamic origins. In the rest of
the paper, we analyze this behavior at the microscopic level,
and provide quantitative measurements and predictions of how
the various regimes depend on the external control parameters.

In Fig. 1(b) we show the same data in a different represen-
tation, σxy versus γ̇ , for the same conditions as in Fig. 1(a).
This allows us to define two stress scales for the discontinuous
shear thickening as the stress jumps from one value to another
as shear thickening takes place, which we respectively name
σ L

c and σ H
c . Finally, we show the evolution of the pressure P as

a function of γ̇ in Fig. 1(c) for the same set of parameters. As
expected, the behavior of the pressure closely follows the one of
the shear stress, displaying in particular a discontinuous jump

0.55 0.6 0.65 0.7
10-6

10-5

10-4

10-3

10-2

xy

discontinuous 
thickening

jammed

Y ( C =1,T =0)

Y ( C =
0,T =0)

J( C=1) J( C=0)

thinning

thinning

FIG. 2. Dynamic state diagram of multiple rheological regimes
at T = 10−7 with μC = 1.0 for N = 1000. Below the jamming
packing fraction of the frictionless case, a succession of thinning,
discontinuous shear thickening, thinning rheology is observed as the
stress increases. For reference we also show the yield stress evolution
of both limits of athermal frictional and frictional soft spheres, fitted
to a simple linear vanishing with the distance to jamming (dashed
lines).

as the discontinuous shear-thickening transition is crossed.
This upward jump of the pressure is the signature of dilatancy
when using constant volume simulations. The system would
like to dilate but the volume is kept constant by construction,
and so the pressure increases instead. It is therefore clear
that performing simulations that keep the pressure fixed must
dramatically impact the behavior of the system, as we confirm
below in Sec. VI.

B. Dynamic state diagram

We can summarize the various rheological regimes dis-
cussed in the flow curves in a dynamic state diagram, as
this type of representation has often been used in previous
experimental and numerical studies, e.g., Refs. [7,21]. We
present a stress-volume fraction phase diagram that allows us
to incorporate the discontinuous shear-thickening physics into
the broader context of the jamming transitions of frictional
and frictionless systems. For the specific values μC = 1.0 and
T = 10−7 used in Fig. 1, we report the boundaries σ L

c and
σ H

c of the discontinuous stress jumps as a function of the
volume fraction (see Fig. 2). According to Fig. 1, we find
discontinuous shear thickening in the region 0.55 � ϕ � 0.63
for T = 10−7. For densities lower than ϕ = 0.55, the system
exhibits a continuous shear thickening, as found before.

We can compare these stress scales to various important
stress scales. In the athermal limit, the system may become
jammed either with or without frictional forces. In both cases,
a finite yield stress would emerge continuously at the jamming
transition. We have performed additional simulations [46]
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at T = 0 to directly measure those yield stresses at various
densities above ϕJ = 0.60 (with friction) and above ϕJ =
0.647 (without friction). We obtain the yield stress value
σ Y for each density by fitting the flow curves σxy (γ̇ ) to the
Herschel-Bulkley expression [1]: σxy = σ Y + aγ̇ b where a is
an adjustable parameter and b = 0.35 [46]. We confirm that the
yield stress increases continuously with the distance to jam-
ming as σ Y ∝ (ϕ − ϕJ ) both with and without friction. Above
the frictionless jamming packing fraction, the emergence of
yield stress in the unsheared system prevents the observation
of shear thickening, as also found experimentally [47].

The dynamic state diagram in Fig. 2 is clearly reminiscent of
the one found in several experiments reporting discontinuous
shear-thickening rheology, where a succession of thinning-
thickening-thinning regimes occurs at low volume fraction
when the stress increases, whereas jamming rheology is ob-
served instead at larger volume fraction [7] which prevents the
emergence of shear thickening. This confirms once again the
close similarity between the findings from our simple model
and a large number of experimental reports on dense colloidal
suspensions.

IV. TRANSITION TO FRICTIONAL RHEOLOGY
CONTROLLED BY THERMAL FLUCTUATIONS

In Sec. III, we presented direct evidence from a specific set
of control parameters that our model of thermal soft spheres
with frictional forces reproduces all known phenomenology of
colloidal suspensions with discontinuous shear thickening. In
this section, we provide microscopic insight into the physical
origin of the thickening behavior, and explain how the physics
quantitatively varies with the external control parameters,
thus fully elucidating the physics and the relevant crossover
scales that characterize the present computer model. We will
demonstrate that discontinuous shear thickening corresponds
to a sharp transition from athermal frictionless to athermal
frictional rheology, but controlled by thermal fluctuations and
occurring deep in the athermal regime of large Péclet numbers.

A. Direct evidence from flow curves

Our modeling of discontinuous shear thickening relies on
the idea that all the ingredients within our model are needed
to observe interesting thickening physics. To establish this
quantitatively, we first show that the limit rheology obtained
when temperature is strictly zero, both with and without
frictional forces.

In Fig. 3(a) we compare the flow curves at T = 0 for
both frictionless (μC = 0) and frictional (μC = 1.0) cases for
a packing fraction ϕ = 0.58. When γ̇ is small, the stress
increases linearly with the shear rate, and Newtonian behavior
is obtained, with two distinct values of the viscosity. This
is expected, as the packing fraction is below the jamming
value for both cases. At larger shear rate, particle softness
manifests itself, and weak shear-thinning rheology is obtained
[48]. The important observation is that no shear thickening is
observed at any γ̇ when T = 0. It is also known from earlier
extensive work on thermal frictionless particles [34,35] that
discontinuous shear thickening is not observed when T > 0
and frictional forces are absent. Therefore, we conclude that
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FIG. 3. (a) Flow curves σxy (γ̇ ) for ϕ = 0.58 and μC = 1.0 for
several temperatures. The T = 0 flow curves with μC = 1.0 and
0 are highlighted with open symbols. (b) Same data shown using
the representation η as a function of the shear stress σxy rescaled
by the thermal stress σT = kBT/a3. This shows that the onset of
shear thickening occurs at a temperature dependent stress scale that
is much larger than kBT/a3. (c) Rescaling of the shear-thickening
onset using the instantaneous thermal stress scale σ inst

T = σ0
√

kBT/εn,
which shows that Brownian forces act as a repulsive force against
frictional contacts.

thermal fluctuations and frictional forces need to act together
to give rise to shear thickening.

This is demonstrated in Fig. 3(a) where we gradually
increase the temperature from T = 0 over a broad range,
from T = 10−10 to T = 10−5, for a fixed value of the friction
coefficient μC = 1.0. Although the variation of temperature
is large (four orders of magnitude), its overall amplitude
remains weak, so that the particle softness varies over a range
representative of hard sphere colloidal systems to softness such
as the ones typically found in colloidal microgels. For all values
of the temperature, we now find that the viscosity follows
the athermal frictionless rheology at small shear rates, and
jumps discontinuously on the flow curve found for the athermal
frictional limit. We observe deviations at small γ̇ from this ideal
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description for the two highest temperatures [see Fig. 3(a)], but
it is important to notice that they appear in the regime Pe < 1,
where indeed thermal fluctuations are expected to modify the
rheology and make it shear thinning due to the emergence of
glassy physics. For all other state points, the rheology at finite
T closely follows the athermal limit rheology, frictionless or
frictional. Thus, temperature simply serves in this regime as an
activator for frictional forces but does not change the overall
rheological picture.

The clear conclusion from these data is that the rheology
of thermal frictional particles exhibits a sharp crossover from
the athermal frictionless to the athermal frictional rheology
at a well-defined shear rate value. We find in addition that
the jump towards frictional rheology occurs at a crossover
shear rate that varies continuously with the amplitude of the
temperature. This crossover shear rate varies by about two to
three orders of magnitude as the temperature varies over five
decades, which suggests that the crossover is not controlled
by particle softness directly (proportional to T ) but is rather
controlled by the instantaneous thermal stress scale defined in
Eq. (10) (proportional to

√
T ).

In addition, we also notice that the crossover shear rate, for
each flow curve, occurs very deep into the athermal regime at
Pe 
 1. Our general conclusion is thus that the model exhibits
a discontinuous shear-thickening rheology, at a crossover shear
rate that lies deep within the athermal regime at large Péclet
number, but the crossover itself is nevertheless governed by the
intensity of thermal fluctuations. The shear thickening itself is
interpreted, as in previous models, as a sharp transition between
frictionless and frictional rheologies, as confirmed below.

More quantitatively, we replot the data shown in Fig. 3(a)
using a representation where the evolution of the viscosity
η is shown as a function of the stress (as often done in
shear-thickening studies), and we rescale the stress by the
thermal stress scale σT = T (in reduced units). In this repre-
sentation, the shear-thinning regime at Pe < 1 becomes clearly
visible at very low stress σxy/σT ∼ 1, as well as the transition
to Newtonian athermal rheology at larger stress σxy/σT ∼
10–100. Interestingly, the onset stress scale for discontinuous
shear thickening occurs at a rescaled stress values σxy/σT that
changes from about 50 for T = 10−5 to 104 for T = 10−10.
In the work of Mari et al. on hard spheres, the rescaled
crossover stress scale for discontinuous shear thickening due
to thermal fluctuations is σxy ≈ 5kBT/a3, which corresponds
in our units to a softness regime that we have not simulated as it
is too far from the physically relevant regime. This discrepancy
presumably arises because Mari et al. vary the effective particle
softness for each γ̇ to obtain their “hard sphere” limit. In
fact, changing the softness corresponds to changing kBT/εn.
Therefore, taking the envelope for the flow curves shown in
Fig. 3(a) might be semiquantitatively consistent to the results in
Ref. [25]. When thermal fluctuations and particle softness are
modeled in a consistent way, the conclusion by Mari et al. that
another repulsive force is needed to account for experimental
findings does not hold anymore.

The direct proof that it is the instantaneous thermal stress
σ inst

T that controls the shear-thickening crossover is offered in
Fig. 3(c) where we rescale the flow curves in Fig. 3(a) using
σ inst

T . It becomes clear that the onset of shear thickening is in-
deed controlled by σ inst

T . The physical interpretation is simple,

as two spheres that are undergoing a frictional contact also
experience a thermal force at each time step whose amplitude
is given by σ inst

T and direction is random [see the equation
of motion (1)]. As soon as this Brownian force overcomes
the stress σxy imposed by the external shear flow, then the
frictional contact between the two spheres can get disrupted
and the spheres effectively behave as if they were frictionless.
This explanation agrees with the one in Ref. [25] that thermal
fluctuations “act as a repulsive force,” but it further quantifies
it for the pair interaction studied in our work. If we restore
momentarily our physical units, this means that the stress scale
for the onset of discontinuous shear thickening is given by

σc ≈ σ inst
T = σ0

√
kBT /εn. (11)

This expression clearly demonstrates that the onset stress
scale for discontinuous shear thickening depends directly
on the particle softness, with the hard sphere limit being a
singular limit. Another conclusion is that σc 
 σT, which
explains why the shear thickening is observed in the athermal
rheological regime at large Pe, but is nevertheless still directly
controlled by Brownian forces.

B. Direct evidence from the microstructure

We now present direct evidence from the microstructure of
the sheared packings that the discontinuous shear thickening
observed in the macroscopic flow curves corresponds, as in
previous work, to a transition from the frictionless to the
frictional rheology as the shear stress is increased.

In Figs. 4(a) and 4(b) we show a snapshot to depict the
tangential force contacts obtained for ϕ = 0.58 with μC = 1.0
at T = 10−10 at two different shear rates, γ̇ = 1.58×10−6 in
(a) and γ̇ = 2.00×10−6 in (b). A bond between two particles
j and k is represented when the strength of the tangential
force between them is nonzero | �f tan

jk | > 0. The snapshots
are representative of the steady state behavior for the given
parameters. For γ̇ = 1.58×10−6 shown in Fig. 4(a), a small
number of weak frictional contacts is observed. On the other
hand, when the shear rate is increased by a small amount to
γ̇ = 2.00×10−6, a larger number of frictional contacts are
now mobilized, and have a much larger strength. These visual
impressions are reinforced by the quantitative measurement
shown in Fig. 4(c), where we present the shear rate dependence
of the averaged frictional contact forces for one particle,
expressed as F Tan = ∑

jk | �f tan
jk |/N . A similar evolution is

observed for the normal component of these forces F Nor =∑
jk | �f nor

jk |/N . A clear discontinuous jump is observed for F Tan

and F Nor, which mirror the discontinuous jump observed in
the stress and in the pressure in Figs. 1(b) and 1(c). The two
arrows in Fig. 4(c) correspond to the two snapshots shown in
Figs. 4(a) and 4(b), on both sides of the viscosity discontinuity.
From these measurements, we confirm that the microscopic
origin of discontinuous shear thickening is a transition from
frictionless to frictional flow regimes, since tangential forces
get mobilized across the transition.

C. Direct evidence from granular rheology

It is useful to rephrase the above scenario of a frictionless-
frictional transition to explain the discontinuous shear thick-
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FIG. 4. Snapshots of tangential force contacts in constant volume
simulation at ϕ = 0.58 for T = 10−10 and μC = 1.0 when (a) γ̇ =
2.00×10−6 and (b) γ̇ = 1.58×10−6. A bond between particles j and
k is shown when | �f tan

jk | > 0, and its color represents the strength of

| �f tan
jk |. (c) The averaged frictional contact forceF Tan(= ∑

jk | �f tan
jk |/N )

and normal contact force F Nor (= ∑
jk | �f nor

jk |/N ) with γ̇ for the same
parameters, with arrows locating the snapshots in (a) and (b). The
frictional contact forces have a discontinuous jump.

ening in the language of hard granular materials. To this end,
we introduce the viscous number [13,49]

J = γ̇ η0

P
. (12)

It is well established that in the limit of hard sphere interac-
tions and in the absence of thermal fluctuations, the relevant
dimensionless numbers are the packing fraction ϕ and the
(macroscopic) friction coefficient

μ = σxy

P
, (13)

and they become unique functions as the viscous number J .
In Figs. 5(a) and 5(b), we plot the ϕ = ϕ(J ) and μ = μ(J )
curves obtained at T = 0 for both μC = 1.0 and 0. As in our
previous work using athermal soft spheres, we have taken the
hard sphere limit to measure the evolution of the granular
rheology [13]. As expected, the two rheologies have similar
functional forms, but they differ quantitatively. In the J → 0
limit, the packing fraction reaches different jamming densities
[ϕJ(μC = 1.0) ∼ 0.60 and ϕJ(μC = 0) ∼ 0.647], as already
observed in the state diagram in Fig. 2 above. Similarly,
the friction coefficient μJ = μ(J → 0) differs in both cases
[μJ(μC = 1.0) ∼ 0.23 and μJ(μC = 0) ∼ 0.11]. These values
are consistent with earlier numerical determinations [31,45].

Having measured the granular rheology (in the athermal
hard sphere limit), we now superimpose to those data the
measured boundaries for the discontinuous shear thickening
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0.45

0.5

0.55

0.6

0.65

J

0
1.0C

T=0
 (Hard sphere)

 =0.59
 =0.58
 =0.57

T=10-10, C=1.0
 (Constant volume)

(a)

(b)

10-2 10-1 100
0.1

0.2

0.3

0.4

0.5

J

FIG. 5. Granular rheology representation of the discontinuous
shear thickening. The dashed lines represent (a) ϕ = ϕ(J ) and (b)
μ = μ(J ) for N = 1000 in the hard sphere limit at μC = 0 and
μC = 1.0 and T = 0. The symbols report the corresponding values on
both sides of the discontinuous shear-thickening transition measured
at finite temperature T = 10−10 and various packing fractions for
μC = 1.0.

observed in our constant volume simulations at finite T . For
each volume fraction, we measure the values of the shear rate,
shear stress, and pressure at the viscosity discontinuity, and
report those jumps in the ϕ(J ) and μ(J ) representation appro-
priate to hard grains. It is very clear from this representation
that the discontinuous shear thickening represents a transition
between the athermal rheologies of frictionless and frictional
grains, which is only observed when thermal fluctuations are
present. These results generalize to different packing fraction
the similar observation reported in Fig. 1 for ϕ = 0.58.

V. QUANTITATIVE CONSEQUENCES FOR EXPERIMENTS

A. Sketch of the flow curves

In this section we summarize the above discussions on the
nature of the discontinuous shear thickening in our model
of soft repulsive spheres in the presence of frictional forces
and thermal fluctuations. Such modeling is useful to describe
colloidal particles. The goal of this section is thus to recap
the various flow regimes expected for such dense suspensions
and how they evolve with external control parameters, in order
to be able to make contact with experimental studies in the
following subsection.

The model under study possesses two main crossovers: (i)
from thermal to athermal rheology, which occurs for a Péclet
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FIG. 6. Sketch of the flow curves for dense suspensions of
Brownian colloidal particles with frictional forces. This comprises
a thermal-athermal crossover at γ̇c1, and a frictionless-frictional
crossover at γ̇c2, as given in Eqs. (14) and (15). Glassy colloidal
rheology is observed for γ̇ < γ̇c1, athermal frictionless rheology for
γ̇c1 < γ̇ < γ̇c2, and athermal frictional rheology for γ̇c2 < γ̇ . Small,
intermediate, and large particles allow experimentalists to cover the
various regimes exhibited by our model.

number of order unity,

γ̇c1 ≈ 1/τT = kBT

η0a3
= σ0

η0

kBT

εn
, (14)

and (ii) from frictionless to frictional rheology, which occurs
for shear rates scaling as

γ̇c2 ≈ σc

η0
= σ0

η0

√
kBT

εn
. (15)

In the above two expressions, we neglected subleading density
dependencies easily obtained by matching more precisely the
various regimes, to illustrate the leading dependence upon
the control parameters of these two crossovers. Since typical
particle softness in colloidal experiments correspond to quite
small reduced temperatures [35], the above expressions imply
γ̇c1 � γ̇c2, so that the succession of rheological regimes as
the shear rate is ramped up is (1) thermal frictionless, (2)
athermal frictionless, (3) athermal frictional. The behavior of
the shear viscosity for dense suspensions across these three
regimes as well as its evolution with the packing fraction is
sketched in Fig. 6. Once the various regimes (1), (2), and (3)
are properly ordered, these flow curves simply concatenate pre-
viously known rheological behaviors for these three physical
situations.

In the first regime (1), the viscosity is Newtonian at very
small shear rate, with a value controlled by the approach to
the colloidal glass transition. As the shear rate increases, a
shear thinning is observed when the timescale set by the shear
rate competes with the (slow) structural relaxation time of
the glassy colloidal suspension [50], usually called “alpha-
relaxation time” and noted τα . This shear-thinning regime
is then observed up until γ̇ reaches the thermal-athermal
crossover γ̇ ∼ γ̇c1.

For γ̇c1 < γ̇ < γ̇c2, the system enters the athermal friction-
less regime (2). In this regime, the rheology is Newtonian

again [45], and the viscosity is uniquely controlled by the
packing fraction, but its value is now set by the distance to
the frictionless jamming transition that occurs at ϕJ (μC = 0).
This Newtonian regime is sketched in Fig. 6.

For soft particles, increasing the shear rate would drive
the system to a shear-thinning regime [13] whereas for hard
particles the Newtonian regime would extend to arbitrarily
large shear rates. Instead, due to the presence of frictional
forces, a sharp shear-thickening transition is observed at γ̇ ≈
γ̇c2 which drives the system into the athermal frictional regime
(3), so that for γ̇ > γ̇c2 the rheology is again Newtonian
[32,49], but now with a shear viscosity that is controlled by the
distance to the frictional jamming density ϕJ (μC = 1.0).
The inequality ϕJ (μC = 1.0) < ϕJ (μC = 0) is the reason why
the viscosity increases sharply across γ̇c2. This final Newtonian
regime, accessed through a sharp increase of the viscosity, is
also sketched in Fig. 6.

For modestly soft colloidal particles (typical values are
given below), the crossovers between the various regimes
sketched in Fig. 6 may cover several orders of magnitude, and
may be difficult to observe in a single experiment. As suggested
already for the thermal-athermal crossover [34], and realized
already in recent experiments [8], it may be better to use a range
of materials with varying particle sizes to cover the various
regimes depicted in Fig. 6. Since the microscopic timescale
τ0 that sets the shear rate becomes larger for larger particles,
experiments performed with large particles will typically only
access “large” shear rates (i.e., large γ̇ τ0), whereas small
particles by construction explore “small” shear rates (i.e., small
γ̇ τ0) in the sketch of Fig. 6.

Thus, experiments using small colloidal particles (e.g.,
≈100–200 nm) will typically only cover the thermal regime,
as most “hard sphere” colloidal experiments indeed do [51].
Slightly larger particles (≈200 nm–1 μm) would be needed to
conveniently probe the thermal-athermal crossover, and parti-
cles from a submicron up to a few microns would be needed
to observe the shear-thickening regime. Finally, extremely
large particles would only explore to the athermal frictional
regime, and no shear-thickening transition would be observed
in this purely granular regime because it would take place at
immeasurably small shear rates.

Experimentalists are not short of additional ideas to explore
the various regimes shown in Fig. 6. For instance, one can
use large granular particles, and introduce an additional
“repulsive” force between the particles, that would play the
same as thermal fluctuations to perform shear-thickening
experiments with large grains. In this approach, this amounts
to shifting the crossover γ̇c2 back inside the experimental
window. Another way to play with timescales is to use
solvents with varying shear viscosities since η0 also enters the
crossovers in Eqs. (14) and (15).

A final, but important, point we want to make about Fig. 6
concerns the hard sphere limit of the soft repulsive potential
we use. There is no doubt that hard spheres play a large
role in both liquid state theory for simple fluids, but also in
rheological studies for both colloidal materials and computer
simulations. This is of course due to the simple functional form
of the potential. An obvious drawback is that the pair potential
changes abruptly from 0 to ∞ at the particle diameter, i.e.,
there is no intrinsic length scale to smooth out the effect of
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TABLE I. Sets of experimental parameters: particle sizes a, solvent viscosity ηs, onset stress of shear thickening σ expt
c for latex emulsion [3],

silica colloid [4], PMMA colloids with different sizes [8], and quartz particle [9]. The corresponding dimensionless temperatures (i.e., particle
softness) kBT/εn obtained from Eq. (16) are shown.

Latex emulsion [3] Silica colloid [4] PMMA colloid (small) [8] PMMA colloid (large) [8] Quartz particle [9]

a (m) 2.5×10−7 6.06×10−7 4.04×10−7 3.77×10−6 1.2×10−5

ηs (Pa s) 1×10−3 5.44×10−3 2.4×10−4 2.8×10−4 1×10−3

σ expt
c (Pa) 5×102 50 2×102 1.5 1.6

kBT/εn 2.8×10−7 1.4×10−7 9.9×10−8 2.7×10−9 2.2×10−12

the repulsive, which of course cannot true in a real colloidal
suspension. Still, it is interesting to analyze the effect of the
hard sphere limit in the sketch of Fig. 6. For colloidal hard
spheres where thermal fluctuations remain relevant (i.e., small
to intermediate hard sphere colloids), experiments would be
able to probe the thermal regime (for small colloids [51]) and
the thermal-athermal crossover for somewhat larger colloids
[8]. However, recalling the expression of γ̇c1 and γ̇c2 we realize
that as the rescaled temperature goes to zero (and particles
behave as hard spheres), these two shear rates become infinitely
far from each other. Thus, for true Brownian hard spheres, it
is impossible to observe γ̇c1 and γ̇c2 in a single experiment.
The reason is quite simple (but as mentioned above totally
unphysical!): frictional contacts between true hard spheres can
not survive in the presence of an infinitesimal Brownian force,
so that as soon as T > 0 shear thickening in Brownian hard
spheres only occurs at infinitely large shear rates. Therefore,
strictly speaking Brownian hard spheres cannot undergo shear
thickening and a finite amount of particle softness is needed to
trigger this effect. Another way to trigger shear thickening for
hard spheres is of course to introduce another repulsive force
that is not of thermal origin, such as van der Waals interactions
[8], or an artificial repulsive force [23]. Qualitatively, these can
also be seen as endowing hard spheres with a finite softness
or a finite surface rugosity. A corollary is that Brownian hard
spheres with frictional forces represent such a singular limit
that they cannot be used to understand discontinuous shear
thickening.

B. Quantitative comparison to experiments

In this section, we compare the flow curves obtained in
our simulations to several experiments realized with model
systems in order to assess the quantitative validity of the nu-
merical model. We have analyzed more carefully experimental
data in latex emulsion [3], silica colloid [4], nearly hard sphere
PMMA colloids with multiple particle sizes [8], and quartz
particle [9]. In our model, the dimensionless temperature
kBT/εn is the central control parameter to determine the shape
of the flow curve and the various crossovers. The value of the
friction coefficient also plays a role, of course, but it mainly
affects the values of the packing fraction where discontinuous
shear thickening is prominent. Given the large uncertainty
about packing fraction determination in colloidal experiments,
keeping the friction coefficient fixed is reasonable.

In a first step, we determine for each experiment the optimal
value of kBT/εn that allows our model to best reproduce the
full range of experimental flow curves. In our model, the onset
stress of the shear thickening is estimated as σc ∼ σ inst

T =

(εn/a
3)

√
kBT/εn [see Eq. (11)]. In experiments, this onset

stress (called σ
expt
c ) can be measured directly and can be used as

a input value for our comparisons. By using it, we can estimate
the dimensionless temperature as

kBT

εn
=

(
kBT

σ
expt
c a3

)2

, (16)

where kB = 1.380 65×10−23 m2 kg s−2 K−1 and T = 300 K
(room temperature). The values of σ

expt
c and the diameter

of the particles a are shown in Table I. They are then used
in Eq. (16) to provide an estimate of the dimensionless
temperature kBT/εn for all experiments, as shown in Table I.

Unsurprisingly, we find that the estimated dimensionless
temperature is strongly correlated with the particle size a

[35]. For instance, for latex particles whose diameter is rather
small (a = 250 nm), kBT/εn ∼ 10−7, whereas for the quartz
particles whose diameter is quite large (a = 12 μm), the
dimensionless temperature becomes small, kBT/εn ∼ 10−12,
since indeed the thermal regime (Pe < 1) is out of the exper-
imental observation window (as is often the case with large
granular particles). As reported in Ref. [8], we also confirm
that σ

expt
c ∝ a−2 is well obeyed in experimental work. Using

Eq. (16), we can estimate the relation between the energy scale
εn and particle size a, which reads as

εn = (σ expt
c a3)2

kBT
∝ a2. (17)

This relation between particle softness and particle size was in
fact already found via another physical argument in Ref. [35],
where the scaling behavior of the athermal yield stress value
is discussed in the context of glass and jamming transitions.
In fact, the relation εn ∝ a2 can be explained, physically, via
a reasoning analogous to the Laplace pressure derivation [35],
as detailed below in Appendix.

Armed with estimates of the dimensionless temperature
relevant to describe each experimental system, we can directly
compare the family of flow curves obtained in experiments
and simulations. In Fig. 7, we show experimental flow curves
of latex [3], silica colloids [4], and multiple sizes of PMMA
colloids [8] dispersions. To compare experiments and simula-
tions, it is useful to scale the viscosity and the shear rate with
the variables associated with the solvent viscosity ηs, as given
in Table I.

To complete the comparison between experiments and
simulations there are two adjustments that are needed to get
fully quantitative agreement. The first adjustment is about the
simulations where the “solvent” is actually altogether absent,
and its effect is only felt through the viscous damping. A
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FIG. 7. Quantitative comparison of the flow curves obtained from experiments with our simulations. (a) Latex dispersions [3] (a = 250 nm)
for ϕ = 0.47 and 0.50, compared with numerical flow curves for ϕ = 0.58 and 0.53 at T = 10−7. (b) Small colloidal dispersions [4] (a =
600 nm) for ϕ = 0.57 and 0.54, compared with numerical flow curves for ϕ = 0.61 and 0.56 at T = 10−7. (c) Small colloidal dispersions [8]
(a = 404 nm) for ϕ = 0.56 and 0.545, compared with numerical flow curves for ϕ = 0.58 and 0.53 at T = 10−7. (d) Large colloidal dispersions
[8] (a = 3770 nm) for ϕ = 0.56 and 0.54, compared with numerical flow curves for ϕ = 0.58 and 0.53 at T = 10−8. Viscosities are scaled using
η/ηeff

s in experiments where ηeff
s = 10ηs is an effective solvent viscosity. For simulations, we show (η + ηs )/ηs, where ηs = η0 = ξn/(3πa).

The shear rates are scaled as γ̇ τs where τs = 3πηeff
s a2/εn in experiments and τs = t0 = 3πηsa

3/εn in simulations.

consequence is that the viscosity of the simulated system
would vanish at low density. To correct for this effect, we
empirically correct the measured viscosity for the simulated
system by plotting instead the quantity (η + ηs)/ηs where
ηs = ξn/a. As a result, the viscosity is unaffected when η 

ηs, but this quantity goes to 1 (not 0) at low density when
η � ηs. This empirical rescaling of course affects none of
the scaling behavior discussed above. For the simulations,
the shear rate is simply rescaled as γ̇ t0 where t0 = ξna

2/εn,
as defined in Sec. II C. The second adjustment we need
to make is also a quantitative one. We find that we need to
introduce an effective solvent viscosity ηeff

s for experiments to
obtain perfect quantitative consistency with the simulations. In
Fig. 7, the experimental viscosity and shear rate are scaled as
η/ηeff

s and γ̇ τs, respectively, where τs = 3πηeff
s a3/εn. We find

that imposing ηeff
s = 10ηs yields perfect agreement between

experiments and simulations. The factor 10 we find suggests
that the viscosity of the experimental suspensions is about 10
times larger than the corresponding one in the simulations, but
this constant factor does not depend on the state point. This
is thus only a prefactor, which demonstrates that the scaling
behavior is the same in experiments and simulations, apart
from a numerical adjustment related to solvent physics, which
presumably adds an additive hydrodynamic contribution to the
measured experimental values.

When these two minimal adjustments are done, we obtain
the results shown in Fig. 7, where we superimpose flow curves
obtained in experiments in four different materials, and the

ones obtained in our simple numerical model. Our central
conclusion is that the full range of the experimental flow
curves which contain several nontrivial flow regimes (thinning,
Newtonian, thickening) are quantitatively reproduced by our
numerical model.

Notice finally that the numerical flow curves in Fig. 7
display shear-thinning behavior at extremely large shear rates,
in the regime which is athermal and frictional. This is because
we use a finite particle softness in the present model, whereas
perfect hard spheres would instead display Newtonian behavior
in that regime, as commonly observed in large granular
particles [49,52].

VI. CONSTANT PRESSURE SIMULATIONS

A. Absence of shear thickening when pressure is constant

Using the representation adopted in experiments concerning
hard granular matter in Fig. 5, we realized that the discontin-
uous shear-thickening behavior observed in constant volume
simulations also corresponds to a discontinuous increase of the
pressure as the shear rate is increased. This observation has two
consequences that we wish to explore in this section. First, it
seems to suggest that keeping the pressure fixed should forbid
the shear-thickening behavior. Second, there exist pressure
values that are never explored in the course of constant volume
simulations, as the pressure jumps discontinuously. One may
thus wonder what would happen if a forbidden pressure value
was applied to the system.
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FIG. 8. (a) Flow curves σxy = σxy (γ̇ ) measured during constant
pressure simulations at various pressures for N = 1000, T = 10−10,
and μC = 1.0. (b) Same data replotted as ϕ = ϕ(J ) (b) and μ =
μ(J ) (c) for the same parameters. The dashed lines represent the
athermal hard sphere limit with and without friction, as in Fig. 5.
No discontinuous shear thickening is observed in constant pressure
simulations.

We have performed simulations of our model for T = 10−10

and μC = 1.0 using a constant pressure setup, as described
in Sec. II B. In that case, we vary the applied shear rate at
constant P , and measure the shear stress to obtain the flow
curves depicted in Fig. 8(a). For each pressure value P =
10−3, . . . , 10−6, we observe a smooth increase of the shear
stress with the shear rate, with no obvious discontinuity. Thus,
it is immediately clear that discontinuous shear thickening is
fully prevented by in a constant pressure setup.

We confirm this conclusion using the ϕ(J ) and μ(J )
representation of the granular rheology [see Figs. 8(b) and
8(c)]. Here again, we find that all data points evolve smoothly
and do not show any discontinuous feature. Comparing the
data obtained at constant pressure to the limiting case of
athermal frictional and frictionless rheologies shown with
dashed line demonstrates that very low pressure data tend
to superimpose onto the frictionless rheology, whereas large
pressure ones superimpose onto the frictional rheology. This

effect simply confirms the physical picture of the discontinuous
shear thickening in terms of mobilization at large enough shear
stress of frictional forces. Imposing a large confining pressure
(P = 10−3, 10−4 in Fig. 8) indeed mobilizes the friction and
the system appears frictional independently of the value of the
shear rate, whereas for low pressures (P = 10−6 in Fig. 8). As
a result, the constant pressure system can only lie on one side
of the thickening transition, but cannot cross it.

An interesting exception is the “forbidden” pressure value
P = 10−5 in Fig. 8. According to the constant volume simula-
tions for the same parameters, the system displays a pressure
jump when discontinuous shear thickening is observed and the
value P = 10−5 is thus never reached. Hence, we may wonder
whether the system is somehow “unstable” is this pressure
value is applied. However, the flow curve in Fig. 8(a) shows
that nothing really spectacular happens. Careful inspection of
the simulations shows that there are no more temporal or spatial
fluctuations for this pressure than for others. We conclude
that the constant pressure setup is actually stable and does
not give rise to any specific flow instability. When replotted
in Figs. 8(b) and 8(c) these data suggest a smooth crossover
between frictionless rheology at small J to frictional rheology
at large J .

B. Do S-shaped flow curves exist?

A surprising feature of the previous subsection is the
observation that a pressure value that is unaccessible during
the course of a constant volume simulation is instead easily
accessed in a constant pressure setup, and provides a measur-
able state point where the viscosity and the volume fraction
can be measured in steady state conditions. As a consequence,
this setup allows us to “fill” the discontinuous viscosity jump
observed at constant volume with additional data points. The
exercise is quite tedious: to reconstruct a constant volume
fraction flow curve, we need to very precisely adjust the
pressure until the steady state value of ϕ is the one we wish to
reach (we allow for a variation of ϕ of about ±0.003 to speed up
the convergence of this iterative process). Once this agreement
is achieved, we measure the viscosity. Repeating this analysis
for a range of pressures, we can finally reconstruct the flow
curves shown in Fig. 9, which are obtained for T = 10−10 and
μC = 1.0.

The first observation is that away from the shear-thickening
discontinuity, constant pressure and constant volume simula-
tions agree with one another, as expected. A more interesting
observation is that for each density where a discontinuous shear
thickening was observed, we can now report the value of the
viscosity in the middle of the sharp discontinuity. Strikingly,
for a system size N = 1000, we find that the discontinuity
now becomes an S-shaped flow curve, which is obviously
reminiscent of the van der Waals loop across a first-order phase
transition in thermal equilibrium.

A well-known feature of first-order phase transition is that
the equilibrium loop becomes less pronounced as the system
size increases. To test this intuition, we have repeated the
constant pressure simulations described above for a much
larger system with N = 10 000. The data are reported in Fig. 9
for the same parameters as before. Here, we observe that
for larger systems, the S-shaped flow curve becomes much
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FIG. 9. The flow curves σxy = σxy (γ̇ ) obtained via constant
volume simulations for various ϕ for several ϕ are shown with
dashed lines. The flow curves obtained from the pressure controlled
simulations with N = 1000 (squares) and 10 000 (triangles) are also
shown. Identical colors are used for identical volume fractions. All
the data are obtained for μC = 1.0 and T = 10−10. The discontinuous
shear thickening observed in constant volume simulations becomes
an S-shaped flow curve for a finite N simulation, that becomes more
and more vertical as N increases.

less pronounced than for the smaller system. Compare for
instance the constant pressure simulations data at ϕ ∼ 0.597
for N = 1000 and 10 000 in Fig. 9. Thus, we expect that
for an even larger system, the S-shaped curve would turn
into an I-shaped flow curve, i.e., the nonmonotonic behavior
would disappear altogether and constant pressure and constant
volume simulations would finally agree in the thermodynamic
limit. The disappearance of S-shaped curves with system size is
consistent with the numerical analysis performed in Ref. [27],
which has been obtained in the context of a distinct microscopic
model in two dimensions.

As an important remark on the issue of nonmonotonic flow
curves, we point out that the seemingly unstable flow curves
displayed in Fig. 9 are actually reconstructed one point at a
time from flow curves such as the ones reported in Fig. 8(a),
which are instead totally featureless and completely stable.
Thus, there is no fundamental reason for the flow curves in
Fig. 9 to be unstable, and each point truly reflects a stable
steady state situation. Of course, if we started a constant volume
simulation from one of the points along the S-shaped flow
curve, it would slowly drift towards a stable situation of a
constant volume flow curve, and the discontinuity would of
course reappear.

The observation that the nonmonotonic flow curves in Fig. 9
do not seem to survive the large system size limit is consistent
with some previous work [27], but seems to disagree with
others [24,53] which employed however much smaller system
sizes. An important conclusion from these observations is that
they suggest that the underlying constitutive rheological rela-
tion for discontinuous shear thickening is not nonmonotonic, as
assumed in all theoretical models [26,28,38], but more simply
displays a sharp discontinuity.

Finally, some experiments have also recently discussed
nonmonotonic flow curves [37], while shear instabilities are
often observed in experimental work as well [11,36]. The
observation of S-shaped flow curves in experiments performed

with much larger systems that the ones we simulate is sur-
prising, as we would expect these experiments to be even
closer to the large N limit than our simulations, and we have
no explanation for this apparent discrepancy. Regarding flow
instabilities, we can only reiterate the obvious statement that
by construction our simulations are performed with periodic
boundary conditions in perfectly homogeneous conditions,
with no gradient of any kind present in the system and no
boundary effects. In addition, the pressure can increase by or-
ders of magnitude in our system and we do not need any robust
machinery to maintain the sample inside the rheometer. Thus,
in a sense, simulations represent an idealized experimental
situation, but they clearly demonstrate that flow instabilities are
not a necessary consequence of the presence of discontinuous
shear thickening.

VII. SUMMARY AND CONCLUSION

To summarize, we studied the overdamped Brownian dy-
namics of a simple model of soft repulsive spheres with
frictional contacts. The model undergoes a glass transition
due to thermal fluctuations, and also undergoes a jamming
transition when thermal fluctuations are not present. The
combination of Brownian forces and frictional forces is enough
to induce a discontinuous shear-thickening behavior. Our study
has established that such behavior could be observed over a
broad range of control parameters, and can span a large range
of shear stresses and shear rates, depending on the particle
softness. Thus, we showed that there is no need to invoke any
additional physical mechanisms or contact forces to obtain a
very realistic behavior.

As in previous studies, the relevant microscopic mecha-
nism is a sharp transition between frictionless and frictional
rheologies occurring at large Péclet number but nevertheless
controlled by the intensity of Brownian forces. We have
exposed the relevant stress scale controlling shear thickening
in our simulations, and have demonstrated that our model is
enough to reproduce a broad range of controlled experimental
studies with model colloidal particles.

Furthermore we have carefully discussed the singular nature
of the hard sphere limit in the present context, and explored
the consequences of the results for experiments where the
pressure (rather than the volume) is controlled. This had led us
to conclude that the existence of S-shaped flow curves in our
model is a finite size effect, that is in addition not associated
to any remarkable flow instability.

Finally, it should be obvious that many materials undergoing
shear-thickening behavior are not composed of model colloidal
particles that we have analyzed in this work. Although our
model produces flow curves that are qualitatively similar
to those more complicated materials, such as cornstarch
dispersions [7,47] or particles with attractive interactions [54],
it is also clear that these particles may carry charges and
have nonspherical shapes. It would be surprising that our
model could reproduce their rheology at the quantitative level.
This might be because in such system the shear thickening
takes place via the interplay between frictional force and
the electrostatic force and complex geometrical frustration. It
remains to be explored how to include these more complicated
features in a computational framewrok that remains tractable.
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APPENDIX: DERIVATION OF THE RELATION
BETWEEN THE CONTACT STIFFNESS

AND THE PARTICLE SIZE

The relation εn ∝ a2 is explained simply using the Laplace
pressure. Here, we review the corresponding derivation. First,
suppose a contact force F is applied to the surface of the sphere
whose diameter is a. Now that F is balanced with the pressure
difference between the inside and outside of the sphere (�P )
multiplied by the contact surface area, which reads as

F ∼ πa2�P

4
. (A1)

On the other hand, �P is obtained from the energy balance
equation between the bulk and the surface contributions when

the small perturbation (�V ) is applied such as

0 = −�P�V + γ�A, (A2)

where �V = πa2�a/2 and �A = 2πa�a. When �a is
small, the elastic energy change of the sphere is negligible
because it is O((�a)2). From the above relation, we obtain
�P , which reads as

�P = 4γ

a
. (A3)

Using Eqs. (A1) and (A3) together with our normal spring
contact force given by Eq. (2), F can be represented as

F ∼ πγ a ∼ εn

a
. (A4)

Accordingly, we can obtain the relation εn ∝ a2 which is
consistent to also our findings represented in Eq. (17). Also,
substituting εn ∝ a2 to σc ≈ σ inst

T = εn/a
3√kBT /εn, we ob-

tain

σc ∝ a−2, (A5)

which is consistent to the experimental findings [8]. The above
argument is of course trivial when particles are real droplets
since this corresponds to the Laplace pressure. However,
assuming the colloidal particles deform very little (as indeed
correct for our simulated system), the argument applies also
for colloids.
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