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Phase diagrams and crystal-fluid surface tensions in additive and nonadditive two-dimensional
binary hard-disk mixtures
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Using density functionals from fundamental measure theory, phase diagrams and crystal-fluid surface tensions
in additive and nonadditive (Asakura-Oosawa model) two-dimensional binary hard-disk mixtures are determined
for the whole range of size ratios q = small diameter/large diameter, assuming random disorder (lattice points or
interstitial occupied by large or small disks at random) in the crystal phase. The fluid-crystal transitions are first
order due to the assumption of a periodic unit cell in the density-functional calculations. Qualitatively, the shape
of the phase diagrams is similar to the case of three-dimensional hard-sphere mixtures. For the nonadditive case, a
broadening of the fluid-crystal coexistence region is found for small q, whereas for large q a vapor-fluid transition
intervenes. In the additive case, we find a sequence of spindle-type, azeotropic, and eutectic phase diagrams upon
lowering q from 1 to 0.6. The transition from azeotropic to eutectic is different from the three-dimensional case.
Surface tensions in general become smaller (up to a factor 2) upon addition of a second species and they are rather
small. The minimization of the functionals proceeds without restrictions and optimized graphics card routines
are used.
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I. INTRODUCTION

The fluid-crystal transition in two-dimensional (2D) sys-
tems of hard disks has been of fundamental interest over
the past years. Only recently, it has been established in the
one-component system by simulations [1] and experiments [2]
that the transition happens via a first-order transition from the
fluid to the hexatic phase and a continuous transition from the
hexatic to the crystal phase. Although the crystal phase is not
strictly periodic (it does not have infinitely long-range posi-
tional order), in simulations and experiments it has practically
the appearance of a conventional periodic crystal. Therefore,
2D hard disks have a similar status as a model system for
crystallization in films and monolayers as 3D hard spheres have
for crystallization in the bulk. Besides simulations, classical
density-functional theory (DFT) for hard-particle systems
has reached a certain maturity and accuracy owing to the
development of fundamental measure theory, starting with the
work of Rosenfeld [3]. For 2D hard disks, a functional has been
proposed in Ref. [4] which gives a very accurate description
of fluid structure in one- and two-component systems [5], as
well as values for the fluid and crystal coexistence densities
which are rather close to the ones of the first-order fluid-hexatic
transition [4]. In these fundamental measure theory (FMT) cal-
culations, strict periodicity of the crystal phase was assumed.

Crystals in binary hard-disk systems have been stud-
ied some time ago by older density-functional methods in
Refs. [6,7] (variants of weighted-density functionals with
restricted minimizations). For substitutionally disordered crys-
tals, a sequence of phase diagram types (spindle, azeotropic,
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and eutectic) has been found upon lowering the disk size ratio
similar to the case of 3D hard spheres [8], although the exact
shape and the transition size ratios differ considerably between
Refs. [6,7]. In these cases, the crystals were assumed strictly
periodic as well. In Ref. [9], a survey of possible alloy phases
was undertaken in a special zero-temperature limit (identifying
the highest-packing-fraction structure among all candidates).

In past decade, phase field crystal (PFC) models have
emerged as an efficient tool to phenomenologically describe
phase diagrams of binary systems in two and three dimen-
sions [10,11] and of the crystal-fluid surface tension [12].
The PFC models employ a certain Taylor expansion of direct
correlation functions among species to produce the desired
crystal structure and use several parameters to capture material
properties. Whereas the approach is suited to describe the
mesoscale behavior of solidification generically, a link to
the density distributions in specific crystals is difficult to
establish. An example is the hard-sphere system where the
PFC fails to describe quantitatively vacancy concentrations,
surface tensions, and associated density profiles [13].

Only recently, a binary mixture with a fixed-size ratio of
1/1.4 was investigated by simulations aiming at the fate of the
hexatic phase [14] in disordered crystals. The hexatic phase
was found to disappear quickly upon addition of the smaller
species; overall, a phase diagram of eutectic type was found
for this size ratio.

Here we employ the FMT functional of Ref. [4] to study
phase diagrams and crystal-fluid surface tensions for additive
and nonadditive binary hard-disk mixtures. The nonadditive
case is the 2D variant [15] of the well-known Asakura-Oosawa
(AO) model [16,17], originally formulated for a mixture of 3D
hard spheres where there are no interactions between particles
of the second component (depletant). The depletants lead to
an effective attractive potential between particles of the first
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species (which for small-size ratios is strictly a two-body
potential), therefore the study of the AO model is equivalent to a
study of hard disks with additional short-range attractions. The
derivation of the AO functional from the functional of Ref. [4]
proceeds by employing the linearization trick already studied
in the 3D case [18,19]. We examine the case of random disorder
(lattice points or interstitials occupied by large or small disks
at random) crystal over the whole range of possible size
ratios. Random disorder includes the cases of substitutional
disorder when disk sizes are comparable, interstitial disorder
for small-size ratios, and superpositions of alloy configurations
for intermediate-size ratios.

The paper is organized as follows. In Sec. II we introduce
the theoretical background for the AO model, FMT, and
the FMT-based AO functional. In Sec. III we discuss the
numerical treatment of the full minimization of the functionals
for bulk crystals and crystal-fluid surfaces. In Sec. IV we
present our results for density distributions in the crystal and
crystal-fluid interfaces, for phase diagrams, and for surface
tensions. In Sec. V we summarize and discuss our results.

II. THEORY

A. Hard-disk mixture and the Asakura-Oosawa model

We consider a mixture of large (l) and small (s) disks, with
diameters σl and σs, respectively, and q = σs

σl
defining the size

ratio. In the case of an additive system [referred to as the hard-
disk (HD) mixture], one may define an interaction diameter
dij = σi/2 + σj/2 with i,j = {l,s}. The pair potential �ij (r)
between two particles with center-center distance r is ∞ for
r < dij and 0 for r > dij .

In the case of an AO mixture, the interaction diameter dss

for the interaction between two small disks is zero, i.e., there
is no interaction among the small disks and they behave as an
ideal gas. The other interaction diameters dsl and dll remain
unchanged. The small disks act as a depletant and induce an
effective, attractive two-body potential �AO(r) between the
large disks (depletion potential). Its shape is determined by
the overlap of exclusion areas of two large disks at distance
r , where the exclusion areas (which are forbidden to centers
of small disks) are circles of diameter σl + σs centered at the
midpoints of the large disks [15,16]:

β�AO(r) =

⎧⎪⎪⎨
⎪⎪⎩

∞ if r < σl

−η′
[

cos−1
(

r
σl(1+q)

) − r
σl(1+q)

√
1 − (

r
σl(1+q)

)2
]

if σl < r < σl + σs

0 otherwise,

(1)

where η′ = σ 2
s
2 ρs(

1+q

q
)2 determines the magnitude of the de-

pletion potential (ρs is the bulk number density of small
disks). Furthermore, β = 1

kBT
, with kB denoting Boltzmann’s

constant and T temperature. For small-size ratios q < σs
σl
�

2−√
3√

3
� 0.155, the AO mixture can be mapped exactly onto a

single-component model with an effective two-body potential
given by the depletion potential above. For larger q, the
effective potential should include n-body overlaps of excluded
area (n � 3). Furthermore, in the dilute limit of the (additive)
HD mixture (with the number density ρl of large disks being
small), the effective potential between large disks is identical
to Eq. (1) [15].

B. Fundamental measure theory

We consider inhomogeneous mixtures with density profiles
ρ(r) = {ρs(r),ρl(r)}. In classical DFT, crystals are considered
as inhomogeneous fluid, whose equilibrium density profile
ρeq(r) = {ρs,eq(r),ρl,eq(r)} minimizes the grand potential

�[ρ] = F [ρ] −
∑

i

∫
dr ρi(r)[μi − V ex

i (r)], (2)

where F is the Helmholtz free energy, μi and V ex
i are the

chemical potential and the external potential for species i,
respectively, and F can be further decomposed into the ideal
gas part Fid and the excess free energy Fex. The exact form of
Fid is

βFid =
∑

i={s,l}

∫
dr ρi(r)

{
ln

[
ρi(r)λ2

i

] − 1
}
, (3)

where λi is the thermal wavelength for species i. In the
following, we set λi = 1.

Fundamental measure theory is the most accurate route
to density functionals of hard-body mixtures. Most FMT
functionals assume an excess-free-energy density which is
local in a set of weighted densities nα(r) which are convo-
lutions of the density profiles with geometrically motivated
weight functions [3]. For hard spheres in three dimensions,
the original derivation of the functionals proceeds from an
exact low-density form (deconvolution of the Mayer f bond)
and subsequently uses scaled particle arguments [3]. Such a
functional does not describe crystals though. In this case, a
possible derivation proceeds via dimensional crossover. Here
one requires that by confining an arbitrary density profile to
one dimension (a line) and zero dimensions (a collection of
points), the functional delivers the correct free energies whose
exact form is known from other arguments [20,21]. Using
this route, the properties of hard-sphere crystals and crystal-
fluid interfaces are described in quantitative agreement with
simulations [13,22,23]. Also, the low-density form remains
exact.

In the derivation of a genuine 2D functional along these
lines, problems are encountered. Maintaining the exact low-
density form or having the exact free energy for a density
distribution consisting of two sharp peaks is not possible with
an excess-free-energy density local in weighted densities [20].
An approximate solution to this problem was derived in
Ref. [4]. The excess free energy is given by

βF HD
ex [nα] =

∫
dr �HD(nα), (4)
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where the weighted densities nα are sums over convolutions of
the HD species density profiles with weight functions

nα(r) =
∑

i={s,l}

∫
dr′ρi(r′)wi

α(r − r′)

=: ns
α + nl

α, (5)

where α indicates the type of weight function and i the species
(l denotes large and s denotes small). The weight functions are
defined as

wi
1(r) = δ(Ri − r), wi

0(r) = δ(Ri − r)

2πRi

,

wi
2(r) = �(Ri − r), wi

1(r) = r
r
δ(Ri − r),

[
wi

T(r)
]
αβ

=
( rαrβ

r2

)
δ(Ri − r),

(6)

where Ri is the radius of species i, θ (r) is the Heaviside
step function, δ(r) is the Dirac delta function, and wi

T(r) is
a tensorial weight function with Cartesian components αβ.

The free-energy density is given by [4]

�HD(nα) = −n0 ln(1 − n2)

+ C0n
2
1 + C1n2

1 + C2 Tr
[
n2

T

]
4π (1 − n2)

, (7)

with three parameters C0, C1, and C2. The functional gives
the correct second virial coefficient if C0 + C2/2 = 1. Fur-
thermore, the correct free energy for a single sharp density
peak requires C0 + C1 + C2 = 0. Thus, the dependence on the
three parameters can be reduced to a dependence on a single
parameter a with

C0 = a + 2

3
, C1 = a − 4

3
, C2 = 2 − 2a

3
. (8)

For one component, a best fit to the Mayer f bond gives a =
11/4, whereas a fit to crystal pressures obtained by simulation
gives a = 3 [4]. For binary systems in the fluid phase, the
functional delivers an excellent description of pair correlation
functions when compared to experiments [5].

Recently, a functional for 2D rods (discorectangles) has
been derived which maintains the exact low-density form by
using weighted densities which are two-center convolutions
with a weight function [fundamental mixed measure theory
(FMMT)] [24]. In the limit of the 2D rods becoming disks,
the functional (7) is an approximation to the FMMT func-
tional. However, fluid-crystal coexistence densities in the one-
component case are approximately equal and the numerical
effort in FMMT is considerably higher. Therefore, we will not
consider the FMMT functional in this work.

A functional for the AO mixture can be obtained by the
linearization recipe: A functional for a genuine hard-body
mixture [such as the one in Eq. (7)] is linearized in the
density (or equivalently in the weighted densities ns

α) of the
small species. This entails that the direct correlation func-
tion between two particles of the small species c(2)

ss (r,r′) =
−βδ2Fex/δρs(r)δρs(r′) vanishes, consistent with the small
species behaving as an ideal gas. In three dimensions, such a
functional (derived from the original Rosenfeld functional [3])
describes structural properties and wetting transitions in the
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FIG. 1. Density distribution ρ(r) of a one-component perfect
crystal (ρ̄σ 2 = 0.93 and a = 11/4). The solid white line indicates
the computational box (rectangular unit cell of the triangular lattice,
which contains two particles).

fluid phase very well [25]. Recently, an extension using
functionals from the dimensional crossover route has been
studied which allows the description of the crystal phase in
three dimensions [19]. According to the linearization recipe,
the AO mixture excess-free-energy density is given by

�AO({nl
α,ns

α}) = �HD(nl
α) +

∑
α

ns
α

∂�HD(nl
α)

∂nl
α

. (9)

III. NUMERICAL METHODS

A. Free minimization and phase coexistence

For the crystal phase, we assume periodicity and consider
a rectangular unit cell with side lengths L and

√
3L for a

triangular lattice (see Fig. 1). Since we only consider solid
solutions (random disorder), we assume that the triangular lat-
tice is formed by equilateral triangles as in the one-component
case.

The free parameters in this free-energy minimization prob-
lem are the density profiles ρl(r) and ρs(r) in the unit cell as
well as the length L. We parametrize the latter via an effective
vacancy concentration n:∫

cell
dr[ρl(r) + ρs(r)] =: 2(1 − n) = (ρ̄l + ρ̄s)

√
3L2. (10)

In the one-component case, an ideal crystal has two particles
in the unit cell, therefore n > 0 indeed corresponds to the
vacancy concentration in the equilibrium crystal. For a HD
mixture, n may also be negative, corresponding to an effective
interstitial concentration which is easily possible if small disks
are inserted into a crystal of large disks.

The full minimization for given average densities ρ̄l and ρ̄s

proceeds via

Feq(ρ̄l,ρ̄s) = min
n

min
{ρl(r),ρs(r)}

F [nα], (11)

i.e., in two steps [22]. The first minimization step is achieved
by an iterative solution of the Euler-Lagrange equation (for
fixed n,L)

ρi = exp

(
−β

δFex[nα]

δρi

+ βμi

)
= K[ρi], (12)
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where

β
δFex[nα]

δρi(r)
=

∫
dr′ ∑

α

∂�[nα]

∂ni
α

(r′)wi
α(r′ − r), (13)

where � is given by Eq. (7) in the case of the HD mixture
and by Eq. (9) in the case of the AO mixture. The chemical
potentials μi are adapted in each iteration step to keep ρ̄l and ρ̄s

constant. Iteration is done using a combination of Picard steps
and discrete inversion in iterative subspace (DIIS) [13,22]. The
Picard steps are performed according to

ρ
j+1
i = ξK[ρj

i ] + (1 − ξ )ρj

i , (14)

where i is the species index, j labels the iteration step, and ξ is
a Picard mixing parameter which we chose in the range from
10−3 to 10−2 for bulk crystal and also interface minimizations.
The DIIS steps are performed using between five and nine
forward profiles. As a side remark, we also minimized F [nα]
by dynamic DFT with the exponential time differencing
algorithm [26] for a one-component system. By choosing
the time step dt = 10−3 (in units of the Brownian time
σ 2/D0, where D0 is the single-particle diffusion constant),
the thermodynamic properties in equilibrium are identical to
the ones from the Picard-DIIS method, but the dynamic DFT
method requires much more computational resources.

The second minimization step, the minimization with re-
spect to n (and thus L), amounts to doing the first minimization
for a few values of n within an interval of starting width
∼10−3 and determining the minimum via a quadratic fit. The
procedure is iterated with smaller interval widths until we have
reached three digits of confidence or the interval width is less
than 10−5.

The procedure is slightly modified in the case of an AO
mixture (see also Ref. [19] for more details). Here we define
the vacancy concentration by∫

cell
dr ρl(r) =: 2(1 − n) = ρ̄l

√
3L2, (15)

i.e., it corresponds to the concentration of sites unoccupied by
the large particles. Furthermore, we define a semigrand free
energy (fixed ρ̄l and μs)

F ′ = F − μs

∫
dr ρs(r), (16)

which is minimized in step 1 for fixed n and L. In each iteration
step, the density profile ρs(r) of the small spheres is computed
by the grand-canonical equilibrium condition which can be
solved explicitly:

δ�[ρl,ρs]

δρs

!= 0 ⇒

ρs(r) = exp

(
βμs −

∫
dr′ ∑

α

∂�HD
ex [nl

α]

∂nl
α

ws
α(r′ − r)

)
.

(17)

Phase coexistence requires Pcr = Pfl and μi,cr = μi,fl with
i = l,s, i.e., coexisting fluid (crystal) states form two lines in
the ρl-ρs plane. In practice, first we choose ρl and ρs for the
crystal and treat ρl = ρl,cr as the parameter on which the other
three coexistence densities depend. Fully minimizing F/N

with n delivers Pcr and μi,cr. Through μi,cr = μi,fl and the
fluid equation of state we can find Pfl, ρl, and ρs in the fluid.
In general, Pfl �= Pcr and thus we change ρs,cr iteratively until
βσ 2

l |Pcr − Pfl| < 5 × 10−6.

B. Surface tension

A surface tension in two dimensions is a line tension defined
as �+PA

L
, where P is the pressure, A is the area of the system

and L is the length of the interface. In this paper we are
interested in the planar surface tension γ , which is determined
by the slope of the free-energy density versus the inverse length
of the numerical box in the direction of the interface normal,
with the average particle density fixed [27].

In general, γ depends on the angle θ between the crystal and
the interfacial normal. For small anisotropies, γ can be approx-
imated by γ (θ ) = γ0(1 + ε sin(6θ )); in FMT, ε � O(10−3) for
the one-component crystal-fluid interface. In experiments [2],
ε � O(10−2). Due to the smallness of ε, in this paper γ0 is
directly determined by γ (0)+γ (π/6)

2 .
The density profiles are initialized similar to Ref. [13]. In

the iterations we chose a Picard mixing parameter constant in
space (this works here in two dimensions but not in three [13]).
We fix the average densities ρ̄i = ρ̄i,cr+ρ̄i,fl

2 by adapting μi in
the iterations, where ρ̄i,cr (fl) is the bulk average density in
the crystal (fluid) phase for species i at coexistence, and then
finally perform the free minimization.

C. Further numerical details

Here we briefly discuss further computational details. The
crystal phase requires double precision, with numbers of grid
points from 642 up to 2562 for one unit cell. The crystal-
fluid interfaces require an extension of the numerical box
between 1 × 96 and 1 × 196 unit cells to give reliable surface
tensions. Heavy usage of Fourier transforms is required for the
minimization. Weighted densities (6) are computed using

F(ni
α) = F(ρi)F(wi

α) (18)

and functional derivatives (13) by

F

(
δFex[nα]

δρi

)
=

∑
α

F

(
∂�ex[nα]

∂ni
α

)
F�(wi

α), (19)

with F denoting the Fourier transform and the star the complex
conjugate. ForF(wα), the analytic forms using Bessel functions
are used [28]. For accelerating the numerics, all calculations
are executed on high-performance Nvidia Tesla K80 or K40
GPUs with massive parallelization through the developer
environment CUDA [29]. For a detailed description of GPU
utilization in two- and three-dimensional FMT, we refer the
reader to the paper by Stopper and Roth [28]. CUDA has a wide
range of tools and libraries, such as template library thrust and
fast Fourier transforms (cuFFT) which is usually a bottleneck
in the DFT calculations. With a potential speed gain of up to 40
times relative to a serial CPU program [28], our calculations
gave a factor of 15–20 since we try to maximize the system
size; thus, our largest system is 4 times larger than those in
Ref. [28]. The minimization of a unit cell (first minimization
step) usually takes a few seconds (∼500 Picard-DIIS steps)
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TABLE I. Thermodynamic properties of the one-component
crystal-fluid transition: γ0 denotes the averaged planar surface tension,
σ the HD diameter, μ chemical potential, P pressure, η = (π/4)σ 2ρ

packing fraction, superscript 1c one component, and subscript co
the coexistence of the crystal (cr) and fluid (fl). Note that for Expt.
and MC, two values for ηcr correspond to the packing fraction
of the hexatic phase at fluid-hexatic coexistence and the packing
fraction at the hexatic-crystal continuous transition, respectively. The
FMT coexistence values for a = 11/4 differ slightly from those in
Ref. [4], which suffer from a small numerical error. The results of the
experiment in column 4 are from Ref. [2] (see Supplemental Material
therein) and those of the MC simulations in column 5 are from Ref. [1].

FMT
Property a = 11/4 a = 3 Expt. MC

βσγ 1c
0 0.0992 0.0815 0.1

βσ 2P 1c
co 10.84 9.234 9.185

βμco 14.576 12.778
η1c

cr 0.732 0.7165 0.7/0.73 0.716/0.72
η1c

fl 0.711 0.6913 0.68 0.700

and that of an interface about 15–30 min (∼5000 Picard-DIIS
steps) for one-component system.

IV. RESULTS

A. One-component system

In the past decade, two-dimensional one-component HD
systems were extensively studied, with now quantitative agree-
ment in type and location of the phase transition between
experiments [2] and Monte Carlo (MC) simulations [1]. For
a summary, in Table I we provide a comparison between FMT,
MC simulations, and experiments. Experiments and simula-
tions find a first-order transition between the fluid and the
hexatic phase, and a continuous transition between the hexatic
and crystal phase. The surface tension in the experiments [2]
(see the Supplemental Material therein) is for hexatic-fluid
coexistence. The FMT results are for an assumed first-order
transition between fluid and crystal.

From Table I we see that coexistence packing fractions
and the surface tension are described very well by FMT, even
though in FMT the strict periodicity assumption for the crystal

differs from the character of the hexatic and crystal phase in
experiments or simulations. This good correspondence is in
line with the quantitative description of fluid structure given
in earlier work [4,5].

B. Binary systems: Crystal density profiles

When the radii of the disks are comparable (large q � 1),
we observe a clear substitutional disorder. Density peaks for
both species are centered on the triangular lattice points and
their magnitude is essentially determined by the composition
of the crystal. An example can be seen in the crystal part of the
crystal-fluid density profile shown in Fig. 7 with q = 0.75.

For small-size ratios q 	 1, we observe interstitial disorder,
i.e., the small disks almost exclusively occupy the interstitial
space between the large disks which in turn occupy the
triangular lattice points. An example can be seen in the crystal
part of the crystal-fluid density profile shown in Fig. 7 with q =
0.15. The HD and AO case are very similar, and qualitatively
the AO crystal density profiles in three dimensions show the
same behavior [19].

For intermediate q and the HD case, we observe a su-
perposition of substitutional and interstitial disorder, and the
interstitial disorder may show a transition to different alloy con-
figurations upon changing the composition. We exemplify this
for q = 0.45. Large-disk density peaks are again centered on
the triangular lattice positions (not shown). For low small-disk
concentrations [see Fig. 2(a)], we observe interstitial disorder
superficially compatible with an AB2 structure. From the large
and small disks drawn in Fig. 2(a) one sees however that the
small disks are too big for the formation of a true AB2 phase.
For higher small-disk concentrations [see Fig. 2(b)] the lattice
constant becomes smaller (large spheres on the triangular
lattice points almost touch) and the interstitial density peaks of
the small spheres are compatible with an AB3 structure. Here,
remarkably, the large disks drawn around the triangular lattice
points and the small disks drawn around the interstitial peak
positions reveal two packed AB3 configurations. In the AO
case, we only observed a small-disk density distribution of the
type of Fig. 2(a).

Here we have not investigated whether the minimized
crystal structures with disorder are stable or not with respect
to phase separation into different alloy phases. This requires

(a)

 

5E−3

7E−3

ρsσs
2 (b)

 

 0.1

 0.15

ρsσs
2

FIG. 2. Density profiles for small disks in a HD mixture crystal with q = 0.45 at crystal-fluid coexistence for small disk concentration
(a) cs = 0.03 and (b) cs = 0.39, with cs = ρs/(ρs + ρl). The solid blue circles indicate the extension of large disks; solid and dashed white
circles indicate the extension of small disks. In both cases, the density profile is a superposition of substitutional and interstitial disorder. In
(b), interstitial disorder dominates and is compatible with an AB3 alloy structure where one large disk is replaced by three small disks (white
solid or dashed circles).
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FIG. 3. Phase diagram for the size ratio q = 0.15 in (a) the ηl-P plane, (b) the ηs-P plane, and (c) the three-dimensional ηl-ηs-P space
(only for an AO mixture with a = 11/4). In (c), the blue lines are tie lines and the projection of the phase diagram onto the ηl-ηs plane is also
shown. The pressure P 2c

co and packing fraction of large disks η2c
l are normalized by the coexistence values of the one-component HD system

P 1c
co and η1c

cr .

more extensive investigations beyond the scope of this work.
However, our results illustrate that a free minimization of
the FMT functional is capable of generating alloy structures
without the need to explicitly parametrize the density profiles
(e.g., by suitably chosen Gauss peaks, as it is often done).

C. Binary systems: Phase diagrams

For two-component hard systems, equilibrium states are on
a surface in a three-dimensional space, spanned by, e.g., the
packing fractions ηl and ηs and the pressure P . Consequently,
binodals are lines in this three-dimensional space and they
are often displayed by their two-dimensional projections, e.g.,
lines in the ηl-P or cs/l-P plane where cs/l = ρs/l/(ρl + ρs)
is the relative concentration of small/large spheres. In the AO
model, customarily the ηl-μs plane is chosen but the topology
of phase diagrams is very similar to the one in the ηl-P plane.

1. Small-size ratios q

For a size ratio q = 0.15, the phase diagram is shown in
Fig. 3 in two different projections. For both HD and AO
mixtures, the addition of the small species leads to an increased
coexistence pressure for the fluid-crystal transition, i.e., the
fluid phase is stabilized. The AO mixture shows the typical
widening of the coexistence gap (ηl,cr − ηl,fl) with increasing
concentration of the small species (see Fig. 3), smoothly
leading to a sublimation line. For ηs � 0.01, the HD mixture
binodal follows the AO binodal, i.e., also shows an initial
widening of the coexistence gap. This could be expected since
for these small concentrations the small disks only act as
depletants and their mutual interaction is irrelevant. For higher
ηs, the binodals separate. The choice of the parameter a in the
functional has a significant influence on the location of the
binodal. This is similar to the observation in Ref. [19] that also
in the 3D case, the binodal differs considerably between the
White Bear II (tensor) and the Rosenfeld (tensor) functional,
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FIG. 4. Binary mixture phase diagrams for (a) q = 0.3 and (b) q = 0.45 in the ηl-P plane. Pressure and packing fraction are normalized
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FIG. 5. Hard-disk mixture phase diagrams for (a) q = 0.95, (b) q = 0.9, and (c) q = 0.75 in the ηl-P plane. Thick (thin) lines show crystal
(fluid) states at coexistence.

although the differences in the one-component case are not that
significant.

For the size ratiosq = 0.3 andq = 0.45, the phase diagrams
are shown in Fig. 4 in the ηl-P plane. For the AO mixture,
the liquid (rich in large disks) to vapor (poor in large disks)
transition has become stable. The difference in the location
of the liquid-vapor transition between the FMT results for the
two different values of a is only a consequence of normalizing
the pressure axis by P 1c

co (for the two a values, it differs by
∼15%; see Table I). For the HD mixtures, there is no fluid-fluid
transition and there is hardly any widening of the coexistence
gap of the fluid-crystal transition visible.

The results for the AO mixture are very similar to the 3D
case [19]. Experimentally, it is possible to realize such 2D
systems by sedimented monolayers of colloidal spheres (as in
Refs. [2,5]) to which nonadsorbing polymers can be added.
For small-size ratios q � 0.15 it would be interesting to study
experimentally or by simulations the fate of the established
melting scenario for hard disks as the polymer concentration is
increased. As we have seen, the coexistence gap continuously
widens in this case, and we expect that towards the sublimation
regime only the first-order transition survives.

2. Size ratios q close to 1

For size ratios q in the vicinity of 1, we only focus
on the HD mixture. In the AO mixture, the phase diagram
becomes rather uninteresting with regard to crystal phases.
There, upon addition of the smaller, polymeric component,
the one-component crystal does not change very much: The
polymers fill up the vacancies until the triple point is reached
and the fluid-crystal transition becomes unstable with respect
to sublimation. Again, this is very similar to the 3D case, and
a detailed discussion can be found in Ref. [19].

For HD mixtures, phase diagrams are shown in Fig. 5. For
q very close to 1, the phase diagram is of a type commonly
referred to as spindle type (which would be directly visible
in the cl-P plane or in the cs-P plane): The coexistence
pressure continuously increases upon addition of smaller disks
and reaches its maximum for the pure small-disk system
[see Fig. 5(a)]. Upon lowering q, the type of phase diagram
crosses over to azeotropic [see Figs. 5(b) and 5(c)]: There
a maximum pressure for a stable fluid is found for a certain
finite composition, i.e., for a truly mixed system. At this point
of maximum pressure, the coexisting fluid and crystal have the
same composition (azeotropic point). The precise value for q
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FIG. 6. Hard-disk mixture phase diagrams for (a) q = 0.6 and (b) and (c) q = 0.7 with a = 3.
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FIG. 7. Hard-disk mixture density profiles ρ for the cross crystal
(left)-fluid (right) interface for (a) q = 0.15 and cs = 0.5, (b) q =
0.45 and cs = 0.03, (c) q = 0.45 and cs = 0.39, and (d) q = 0.75
and cs = 0.52. Here cs refers to the concentration of small disks in
the crystal at coexistence. Since all large disk density profiles looks
similar, here we only show a representative one.

where this transition happens depends on the parameter a in
the functional; it is around 0.91 for a = 3 and around 0.93 for
a = 11/4. The transition from spindle type to azeotropic phase
diagrams has also been observed in simulations of hard-sphere
mixtures in three dimensions [8]. There the transition happens
at around q = 0.94. Furthermore, in three dimensions the
azeotropic phase diagram changes to a eutectic phase diagram
already at around q = 0.88. From our results, this happens in
two dimensions at much lower q (discussed below).

3. Intermediate-size ratios q

Again we will only discuss HD mixtures. The phase
diagrams for q = 0.6 and q = 0.7 are shown in Fig. 6. For
q = 0.6, we observe a phase diagram of eutectic type. It is
actually very similar to the phase diagram found in simulations
for q = 1/1.4 (see Supplemental Material in Ref. [14]). The
crossover to the azeotropic phase diagram (as seen forq = 0.75
in Fig. 5) is surprising according to the FMT results.

For q = 0.7, a three-dimensional phase diagram in ηl-ηs-P
space is shown in Fig. 6. The coexisting plane with a majority
of large disks (black surface) is close to the one of small disks
(blue surface), but does not cross (see the projection onto the
ηl-ηs plane). By increasing q, two planes merge and then form
an azeotropic type. Back to the ηl-P plane, the branch with a
majority of large disks distorts to form an azeotropic point (see
the black lines in Fig. 6 for q = 0.7), whereas the branch with
a majority of small disks remains approximately unchanged
when compared with q = 0.6 . Thus, above the azeotropic
point pressure there is a stable and a metastable coexistence
between a crystal with a majority of small disks and a mixed
fluid.

D. Binary systems: Interface density profiles

Figure 7 shows representative density profiles of the crystal-
fluid interface for hard-disk mixtures with q = 0.15, 0.45, and

0.75. For all size ratios q, the density of large disks is always
peaked on the triangular lattice sites [see Fig. 7(a)] while the
density of small disks changes from interstitial to substitutional
disorder by increasing q (see also the discussion in Sec. IV B).
For the AO mixture, we found similar density profiles for q <

0.5, except Fig. 7(c). From the profiles one infers a rather broad
interface.

We analyze the interface structure further by employing the
methods of Ref. [30]. Smooth average density and crystallinity
modes can be extracted from the Fourier transform of the full
density profiles by picking a lateral reciprocal lattice vector
Ky and cutting out a window around a reciprocal lattice vector
Kx parallel to the interface normal. The average modes are the
inverse Fourier transforms of the cutout window. The average
density mode M0 is obtained by choosing Kx = Ky = 0 and
the leading crystallinity mode M1 is obtained by choosing
Ky = 0 and Kx = 4π/

√
3L, where L is the length of the

rectangular unit cell side which is parallel to the interface (see
Figs. 2 and 7). In general, M1 is complex; in figures we show
its absolute value only. As a rule of thumb, M0 represents an
averaged density profile with oscillations smoothed out and
M1 the amplitude of oscillations.

In Fig. 8 we compare laterally averaged density profiles
with the extracted density and crystallinity modes for the
four interfaces of Fig. 7. Several observations can be made.
First, looking at the density and crystallinity mode of large
disks (middle column in Fig. 8) we note that coming from
the fluid side, crystallinity sets in earlier as densification
(except for the case q = 0.45 and cs = 0.39). This has also
been noted before in the 3D case of one-component hard
spheres [30]. Second, looking at the density and crystallinity
mode of small disks (right column in Fig. 8), we observe
that for small q = 0.15 (interstitial disorder) and large q =
0.75 (substitutional disorder) the small-disk crystallinity is
essentially proportional to the large-disk crystallinity. Since
the crystal has a smaller concentration of small disks than in
the fluid, the density mode increases from left to right but stays
monotonic. For the intermediate-size ratio q = 0.45 we note
that the crystallinity of small disks is peaked at the interface
and for cs = 0.39 this also applies to the density mode. Thus
we see an interfacial enrichment of ordered small spheres. This
interfacial enrichment can be also seen in the laterally averaged
density profiles (left column in Fig. 8) which exhibit an increase
in the oscillation amplitude of the small sphere density (red
lines) in the interfacial region. However, the quantification of
this effect is easier using the crystallinity and density modes.

E. Binary systems: Crystal-fluid surface tensions

1. Size ratio q � 0.6

For small- to moderate-size ratios of up to 0.6, we may view
the small disks as depletants, at least for small concentrations
cs. In Fig. 9 we show the associated crystal-fluid planar
surface tension γ 2c

0 versus cs for both AO and HD mixtures.
For q = 0.15, we have computed the surface tension for cs

up to 0.85. We remind the reader of the associated phase
diagrams (Fig. 3) which in the AO case show the typical
widening of the coexistence gap. In the HD case, the widening
of the coexistence gap follows the AO case only for small
cs. It is a bit surprising that the surface tension decreases
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10−110−110−2

10−310−110−2

10−110−110−1

10−110−110−1

FIG. 8. Laterally averaged density profiles (left column) and density and leading crystallinity modes of large disks (middle column) and
small disks (right column) for the four interfaces of Fig. 7: (a) q = 0.15 and cs = 0.5, (b) q = 0.45 and cs = 0.03, (c) q = 0.45 and cs = 0.39,
and (d) q = 0.75 and cs = 0.52. Here cs refers to the concentration of small disks in the crystal at coexistence. Black lines refer to large disks
and red lines to small disks. In the middle and right columns, solid lines are density modes M0 and dashed lines are crystallinity modes M1.

upon addition of small disks, with the results for the HD
mixture on top of those for the AO mixture until cs ∼ 0.4.
In the depletion picture, the addition of small disks leads to
an increasing attraction between large disks. In mean-field
approximation, the increasing attraction, together with an
increasing coexistence gap, should lead to a higher surface
tension. Such an increase is seen for both the AO model and
the HD case only for rather large cs, after a minimum has
been reached around cs ≈ 0.6. In the HD case, for cs → 1 we
reach the monocomponent case for small disks, thus the surface
tension should reach γ 2c

0 (cs = 1) = σl
σs

γ 2c
0 (cs = 0) = γ 1c

0 /q.
The decrease in surface tension upon addition of a second
component is actually typical for surfactant systems. From the
Gibbs adsorption equation in binary systems one finds such a
decrease if there is an enrichment of the second component at
the interface (net adsorption greater than 0 if the interface is
chosen as the equimolar surface for the first component [31]).
Such a behavior occurs here; it is seen markedly for q = 0.45
[Fig. 8(c), solid red lines]. As a side remark, in square gradient
theory for binary liquids, the decrease of surface tension

upon addition of the second species is only describable using
mixing parameters reflecting a substantial nonadditivity in the
system [32].

The peculiar behavior of an initially decreasing surface
tension is also seen for q = 0.3, q = 0.45, and q = 0.6 (see
Fig. 9), although the decrease becomes smaller with increasing
q. With increasing size ratio, also the HD and the AO results
differ more and more already for small cs and we also note that
the choice of the parameter a in the FMT functional influences
the results considerably. Overall, the surface tensions are rather
small on the thermal energy scale. For the monocomponent
case this leads to strong interface fluctuations, as observed in
Ref. [2]. Owing to the decrease in γ 2c

0 upon addition of small
disks, we would expect that these fluctuations also become
stronger.

2. Size ratio q � 0.75: Hard-disk mixtures

For q � 0.75, the phase diagram in the HD mixture is of
azeotropic or spindle type (see Fig. 5), thus we can determine
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FIG. 9. Crystal-fluid surface tension γ 2c
0 for the AO and the HD case, two values of a, and (a) q = 0.15, (b) q = 0.3, (c) q = 0.45, and

(d) q = 0.6. Here cs refers to the concentration of small disks in the crystal at coexistence. Note that cs is in logarithmic scale.

γ 2c
0 in the whole range of concentrations from cs = 0 up to 1.

In Fig. 10, the surface tension γ 2c
0 versus cs is shown for four

aspect ratios q � 0.75 and the two values of the parameter a.
Qualitatively, there is no significant dependence on a for these
size ratios. As before (for smallq), the initial decrease ofγ 2c

0 for
small cs is present. There is a minimum in the surface tension
around cs = 0.5 and it reaches the correct monocomponent
value γ 2c

0 (cs = 1) = γ 1c
0 /q.

The surface tensions can actually be well described with the
function involving one fit parameter κ ,

γ 2c
0 ([ηcr],q) = γ 1c

0(
η1c

cr

)2

(
(ηl,cr)

2 + (ηs,cr)2

q
+ κηl,crηs,cr

)
,

(20)
where γ 1c

0 and η1c
cr on the right-hand side of Eq. (20) are the

monocomponent surface tension and the coexistence crystal
packing fraction (see Table I) and ηl/s,cr are the coexistence
crystal packing fractions of large and small hard disks. For the
fit parameter κ we note that limq→1 κ(q) = 2. For q < 0.75,
Eq. (20) is not valid, which may be due to the complicated

transition from an azeotropic to a eutectic phase diagram (as
discussed before). Equation (20) is a semiempirical function,
and similar forms can be found in older work on surface
tensions in binary system which aimed at parametrizing the
effect of interfacial adsorption [33,34].

V. CONCLUSION

Using density-functional theory (fundamental measure the-
ory), we have performed an extensive study of the phase
diagram and crystal-fluid surface tensions in binary hard-
disk systems, for both the additive case and the nonadditive
(Asakura-Oosawa like) case. Since we assumed a periodic
crystal, we find first-order transitions only. These correspond
to the first-order fluid-hexatic transition for the one-component
case and presumably to first-order fluid-crystal transitions
(which become stable upon admixing a second component; see,
e.g., Ref. [14]). Overall, the phase diagrams are qualitatively
very similar to the 3D case. In the AO case and for small-size
ratios q, the typical continuous widening of the coexistence
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FIG. 10. Crystal-fluid surface tension γ 2c
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results and the lines are best fits to Eq. (20).

gap is observed upon addition of the smaller species, and for
intermediate q a vapor-liquid transition becomes stable. In the
additive case, the phase diagrams show the sequence spindle to
azeotropic to eutectic upon lowering q from 1 to 0.6 (similar
to the 3D case). However, the transition from azeotropic to
eutectic is different from what is known in 3D hard-sphere
systems (see the phase diagram in Fig. 6 for q = 0.7).

The results for the crystal-fluid surface tensions reveal
two things. Overall, their values are much smaller than 1
in thermal units 1/βσl. For the one-component case, the
resulting large thermal fluctuations of the interface have been
observed experimentally [2]. Further, the addition of a second
component leads in general to a substantial decrease in the
surface tension. This holds for the AO case (for q � 0.6) and
also for the additive case (here for the whole range of q).
Complementary dedicated simulation or experimental results
on this are clearly desirable, also in view of the relevance of
the surface tension for nucleation processes (see Ref. [35] for
a review on more qualitative results on 2D crystal and defect
formation). The observed decrease in surface tension should
lead to a considerable decrease in the timescales of crystal
nucleation.

In contrast to phase diagrams, results on crystal-fluid
surface tensions in binary 3D systems are scarce. For binary
hard spheres with a size ratio of q = 0.9, results are reported
in Ref. [36]. For that q, the phase diagram is azeotropic.
The surface tension is found to increase monotonically with
the addition of small spheres. These findings are similar to
those for a 3D binary Lennard-Jones system with zero-size
mismatch but a ratio of interaction strengths of 0.75 (leading
to a spindle-type phase diagram) [37], but they are different
from the nonmonotonic behavior found here in the 2D system
(see Fig. 10).

The full minimization of the FMT functionals shows in-
teresting effects for the density distributions in the crystal
unit cells and of the crystal-fluid interfaces. For intermediate-
size ratios (examples shown for q = 0.45) superpositions of
substitutional and alloy structures are found, and enhanced

crystallinity and density of small disks are observed right at
the interface between crystal and fluid. Clearly, an extension
of the present studies to the global stability of alloy phases
and their interfaces is desirable but requires considerably more
efforts.
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APPENDIX: LIQUID-VAPOR SURFACE TENSION

For completeness, we present also results for the liquid-
vapor surface tension γlv versus �ηl in the AO model for
size ratios q = 0.3, . . . ,0.7, where �ηl = ηl,liq − ηl,vap is the
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 0.15  0.25

βσ
l γ

lv

Δηl

q=0.3
q=0.4
q=0.5
q=0.6
q=0.7

FIG. 11. Double logarithmic plot of γlv versus �ηl. The dashed
line shows γlv ∝ (�ηl)3.
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difference between the coexistence packing fractions of large
disks in the liquid and vapor phases (see Fig. 11). Similar to
the crystal-fluid surface tension, the numerical values for γlv

are much smaller than 1 in thermal units 1/βσl, even far away

from the critical point. For mean-field models, the assumed
power-law relation γlv ∝ (�ηl)3 is found to hold not only in the
immediate vicinity of the critical point. This is similar to results
from density-functional studies of the 3D AO model [38].
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