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Role of charge regulation and flow slip in the ionic conductance of nanopores:
An analytical approach
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The number of precise conductance measurements in nanopores is quickly growing. To clarify the dominant
mechanisms at play and facilitate the characterization of such systems for which there is still no clear consensus,
we propose an analytical approach to the ionic conductance in nanopores that takes into account (i) electro-osmotic
effects, (ii) flow slip at the pore surface for hydrophobic nanopores, (iii) a component of the surface charge density
that is modulated by the reservoir pH and salt concentration cs using a simple charge regulation model, and (iv) a
fixed surface charge density that is unaffected by pH and cs . Limiting cases are explored for various ranges of salt
concentration and our formula is used to fit conductance experiments found in the literature for carbon nanotubes.
This approach permits us to catalog the different possible transport regimes and propose an explanation for the
wide variety of currently known experimental behavior for the conductance versus cs .
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I. INTRODUCTION

The transport of fluids in small section nanochannels and
nanopores is very different from that in the bulk. Indeed, at
this nanometer scale, the pore surface influences drastically
the transport properties, which therefore provide a handle
for characterizing the surface-fluid interactions whose range
can reach throughout the whole pore section (as opposed
to a thin boundary layer in the case of large diameters).
Societally important examples motivating a growing interest
in such systems arise from the search for selective and energy
efficient membranes for sea water desalination and electroki-
netic energy conversion (using pressure or salt concentration
gradients). The recent development of nanofluidics has led to a
huge amount of experimental data on ionic transport properties
in nanopores. Among the various flux measurements, the ionic
conductance G = I/V , where I is the measured electrical
current and V the applied voltage, is of central interest to
characterize ion transport and ion selectivity in nanopores. Al-
though in the past decade ionic conductance has been measured
in numerous nanopores and nanochannels, including carbon
nanotubes (CNT) [1–7], boron nitride nanotubes (BNNT)
[8], PDMS-glass [9], and polymeric track-etched nanopores
[10,11], it is still not clear what role mechanisms like surface
charge regulation [12–14] and fluid slip [11,15–18] play in
determining it. The essential difference between this recent
work and the early pioneering experimental and modeling
studies (see, e.g., Refs. [19,20]) lies in the use of single
well-characterized nanopores, which facilitates enormously
modeling.

Although the chemical nature of these various nanopores
can differ a lot, some features, due to the nanoscale transport,
are common and a simple theoretical model that rationalizes
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them is still missing. To model these experimental results and
therefore extract important nanopore characteristics such as
the radius or surface charge density, either a simple interpo-
lation formula is used [8,9] or the full space-charge model
(Poisson-Nernst-Planck (PNP) and Stokes equations) [21–24]
is solved numerically [1,17–20,25]. Recently a formula has
been proposed for the conductance of nanopores bearing a
constant surface charge density with or without fluid slippage
at the nanopore surface [11]. It has been shown that for
hydrophobic nanopores, such as CNTs or polymer track-etched
ones, the electro-omostic contribution can play a nonnegligible
role, especially for highly charged nanopore surfaces and/or
strong slippage.

Some properties of the conductance at low salt concentra-
tion cs can be understood in terms of the surface charge density
of the nanopore, σ , since electroneutrality imposes that the
concentration of oppositely charged carriers (the counter-ions)
in the pore be proportional to σ . This is the reason why a plateau
is often observed for G at low cs for a constant surface charge
density. However, Pang et al. [1] measured a nonconstant
conductance G ∝ cα

s with α � 0.37 at low cs in CNTs. Later,
Secchi et al. [5] showed that the CNT conductance at low
cs varies with cs and the pH of the solution and extracted
an exponent α = 1/3. A similar observation has been made
recently by Yazda et al. [7] but with a different power law.
The theoretical explanation proposed in the literature is charge
regulation [5,25], i.e., charged groups appear at the nanopore
surface when the pH is increased, which could be due various
mechanisms, such as the adsorption of hydroxyde ions [5] or
the dissociation of carboxylic groups COOH. This adsorption
or dissociation is also influenced by screened electrostatic
interactions, the screening being due to the presence of ions in
the pore. This could be the reason why the behavior of G versus
cs is modified at low cs . Since Secchi et al. [5] and Biesheuvel
and Bazant [25] each developed different approximate the-
oretical approaches that led to different exponents (α = 1/3
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and 1/2, respectively) at low salt concentration, the situation
needs to be reexamined. Furthermore, in addition to charge
regulation, the role of flow slip, neglected in Refs. [5,25], but
already touched upon in Ref. [18], needs to be assessed. In
this last reference, the influence of slip on conductivity was
investigated, but only for the single case of a relatively large
nanopore radius (5 nm) and small slip length (1.25 nm). The
conclusion in this special case was that although slip leads to
an increase in conductivity, the effect is minor. It is known
from theory and simulations, however, that slip lengths in
hydrophobic nanopores can be very large [26], and, as observed
in molecular dynamics simulations, can even be much larger
than the pore radius [27,28]. Such large slip lengths can modify
in important ways the transport properties of hydrophobic
nanopores [11,15–18]. These effects for slippery hydrophobic
surface can be modified if the mobility of surface charges
is taken into account, as shown for electro-osmotic flow in
Ref. [29].

Nevertheless, it should be stressed that the nature of the
surface charge of CNTs has not yet been elucidated. It can have
a priori several origins, which can be intrinsic to the nanopore,
such as an affinity of the graphene surface for OH− ions
or structural defects creating local charges (crystallographic
defects or weak acid groups, e.g., COOH), but also extrinsic,
such as chemical or electrostatic doping induced by the
nanotube environment (resin, matrix, etc.).

Interesting recent work has attempted to go beyond the
standard space charge model by using input from molecular
dynamics simulations to introduce inhomogeneous dielectric
function and viscosity profiles. The experimentally observed
excess surface conductivity can be explained for both hy-
drophilic and hydrophobic surfaces using the nonelectrostatic
ion-surface interaction as a fitting parameter [30,31]. Other
recent work has incorporated a more detailed description of
aqueous interfaces into the space charge model by employing
a basic Stern model to describe the uncharged surface dielectric
layer (in conjunction with slip in Ref. [18]) and more sophis-
ticated extensions for specific surfaces, such as an electrical
triple-layer model for silica to include the surface contributions
from salt ions [32].

In this paper, we propose an extension of the analytical
formula for nanopore conductance (based on the space charge
model incorporating slip) that we proposed in Ref. [11] to in-
clude the charge regulation mechanism. In an effort to increase
the physical content of the model incrementally and retain as
much simplicity as possible, we do not attempt to include the
additional features evoked above (such as surface ion mobility,
Stern layer effects, etc., cf. Refs. [18,29–32]). Although the
approach presented here can be extended to include these
additional features, we believe that the next important step
in understanding transport in CNTs is to combine charge
regulation and flow slip. Our analytical formula is then used to
fit experimental conductance measurements in CNTs found in
the literature. We concentrate here on small radius CNTs with
large slip lengths for which the ratio of slip length to pore radius
is very large (as expected for such nanopores [28]). We show in
particular that (i) slip can play an important and even dominant
role and (ii) to get physically reasonable fits to the conductivity
data for the tightest nanopore studied in Ref. [5] (3.5-nm
radius) over the whole pH range investigated experimentally, a
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FIG. 1. Sketch of the nanopore showing counterions (black
spheres) and co-ions (green/light spheres) for a negative surface
charge density σ which is controlled by its saturation value σ0, the pK

of the anion adsorption or neutral group dissociation at the surface,
and the pH and the salt concentration cs in the reservoirs. A constant
electric field is applied E is applied between the two reservoirs located
at the pore extremities. Two velocity fields are sketched, with (in red)
or without (in black) slippage at the pore surface (the slip length is
noted b).

weak fixed surface charge density must be included along with
slip and surface charge regulation. Previous efforts to fit the
data for this CNT simultaneously for the four studied values of
pH using just surface charge regulation were not successful,
even with unphysically high values of maximum surface charge
density (a difficulty that led the authors of Ref. [25] to suggest
that slip may play an important role). Our analytical approach
is complementary to the one based on numerical solutions
to the PNP equations and can be used to draw a global
“phase diagram” for the conductance mechanisms in the salt
concentration versus surface charge density plane, which is less
accessible by purely numerical methods (cf. Refs. [17,18,25]).

II. MODEL

We consider a monovalent salt (such as NaCl or KCl) in
an aqueous solution inside a cylindrical nanopore of radius
R and length L. We assume that L � R so that the ionic
concentration in the pore is independent of the distance z along
the cylinder axis and end effects are negligible. At both ends
the nanopore is connected to two electrolyte reservoirs at salt
concentration cs (Fig. 1).

We assume that a negative surface charge develops fol-
lowing a simple charge regulation mechanism [12–14] whose
detailed physical chemistry we leave unspecified awaiting
further studies on this topic. This model is general enough
to include (i) anion (e.g., OH−) adsorption at a hydrophobic
nanopore surface, and (ii) surface grafted acid group (e.g.,
COOH) dissociation, leading to the release of hydronium
ions H3O+ in the reservoir. Note that the model is easy to
modify in the case of the formation of positive surface groups
(such as NH+

3 ). As a first hint into this complex problem,
we follow the usual practice of neglecting dielectric effects
[33,34] and ion-ion correlations [35], which could potentially
play an important role, and thus treat the electrostatic statistical
problem at the level of the mean-field Poisson-Boltzmann (PB)
equation.

012605-2



ROLE OF CHARGE REGULATION AND FLOW SLIP IN … PHYSICAL REVIEW E 98, 012605 (2018)

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

pH−pK

|σ
/ σ
0|

FIG. 2. Absolute value of the dimensionless surface charge den-
sity versus pH − pK for |φs | = 0 (black) and 3 (red dashed) [Eq. (1)].
Decreasing the salt concentration increases the surface potential
at constant pH and favors the formation of neutral groups. For
sufficiently large pH � pK , σ remains close to saturation (σ0) until
a low threshold concentration is reached.

Our goal is to obtain the variations of the nanopore con-
ductance as a function of the bulk salt concentration cs by
assuming that the conductivity (at low cs) is influenced by a
nanopore surface charging mechanism, for example, through
anion adsorption or neutral group dissociation.

Following the usual charge regulation (or Langmuir) model
in its simplest form, the (negative) surface charge density is
taken to have an absolute value

σ = σ0

1 + 10pK−pH e|φs | , (1)

where pK refers to the equilibrium constant of the charg-
ing mechanism, pH ≡ − log10[H3O+]b refers to the external
(bulk) reservoirs, σ0 = ne/(2πRL) with n ionizable groups
(e is the positive elementary charge), and φs = eψs/kBT � 0
is the dimensionless electrostatic potential at the pore surface.
An important limitation to Eq. (1) should be kept in mind: the
acid, such as HCl, or base, such as NaOH, added to the bulk
to adjust the pH must be low enough in concentration to avoid
modifying the surface potential φs , which in the approximation
adopted here is fixed entirely by bulk salt (with the ions coming
from the added acid or base playing the role of a spectators,
or trace, species). Within this approximation, which is valid
when

− log10 cs � pH � 14 + log10 cs (2)

(with cs in mol/L), the value of the surface charge density
depends only on the effective (salt concentration dependent)
pH value in the pore: pHpore = pH − |φs (cs )|/ ln(10) � pH,
which decreases with increasing cs . In Fig. 2 we plot σ/σ0

as a function of pH − pK and recall that σ/σ0 goes quickly
to its maximum value for pHpore − pK > 1 and to 0 for
pHpore − pK < 1. At high reservoir salt concentration, the
pore charge is screened, |φs | goes to zero, and therefore σ

reaches its maximum pH-dependent value,

σmax(pH) = σ0

1 + 10pK−pH
� σ0. (3)

As the reservoir salt concentration is lowered, more and
more co-ions are excluded and |φs | increases to maintain
electroneutrality in the pore, driving the pore to lower and

FIG. 3. Diagram in the (σ ∗, c̃s ) plane of the various regimes (see
text): bulk above the black line [Eq. (14)], homogeneous for σ ∗ < 1,
GCE below the blue line [Eq. (11)], and the remaining interpolation
one. The four thin red curves correspond to σ ∗(cs ) for (from left
to right) (σ ∗

0 , pH − pK ) = (0.1, 0) (dotted), (0.1,5) (dashed-dotted),
(10,5) (dashed), and (100,5) (solid).

lower charge states (see, e.g., Refs. [5,25]):

σ ≈ σ0 10pH−pKe−|φs |. (4)

To relate the dimensionless electrostatic potential φs =
φ(r = R) (where r is the radial coordinate in the pore) to the
surface charge density and therefore obtain an implicit relation
which gives σ as a function of the salt concentration cs and
the pH of the bulk solution, we would need to solve the PB
equation in a cylindrical pore with the appropriate boundary
conditions:

1

r

∂

∂r

(
r
∂φ

∂r

)
= 1

λ2
DH

sinh φ (5)

∂φ

∂r

∣∣∣∣
r=0

= 0,
∂φ

∂r

∣∣∣∣
r=R

= −4π	B

σ

e
, (6)

where λDH = (8π	Bcs )−1/2 is the Debye screening length in
the bulk, and 	B = e2/(4πε0εkBT ) the Bjerrum length, equal
to 0.7 nm in water at room temperature (recall that σ is the
absolute value of the negative surface charge).

Although no exact solution of Eq. (5) is known for arbitrary
pore radius, surface charge density, and bulk concentration,
certain limiting cases lead to relatively simple approximations,
as summarized in Ref. [11] (see Fig. 3).

(i) In the homogeneous approximation, the electrostatic
potential is taken as constant over the pore cross-section. This
approximation,

e|φs | ≈ e|φH| = |σ |
eRcs

⎡
⎣

√
1 +

(
eRcs

σ

)2

+ 1

⎤
⎦, (7)

is valid over the whole concentration range for σ ∗ < 1, where
the dimensionless surface charge density is

σ ∗ = σ
πR	B

e
. (8)

(ii) In the good co-ion exclusion (GCE) limit,

e|φs | ≈ e|φGCE(R)| = 16σ ∗(1 + σ ∗)

(
λDH

R

)2

, (9)
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This approximation is valid if the normalized GCE electrostatic
potential at the pore center is greater than 1 (see, for example,
Eq. (10) of Ref. [11]):

|φGCE(0)| = ln

[
16

σ ∗

1 + σ ∗

(
λDH

R

)2
]

> 1, (10)

that is for

c̃s < c̃GCE ≡ σ ∗

1 + σ ∗ , (11)

where

c̃s = π	BR2cs = 1

8

(
R

λDH

)2

(12)

is a dimensionless salt concentration. At low surface charge
density σ ∗ < 1, the homogeneous approximation is valid and
|φGCE(0)| ≈ |φGCE(R)|. At very high surface charge density
σ ∗ � 1, and although |φGCE(0)| saturates to ln(2/c̃s ) (for c̃s <

c̃GCE ≈ 1), |φGCE(R)| grows indefinitely.
We can combine these two approximations by using the

following interpolation formula:

e|φs | ≈ σ ∗(1 + σ ∗)

c̃s

⎡
⎣

√
1 +

[
c̃s

σ ∗(1 + σ ∗)

]2

+ 1

⎤
⎦. (13)

Equation (13) allows us to obtain the following correct three
limits: (i) the high concentration (bulk) one,

c̃s � c̃bulk ≡ σ ∗(1 + σ ∗), (14)

where φs → 0; (ii) the weak surface charge homogeneous one,
σ ∗ < 1; and (iii) the low concentration GCE one, c̃s < c̃GCE

[when σ ∗ < 1 we enter the homogeneous GCE regime, which
overlaps with (ii)]. Equation (13) should therefore be a good
approximation for φs over the whole range of pore surface
charge density and bulk salt concentration.

The different regimes in the (σ ∗, c̃s ) plane presented above
are shown in Fig. 3. The interpolation regime that exists
at sufficiently high σ ∗ for intermediate c̃s is characterized
by a high dimensionless electrostatic potential near the pore
surface (with corresponding good co-ion exclusion) and a low
potential near the pore center (with corresponding poor co-ion
exclusion). This regime is therefore an intermediate one in
terms of ion selectivity. The low surface charge limit of charge
regulation, Eq. (4), is valid in the GCE regime [see Eqs. (9,11)]
whenever

c̃s < c̃CR ≡ 2σ ∗(1 + σ ∗)10pK−pH. (15)

Following the theoretical framework developed in Ref. [11],
the nanopore conductance is

G = πR2

L
κ, (16)

where the conductivity is given by

κ = e2cs[μ+〈e−φ〉 + μ−〈eφ〉]

+ e2cs

2π	Bη
〈(φ(R) − φ) sinh φ〉 + κslip, (17)

with η = 8.94 × 10−4 Pa.s the water viscosity and μi the
mobility of ion i (in the absence of better values in CNTs,

it is taken equal to its bulk value) and 〈A〉 = 2
R2

∫ R

0 A(r )rdr

corresponds to average quantities in the pore. The first term
on the right-hand side of Eq. (17) gives the ionic migration
contribution, whereas the second and third terms give the
electro-osmotic one. The last term,

κslip = 2σ 2b

ηR
, (18)

is the exact slip contribution to the electro-osmotic one (see the
Appendix) and comes directly from the nonvanishing solvent
velocity at the pore wall, vslip = − bσ

η
E where E is the applied

electric field and b the slip length, as sketched in red in Fig. 1
(taken to be constant, i.e., independent of σ and R). Following
Ref. [11], using an interpolation similar to the one that led to
Eq. (13), Eq. (17) simplifies to

κ = e2(μ+ + μ−)cs

√
1 +

(
σ

eRcs

)2

+ e|σ |
R

(μ+ − μ−)

+ σ 2

2η

[
2

σ ∗

(
1 − ln(1 + σ ∗)

σ ∗

)
+ 4

b

R

]
. (19)

The first two terms on the right-hand side of Eq. (19) give the
ionic migration contribution, whereas the third term gives the
electro-osmotic one, including the exact slip contribution.

We implicitly suppose that the proton concentration in the
pore, coming from the acid introduced into the bulk to adjust
the pH to low values, does not substantially affect the electrical
migration contribution despite the very high proton mobility
(5 times higher than that of K+ and 7 times higher than that
of Na+ in the bulk). The increase in counter-ion concentration
coming from adding a base such as NaOH to adjust the pH to
high values is also assumed negligible [see Eq. (2)].

Equation (19) has been successfully used to fit conductivity
experiments in hydrophobic track-etched nanopores without
charge regulation [11].

To simplify the analysis we use the following additional
dimensionless quantities:

κ̃ = κ
2π2R2	2

Bη

e2
; μ̃i = μi2πη	B ; b̃ = b

R
. (20)

For a typical nanopore of radius R = 1 nm, we have
c̃s = 1.2 cs [mol/L]. Note, moreover, that with this choice,
κ̃ is also the dimensionless conductance defined as G̃ =
(2π	2

BLη/e2)G = κ̃ . Equations (1), (13), and (19), therefore,
simplify to

κ̃ = (μ̃+ + μ̃−)c̃s

√
1 +

(
σ ∗

c̃s

)2

+ σ ∗(μ̃+ − μ̃−)

+ 2σ ∗
[

1 − ln(1 + σ ∗)

σ ∗

]
+ 4b̃σ ∗2, (21)

c̃s = 2hσ ∗2(1 + σ ∗)(σ ∗
0 − σ ∗)

[σ ∗
0 − (1 + h)σ ∗][σ ∗

0 − (1 − h)σ ∗]
, (22)

where h = 10pK−pH (and σ ∗
0 = σ0πR	B/e). This system of

coupled nonlinear equations, which can be simply solved para-
metrically as a function of σ ∗ (without any need for numerical
methods), is the central result of our paper. In the following
we first discuss the various regimes of κ̃ (σ ∗) as a function of
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c̃s (σ ∗) (0 < σ ∗ < σ ∗
max) and then use this formula to fit some

experimental data found in the literature. Equation (22) can
be used to trace c̃s versus σ ∗ in the (σ ∗, c̃s ) plane (Fig. 3).
There are four distinct cases: (i) pure scaling, σ ∗ ∝ c̃

β
s , in the

low surface charge GCE regime (σ ∗ < 1) for low saturation
surface charge density σ0 and low pH (dotted red curve in
Fig. 3); (ii) a constant surface charge density plateau in the low
surface charge GCE regime, followed by a cross-over to scaling
at low concentration for low σ0 and high pH (dashed-dotted
red curve); (iii) a constant surface charge density plateau in
the high surface charge GCE regime (σ ∗ > 1), followed by
a cross-over to scaling at low concentration, first in the high
surface charge GCE regime and then in the low (σ ∗ < 1), for
high σ0 and high pH (dashed red curve); (iv) scaling, first in
the high surface charge GCE regime and then in the low, for
very high σ0 and high pH (solid red curve).

The system of equations given in Eqs. (21) and (22)
simplifies in several scaling regimes for the conductivity, which
are attained when the charge regulation relation, Eq. (1), and
surface potential, Eq. (13), tend to high or low concentration
limits:

(1) In the high salt concentration limit where c̃s � c̃bulk

(which corresponds to |φs | → 0), one deduces from Eq. (22)
that σ ∗ � σ ∗

max(pH) = σ ∗
0 /(1 + h) [which is the maximum

absolute value of the surface charge density at a given pH,
see Eq. (3)], and we recover the bulk conductivity

κ̃bulk � (μ̃+ + μ̃−)c̃s , (23)

since the surface charge effects are screened. This limit also
corresponds to low pH � pK for which very few surface
groups are ionized and σ → 0.

(2) In the low surface charge density (homogeneous) GCE
limit, reached at low salt concentration and low σ ∗, c̃s <

σ ∗ < 1, we find from Eq. (22) that if the inequality Eq. (15)
is satisfied, then σ ∗2 � σ ∗

0 c̃s/(2h), i.e., σ ∝ √
cs , and the

conductivity becomes

κ̃GCE � 2μ̃+

(
σ ∗

0 c̃s

2h

)1/2

+ (1 + 4b̃)
σ ∗

0 c̃s

2h
. (24)

The leftmost two curves in Fig. 3 at low cs and σ0 illustrate
the regime where we expect this type of behavior. The first
(dominant) term at sufficiently low c̃s is due to electrical
migration and the second (asymptotically subdominant) one
is due to electro-osmosis. We therefore expect at low enough
cs a scaling law with an exponent of 1/2 (in agreement with
Ref. [25]). At low but intermediate cs and high enough slip
length the second term may dominate and lead to a cross-over
exponent of 1.

(3) In the high surface charge density (inhomogeneous)
GCE limit, reached at low salt concentration and and high
σ ∗, c̃s < 1 < σ ∗, we find from Eq. (22) that if the inequality
Eq. (15) is satisfied, then σ ∗3 � σ ∗

0 c̃s/(2h), and therefore

κ̃ inter � 2(1 + μ̃+)

(
σ ∗

0 c̃s

2h

)1/3

+ 4b̃

(
σ ∗

0 c̃s

2h

)2/3

. (25)

The rightmost two curves in Fig. 3 at intermediate cs and σ0

illustrate the regime where we expect this type of behavior. We
thus formally expect at low enough intermediate cs a cross-over

scaling law with an exponent of 1/3 (the low concentration
scaling regime predicted in Ref. [5]). Our analysis, which
differs from the thin double argument proposed in Ref. [25]
to explain the origin of this scaling regime, shows that it
can only be an intermediate one observable at sufficiently
high values of maximum surface charge density σmax(pH)
(for intermediate values of low cs) because charge regulation
will eventually drive the system into the low surface charge
density (homogeneous) GCE regime with an exponent of 1/2.
The first (dominant) term at sufficiently low intermediate c̃s is
due to both electrical migration and the nonslip electro-osmotic
contribution and the second (subdominant) one is due to the
slip part of the electro-osmotic contribution. Without slip
we therefore expect an intermediate scaling behavior with
an exponent of 1/3, although unphysically high values of
maximum surface charge densities may be needed to actually
observe this regime (σ ∗

0 � 1, i.e. σ � 0.1 C/m2 for R �
1 nm). With sufficiently high slip length we expect the first
(putatively dominant) term to be completely masked by the
second one because a sufficiently high value of the prefactor
(proportional to b̃) can counterbalance the higher exponent for
sufficiently low but still intermediate c̃s . Then the intermediate
scaling behavior would have an exponent of 2/3.

Before fitting the available data on conductivity in
nanopores, we study theoretically the different regimes. We
thus consider a nanopore with R = 1 nm and a NaCl electrolyte
with the following mobilities μ+ = 3.3 × 1011 s/kg (Na+)
and μ− = 5.0 × 1011 s/kg (Cl−), at room temperature (	B =
0.7 nm), which leads to the dimensionless mobilities μ̃+ =
1.28 and μ̃− = 1.95. A priori three unknown parameters
remain: the maximum surface charge density σ0 attainable
at high pH (or the number of ionizable groups n), the
pH − pK value, and the slip length b which is close to 0
for hydrophilic nanopores and can be as high as 300 nm for
very hydrophobic ones (such as CNTs [28]). In Fig. 4 we
present results for an unphysically large surface charge density
of σ0 = 6.8 C/m2 (σ ∗

0 = 94) to illustrate theoretically the
various intermediate regimes discussed above, which are not
all visible for physically reasonable surface charge densities
(for comparison, the extremely highly charged BNNT studied
in Ref. [8] showed maximum surface charge densities less than
2 C/m2). Furthermore, we choose b = 0 or 30 nm (b̃ = 30) as
in Ref. [11].

In Figure 4(a) is shown the conductivity for various values
of pH − pK = −1, 1, 3, 5. We clearly observe the various
regimes presented above, the asymptotic GCE regime in c

1/2
s

at very low cs and the bulk one in cs at high cs . In particular,
the intermediate regime in c

1/3
s appears only at high pH and

high surface charge density for b = 0 (thin dotted-dashed green
and brown dotted curves at pH − pK = 3 and 5) to satisfy the
inequality Eq. (15). If slippage is taken into account, a large
increase of the conductivity at intermediate concentrations
occurs which varies as c

2/3
s , whatever the pH value (thick

curves). These low and intermediate concentration scaling
regimes appear for c̃s < min(c̃GCE, c̃CR). At large pH the
surface charge starts to saturate to σmax at intermediate or high
cs and the conductivity plateaus to κ̃ � 4b̃σ ∗2

max for large enough
b, as long as the system remains in the high surface charge GCE
regime (i.e., c̃CR < c̃s < c̃GCE).
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FIG. 4. Dimensionless conductivity κ̃ versus c̃s given by Eqs. (21)
and (22) for pH − pK = −1, 1, 3, 5 (solid red, dashed blue, dotted-
dashed green, dotted brown) and b̃ = 0 (thin curves) or b̃ = 30 (thick
curves) (Log-Log scale): (a) σ ∗

0 = 94, and (b) σ ∗
0 = 0.1. The thin solid

lines correspond to the power laws c̃1/2
s and c̃s of Eqs. (23) and (24)

found in the high and low salt limit, respectively. The power laws in
c̃2/3
s (for b̃ = 30) and c̃1/3

s (for b̃ = 0) appearing in (a) at intermediate
c̃s are explained in the text.

For small diameter nanopores and lower and more realistic
values of σ0, as shown in Fig. 4(b) for σ ∗

0 = 0.1, the behavior
is quite different. At low pH, the surface charge σ ∗ is so small
over the entire salt concentration range that the conductivity
interpolates directly between the two limiting behaviors, bulk
and homogeneous GCE, given in Eqs. (23) and (24), which
vary, respectively, as cs and c

1/2
s (red curves). For increasing

pH the saturation occurs at low salt concentrations and the
conductivity profile becomes close to the one at constant σ

except for very low cs . Indeed, when the inequality Eq. (15)
is reversed (c̃CR < c̃s < c̃GCE), the system enters the low
concentration GCE (plateau) regime before the surface charge
density begins to deviate significantly from its maximum value
σmax ≈ σ0. For low enough c̃s < min(c̃GCE, c̃CR), however, the
conductivity eventually enters the scaling regime. For such low
values of σ0 the system enters the homogeneous GCE regime
at low cs and therefore large enough flow slippage leads to a
shift of the plateau value from the no-slip value κ̃ � 2μ̃+σ ∗

max
to the slip one, κ̃ � (1 + 4b̃)σ ∗2

max.
Moreover, a shoulder in κ̃ (c̃s ) is observed at intermediate

values of c̃s which leads to apparent power laws κ̃ ∝ c̃α
s with

1/2 � α � 1 (before saturation), where the value 1 for α

corresponds to the second term in Eq. (24). Such high values of
α cannot be observed without slippage at intermediate values of
c̃s , where α � 1/2. A glance at Fig. 4 shows that the conductiv-
ity approaches the asymptotic low concentration scaling, c̃

1/2
s ,

log10

lo
g 1
0

FIG. 5. Dimensionless conductivity κ̃ vs. c̃s for pH − pK = 3,
σ0 = 6.8 C/m2, b = 30 nm (thick curves), and R = 1 (solid red), 10
(dashed blue) and 100 nm (dotted-dashed green) (Log-Log scale).
The thin curves corresponds to the no slip case (b = 0).

from above in the presence of slip and below without [except at
very low saturation surface charge density/low pH, where the
cross-over is directly from bulk to low concentration scaling;
see the rightmost thin red curve in Fig. 4(b)]. This type of
qualitative behavior can therefore be used as a signature of the
presence or absence of strong slip effects.

In Fig. 5 is studied the influence of the nanopore radius
R = 1, 10, 100 nm on the dimensionless conductance G̃ = κ̃

for b = 1 and 30 nm. It clearly shows that the smaller the
pore, the more influent the slippage is. Moreover for large
b, increasing R only shifts the conductance to higher values
without changing its shape. Keeping σ and cs fixed, c̃s/σ

∗ ∝ R

which shows that it becomes increasingly difficult to enter the
GCE regime (c̃s/σ

∗ < 1) and therefore observe the plateau and
scaling behaviors for large pores.

III. DISCUSSION

Equations (21) and (22) are quite general and should there-
fore apply to any cylindrical nanopore whatever its chemical
composition. In particular, Eq. (21) has been successfully
used to fit conductivity measurements of NaCl in polymeric
track-etched nanopores with radii varying from 0.5 to 5 nm
[11]. In these experiments, the conductance clearly shows
a plateau at low concentrations, cs < 10−2 mol/L, which
is the signature of a constant surface charge density. Since
these nanopores were coated with hexamethyldisilazane, their
surface was hydrophobic, as confirmed by MD simulations
[11]. These nanopores turn out to be very weakly charged,
with fitted values 0.05 < σ ∗ < 0.4 and b � 30 nm. Hence,
the electro-osmotic contribution due to flow slippage at the
nanopore surface plays a dominant role [last term on the
right-hand side of Eq. (21)].

Experiments on single-walled CNTs have been performed
recently for radii between 0.6 and 1 nm and using KCl [7].
For those that showed a linear I -V curve, the conductance
was measured as a function of cs . The results are reproduced
in Fig. 6 together with the fits (in red) using Eqs. (21) and
(22) (the mobility of K+ is μ+ = 5.2 × 1011 s/kg). Is also
shown the surface charge density versus cs (dotted-dashed
blue curve). Figure 6(a) corresponds to a device with one
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FIG. 6. Conductance (KCl) of devices with SWCNT versus the
reservoir salt concentration cs : (a) device with a single nanotube (R =
0.7 nm, L = 40 μm), (b) device with 8 nanotubes (R = 0.7 nm, L =
20 μm). The red solid line is the fit using Eq. (19), and the black
dashed line corresponds to the slip contribution, ∝ 4bσ 2. The surface
charge density σ ∗(cs ) is also shown (blue dotted-dashed line). Fitting
parameters are σ ∗

0 = 0.39, b̃ = 71, and pK = 4.92 (a) and 4.17 (b).

unique nanotube. For the other device [Fig. 6(b)], eight tubes
are present but the number of conducting tubes is unknown.
To get approximately the same conductance value as for the
preceding device, we assumed that five tubes were conducting.
The fits are reasonably good, the fitting parameter values
(for the two devices) being b = 50 nm, σ0 = 0.041 C/m2,
and pK = 4.92 for (a) and 4.17 for (b) (for pH = 7 in the
experiments). These slight differences can be due to variation
of the pH from one sample to the other or slight differences in
the nature of surface charges. The plots clearly show that the
slip contribution given in in the last term of Eq. (24) dominates
the nanopore conductivity in the salt concentration range of
interest (black dashed line). Moreover, charge regulation is
absolutely necessary to reproduce this sub-linear dependence,
which interpolates between the asymptotic very low concen-
tration law in c

1/2
s [electrical migration (first term in Eq. (24)]

not seen in the plots] and the plateau corresponding to surface
charge saturation, by first passing through an intermediate
scaling linear in cs [second term in Eq. (24) dominated by
slip]. The nanopore is weakly charged since σ ∗

0 = 0.39, which
puts this system in the homogeneous regime. This behavior is
therefore qualitatively similar to that observed for the dashed-
dotted red curve in Fig. 3.

Recently Secchi et al. [5] reported experimentally and
proposed theoretically that for various nanopore radii (R =
3.5, 10, 14, 35 nm) and pH (from 4 to 10) the conductances
of individual CNTs exhibit a power law c

1/3
s behavior at low

cs . Note that, compared to the CNTs used in Ref. [7], these
CNTs have much larger radii, and are multiwalled. To model
their data, Secchi et al. simplified the problem by adopting
several assumptions (including the neglect of electro-osmosis)
that enable them to uncover the intermediate scaling regime in
c

1/3
s , which we have shown to be visible only for very highly

charged nanopores in the absence of slip.
Biesheuvel and Bazant have fitted the data of Secchi et al.

by using the full space-charge/charge regulation model and
solving numerically the PNP equations, but without slippage
[25]. Although they succeeded in fitting the large radii (R =
10, 14, and 35 nm) conductivity data simultaneously for the
four pH values studied using a physically reasonable surface
charge density, they did not succeed in fitting the smallest
pore radius (R = 3.5 nm) (the model predictions deviate
considerably from experiment for the two highest pH values).

Using our model without slip, we also obtained an accept-
able fit for R = 3.5 nm (not shown), but with σ ∗ = 500, i.e.,
σ0 = 10.4 C/m2, which is unrealistic. In contrast, by taking
into account slippage at the nanopore surface, we obtained a
reasonable fit as shown in Fig. 7(a) except for the points at low
pH and low cs . The fitting parameters values are pK = 6.69,
σ0 = 0.095 C/m2 (σ ∗

0 = 4.6), and b = 45.5 nm, which are
all reasonable values. In particular, the slip length is quite
similar to the one used in Fig. 6. The surface charge density
computed using this charge regulation model is shown in
Fig. 7(b) versus cs . It shows that at pH = 4 (dotted blue curves)
the surface is practically uncharged and in the experimental
concentration range we expect bulk-like behavior. For pH = 6
(dotted-dashed orange curves) and 8 (dashed green curves)
at low enough concentrations, we observe the weak charge
GCE regime with what appears to be a 2/3 power law because
of the combined contributions of electrical migration (1/3
power law) and electro-osmosis (1 power law); see Eq. (24). At
pH = 8 and intermediate concentrations we also observe a 2/3
power law, but now because the system is in the strong charge
GCE regime where slip dominates; see Eq. (25). At pH = 10
(solid red curves) the surface charge density nearly saturates
to σmax ≈ σ0 already at cs = 0.01 mol/L. The experimental
concentrations do not, however, reach low enough values to
see clearly the low concentration scaling regime, just the
cross-over from an incipient constant surface charge plateau to
intermediate scaling in the high surface charge GCE regime;
see Eq. (25).

For the low pH = 4 value, the surface remains practically
uncharged, which leads to the classical bulk behavior for the
fitted conductance G ∝ cs , whatever the value of cs . The data
show a weaker slope (close to 1/3, as shown by Secchi et al.),
which can be obtained for a higher value of pH − pK � 0 [as
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FIG. 7. (a) Conductance (KCl) measured in CNTs (data from
Secchi et al. [5]) and fits using Eqs. (21) and (22) (R = 3.5 nm,
L = 3 μm and pH = 4, 6, 8, 10 from bottom to top). Fitting param-
eter values are: pK = 6.69, σ ∗

0 = 4.6, and b̃ = 13. (b) Associated
(dimensionless) surface charge density σ ∗(c̃s ). The thin solid black
lines correspond to cGCE(σ ∗) (upper) and cbulk (σ ∗) (lower).

shown in Fig. 4(b)]; i.e., pK � 4. However, this would imply a
much higher, probably unphysical, surface charge density for
the highest pH value, which leads to a very poor fit for the
three other sets of data.

One reason why we obtain a too low conductance at low cs

might be that some fixed charges remain on the nanopore sur-
face at low pH, i.e., charged groups that cannot be neutralized
by protons over the studied pH range (possessing for example
a pK � 4) or surface-trapped charges due to doping. This is
quite easy to implement in our model, by adding a residual
negative fixed surface charge density of amplitude σf to the
right-hand side of Eq. (1). Equation (22) is therefore modified
according to

c̃s = 2hσ ∗(1 + σ ∗)(σ ∗ − σ ∗
f )(σ ∗

0 + σ ∗
f − σ ∗)

[σ ∗
0 − (1 + h)(σ ∗ − σ ∗

f )][σ ∗
0 − (1 − h)(σ ∗ − σ ∗

f )]
,

(26)

and the parametric plot is done by enforcing that σf � σ �
σf + σmax(pH). The corresponding plot is shown in Fig. 8. The
fit is much improved for lowpH (dotted blue and dotted-dashed
orange curves), showing a plateau at very low cs . This plateau
is due to the weak fixed surface charge density σf = 6.9 ×
10−3 C/m2, whereas σ0 = 0.124 C/m2. The fits at high pH are
therefore not affected by this residual charge. The pK = 6.53
is almost identical to the one found for σf = 0, whereas b =
22 nm is slightly smaller. More data are needed at pH � 6 and

log10

lo
g 1
0

log10
lo
g 1
0

FIG. 8. Same plots as in Fig. 7 but with an additional residual
surface charge density σf , i.e., fits are done using Eqs. (21) and (26).
Fitting parameter values are: pK = 6.53, σ ∗

0 = 5.96, b̃ = 6.35, and
σ ∗

f = 0.33.

cs � 10−3 mol/L to confirm the existence of such a residual
surface charge.

Note that in this paper we assumed that the nanopore is
uniformly charged. The eventual presence of charge defects
leads to nonlinear I -V curves such as observed in Ref. [7].
Furthermore, we adopted the bulk values for the ionic mo-
bilities and treated the ions at the mean-field level (thereby
neglecting the effects of excluded volume, ionic correlations,
and dielectric exclusion [33,35]). Finally, we decided not to
introduce a slip length that varies with the surface charge, but
we have checked that the formula proposed by Huang et al.
in Ref. [36] and fitted from molecular dynamics simulations
does not change the results. Secchi et al. have shown recently
[28] that the slip length in CNTs increases very quickly when
the pore radius decreases from 50 to 15 nm, which will
accentuate the increasing influence of slip for decreasing pore
radius (see Fig. 5). However, a precise (experimental) law is
still missing for smaller radii. Should this law be obtained
in the near future, it would be easy to implement it in our
theory.

In conclusion, a relatively simple analytical formula has
been derived for the conductance in nanopores. It combines
the classical bulk transport equation incorporating electrical
migration with the electro-osmotic contributions. This last
contribution may become important in small nanopores with
high surface charge and/or large slip length, which is the
especially case in CNTs. The charge regulation model is also
solved analytically using an approximate formula appropri-
ate for cylindrical nanopores that interpolates between the
homogeneous regime (described by the Donnan potential,
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valid for sufficiently weak surface charge density), the exact
good co-ion exclusion limit (valid for sufficiently low salt
concentration), and bulk behavior (valid for sufficiently high
salt concentration). This formula allows us to extract the pK ,
the saturation surface charge density σ0 and the slip length b

from experimental conductance measurements in track-etched
nanotubes and CNTs. In particular a large variety of apparent
exponents α governing the scaling regime of the conductance,
G ∝ cα

s , are observed at low and intermediate salt concentra-
tions (between 10−6 and 0.1 mol/L for nanopores), i.e., the
experimental range of interest. For small diameter nanopores
without flow slippage we find α � 1/2, in agreement with
Ref. [25]), whereas for hydrophobic nanopores at high pH with
strong slip effects, 1/2 � α � 1 before a plateau (α = 0) at in-
termediate concentrations. At low pH the conductance crosses
overs smoothly from the α = 1/2 scaling at low concentration
to a bulk behavior, α = 1, at high salt concentration. For small
radius nanopores, the α = 1/3 scaling proposed in Ref. [5]
is uncovered as an intermediary cross-over regime that is only
visible for unphysically high surface charge densities. It would
be interesting if experiments could clearly detect the various
accessible scaling regimes, especially the strong slip one and
its qualitative signature, namely that at sufficiently high pH
the conductivity approaches the asymptotic low concentration
scaling (α = 1/2) from above in the presence of slip and below
without (see Fig. 4). To fit the data for the 3.5-nm radius CNT of
Ref. [5] using physically reasonable surface charge densities,
we have shown that is necessary to include not only slip, but
also a fixed surface charge (in addition to a charge regulation
contribution).

We hope that the relatively simple analytic approach
proposed here will help experimentalists not only to better
characterize their nanopores, but also to better plan their
experiments and ameliorate their nanopore design protocols.
After more high-quality conductivity measurements for CNTs
are modeled using our approach, a clear assessment can be
made to determine if in this case the Space Charge model needs
to be extended beyond the present model. A key open question
concerns the importance of the dielectric, ion correlation,
and excluded volume effects mentioned above, which provide
corrections to the mean field space charge model, on ionic
conductivity in nanopores, especially when coupled to charge
regulation (for work in this direction see Refs. [34,35]). If there
is experimental evidence for the need for further extensions, the
important recent modeling work discussed in the introduction
could also provide significant contributions [18,29–32]).

Note added: While this article was under revision, an
article citing our work (preprint [37]) was submitted and
published [38]. This recent modeling work, which included
charge regulation, but not slip, reproduced our scaling analysis
without slip and fully corroborated it by solving numerically
the full space charge Model. When applied to the CNTs studied
in Ref. [5], this approach led to good simultaneous fits to the
conductivity data for the 35-nm radius nanopore as a function
of salt concentration for the four pH values studied, but not for
the 3.5-nm radius one at pH 6, despite using an unphysically
high maximum surface charge density (a maximum ionizable
surface site density of 19/nm2, equivalent to a maximum
surface charge density of 3 C/m2, obtainable at high pH). This
value, which is greater than the one obtained for extremely

highly charged BNNTs [8], does not appear to be compatible
with what is known about CNTs [39]. Figure 2(d) of Ref. [25]
shows that if physically reasonable values of maximum surface
charge density are used without slip the situation is even worse
for the 3.5 nm radius nanopore (the data for the two highest
pH values are poorly fitted).
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APPENDIX: GENERAL RESULT FOR THE SLIP
CONTRIBUTION TO CONDUCTIVITY

In this Appendix, we show that the slip contribution to
conductivity is, within the scope of the PNP model, an
additional contribution equal to

κslip = 2σ 2b

ηR
, (A1)

as given in Eq. (18) (see the Supplemental Material for
Ref. [11]). The Stokes equation along the axial direction z

is
η

r
∂r (r∂rvz) − ρc∂zV − ∂zp = 0, (A2)

where V (z) = −zE arises from the applied voltage difference,
�V = −LE (where L is the length of the nanopore, p is the
pressure, and the charge density ρc is related to the electrostatic
potential φ(r ) through the Poisson equation,

ρc = −ε0ε

r
∂r (r∂rφ). (A3)

Inserting Eq. (A3) in Eq. (A1) and using the slip boundary
condition,

vz(r ) + b∂rvz(r )|r=R = 0, (A4)

and the Gauss law ∂rφ|r=R = σ/(ε0ε), yields the modified
Helmholtz-Smoluchowski equation,

vz(r ) = −ε0ε

η
[φ(R) − φ(r )]∂zV − ∂zp

4η
(R2 − r2) + vslip,z,

(A5)

where the slip velocity is

vslip,z = b

η

(
σ∂zV − R

2
∂zp

)
. (A6)

Since the slip velocity is a constant, the advective contribution
to the pore averaged electric current is directly

Jslip,z = vslip,z〈ρc(r )〉 = −2
bσ

ηR

(
σ∂zV − R

2
∂zp

)
, (A7)

where the electroneutrality, 〈ρc(r )〉 = −2σ/R, in the pore has
been used. Hence, the slip contribution to conductivity, defined
by κslip = −Jslip,z/∂zV for ∂zp = 0, is given by Eq. (A1).
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