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Nonlinear multimode buckling dynamics examined with semiflexible paramagnetic filaments

Jingjing Zhao, Di Du, and Sibani Lisa Biswal
Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA

(Received 16 April 2018; published 9 July 2018)

We present the contractile buckling dynamics of superparamagnetic filaments using experimental, theoretical,
and simulation approaches. Under the influence of an orthogonal magnetic field, flexible magnetic filaments exhibit
higher-order buckling dynamics that can be identified as occurring in three stages: initiation, development, and
decay. Unlike initiation and decay stages where the balance between magnetic interactions and elastic forces is
dominant, in the development stage, the influence of hydrodynamic drag results in transient buckling dynamics
that is nonlinear along the filament contour. The inhomogeneous temporal evolution of the buckling wavelength
is analyzed and the contractions under various conditions are compared.
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I. INTRODUCTION

The buckling dynamics of microscopic elastic filaments
is essential in numerous mechanical, biological, and rheo-
logical processes. In particular, cytofilaments buckle against
compressional forces to maintain the integrity of cells [1,2];
microorganisms propel themselves with the beating of the
internally driven cilia and flagella [3,4]; shearing a suspension
of microscopic fibers can induce fiber buckling, resulting in
a non-Newtonian bulk behavior [5,6]. In comparison with the
classic Euler buckling instability [7] of a compressed rigid col-
umn buckling out sideways, the buckling of microscopic elastic
filaments exhibits much richer dynamics, not only because
of the more flexible nature of the filaments and the addition
of thermal fluctuations, but also due to the various forces to
induce buckling [8–11]. Apart from studying the behavior
of natural filaments, there is also a growing need to develop
artificial filaments and control their movement. Paramagnetic
colloidal filaments are one popular kind of such smart materials
showing notable promise for spontaneous micromanipulations
[12]. These artificial filaments have become analogs to natural
filaments, such as flagella and cilia [13,14]. They also show
great potential as microrobots for mixing [15] as well as cargo
capture and transport [16].

Buckling plays a very important role in the induced dy-
namics of magnetically driven colloidal filaments. Related
with many complex lateral deformations, shape instabilities
can be observed in various fields, such as rotational [17],
precessing [18,19], oscillating [13,20], and other complex
three-dimensional (3D) magnetic fields [16]. First analytically
studied by Goubault et al. [21], buckling dynamics of para-
magnetic filaments is induced using an orthogonal magnetic
field. Starting from a relatively straight linear shape, filaments
undergo contractile buckling and deform into long-lasting
hairpins, S shapes, and multifolded shapes due to the balancing
of magnetic and elastic forces [20,22,23]. These metastable
conformations can be utilized to probe the rigidity of absorb-
ing or grafted polymer linkers under different environments
[21,24] based on the bending curvatures. Reversible buckling
with long-lasting higher-mode shapes was also observed in

elastic media [25]. Different from classic Euler buckling,
where only the first few Euler modes are considered, the
onset of magnetoelastic buckling instability usually features
much higher buckling modes [20,23]. This leads to a much
richer dynamical behavior of the buckling mode coarsening,
or mathematically, there are higher-order bifurcations after the
first critical bifurcation points.

Most work to date has focused on static metastable shapes;
however, the dynamics of buckling and the evolution of the
pathways that a chain can take have not been well character-
ized. Here we explore the evolution of the contractile buckling
dynamics in aqueous media. We identify three stages of the
dynamics: initiation of the buckling instability, development
of buckling modes, and the filament reorientation and decay
of these modes. With experimental and theoretical, as well as
numerical approaches, we analyze the inhomogeneous coars-
ening of the buckling curves from the onset of the buckling
instability to quasistable multifolded shapes.

II. MATERIALS AND EXPERIMENTAL METHODS

A. Filament sample preparation

The semiflexible filaments are fabricated using superparam-
agnetic colloidal particles linked together with double stranded
DNA (dsDNA). The particles are streptavidin functionalized
polystyrene spheres (Dynabeads® MyOneTM Streptavidin C1,
Life Technologies Corp.). The mean diameter of the particles
is 2a = 1.05 ± 0.1 μm, density is 1.8 g/cm3, and effective
volumetric magnetic susceptibility is χeff = 1.38, as provided
by the manufacturer [26]. DNA fragments of 1250, 2000, and
4000 base pairs (bp) are biotinylated on the 5′ ends. They
are formed by lysing lambda-phage DNA (New England Bio-
labs, Ipswich, MA) using standard polymerase chain reaction
(PCR) procedures [27]. The superparamagnetic filaments are
prepared inside glass chambers filled with aqueous solution
(10 mM phosphate buffer solution) using methods previously
described [27]. The colloidal particles are denser than the
aqueous media and rapidly sediment to the bottom of the
sample chamber; therefore, the filaments exist in a quasi-two-
dimensional environment. Filament flexibility is able to be
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FIG. 1. (a) A schematic of the electromagnet microscopy setup used to image filament buckling. (b) The change of induced dipoles within
the superparamagnetic filaments when the external field is switched to perpendicular direction. (c) A zoom-in image of the local structure of a
buckling superparamagnetic filament under orthogonal magnetic field. Scale bar, 10 μm.

tuned by altering the length of the DNA linkers (changing the
length of springs) or adjusting the field strength for linking
(changing interparticle distance).

B. Experiment setup and imaging acquisition

The alignment, Balign, and buckling, Bbuckle, magnetic fields
are induced using a custom-built electromagnet microscopy
system. As shown in Fig. 1(a), two air-core solenoid pairs
(Sargent Welch) are placed perpendicular to each other, con-
nected to a dc power supply (HY5020E, Mastech) to create
two orthogonal magnetic fields, respectively. The sample
chamber is placed at the center of the two pairs of solenoids.
Images of the colloidal filament system are observed using
a CCD camera (Orca-HR, Hamamatsu Inc., Sewickley, PA)
attached to an inverted microscope with a 20 × /0.75 (air)
or a 100 × /1.25 (oil) Olympus objective. The strength of
the applied magnetic field is measured using a Gaussmeter
(AlphaLab, Inc., Salt Lake City, UT) and the direction of the
applied magnetic field is determined using a paramagnetic
filament of particles. The solenoid pairs are aligned to ensure
that the filament is 90° relative to the orthogonal solenoid pair.
The alignment magnetic field is removed while the buckling
magnetic field is applied simultaneously causing the filaments
to buckle, as depicted in Fig. 1(b). Figure 1(c) shows a zoom-in
image of the local structure of a superparamagnetic colloidal
filament undergoing buckling instability in our experiment.
Images of filament buckling are captured at a rate of 10
frames per second using HCIMAGE (Hamamatsu Corporation,
Bridgewater, NJ). Contours of filaments are tracked using the
JFILAMENT plugin [28,29] in FIJI, an open-source NIH software
[30], which searches for the darkest ridges at the central line of
each filament based on stretching and deforming open active
contours.

III. THEORY

For an analytical description of the filament dynamics,
we adopt the continuous wormlike chain model. Following
the analysis of Roper et al. [23] and Cebers et al. [31],
we consider an inextensible paramagnetic colloid-assembled

filament of contour length L, diameter a, with a/L � 1. Its
flexural rigidity is defined to be κ = kbT Lp, where Lp is the
filament persistence length and kBT is the thermal energy.
The colloidal particles with magnetic susceptibility χ are of
distance l away from their nearest neighbors. The deterministic
energy functional E(t) for such a filament under a uniform field
with a magnetic flux density B at certain time t is

E(t) =
∫ L

0

[
m · B/2μ0 + κ

2
r2
,ss + 1

2
�(s,t)

(
r2
,s − 1

)]
ds,

(1)

where r(s,t), parametrized by the arc length s, denotes the
position vector of the filament. The first term of the integrand
introduces the magnetic dipolar potential energy where μ0 is
the vacuum permeability. A simplified nearest neighbor mutual
dipolar method [13,23] has been applied, and the magnetic

moment per unit arc length m = 4
3 πa3χ/l
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χ
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where t and n are the tangential and normal unit vectors in the
Frenet-Serret frame. The second term indicates the bending
energy of an elastic beam, where r,ss is the local curvature.
Subscripts are used to denote partial derivatives. The last
term has the Lagrange multiplier [32,33] �(s,t) enforcing the
constraint of local inextensibility r2

,s = 1 and yielding the line
tension.

Given that the motion of the colloidal filament operates
in the low Reynolds number regime throughout the buckling
process, inertia can be neglected so that the equation of motion
for the filament is

ζ
∂ r
∂t

+ δE

δr
= f (s,t). (2)

The contractile buckling dynamics is described by a balance
of the dissipative hydrodynamic friction, where the friction
coefficient is ζ = ζ‖ t t + ζ⊥nn, the conservative forces, as well
as thermal fluctuations. For qualitative study, we make a Rouse
dynamics simplification and assume local isotropic drag using
slender-body theory [34] ζ‖ = ζ⊥ = ζ ∼ 2πη/log(2L/a) ∼
πη, and ignore long range hydrodynamic interactions. The
fluid viscosity, measured to be η = 0.0022 kg/m s, is used to
account for the near wall effect [35]. To calculate the internal
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stresses σ = δE
δr caused by the conservative forces, we utilize

the principle of virtual work [36,37]. The detailed calculation
can be found in Appendix A. Combining Eqs. (1) and (2), we
have

ζ r t, + 8πa2
(

a
l

)4
χ2B2

3μ0
[
1 − 4

3

(
a
l

)3
χ

][
1 + 2

3

(
a
l

)3
χ

]
× cos 2θ (s,t)r,ss + κ r,ssss + (�r,s),s = ξ, (3)

where θ (s,t) is the tangent angle at arc length s and time t , as
shown in Fig. 1(c). ξ denotes the thermal noise in the system.
cos θ is a function of r(s,t). We focus on the deterministic
dynamics and the only randomness considered here is the initial
stochastic transverse displacements along a straight contour.
The tension � is determined from local inextensibility r ts ·
rs = 0:
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We can define dimensionless variables: s̃ = s/L, t̃ =
t/( ζL4

κ
),�̃ = �/( 1

L2κ
), and the nondimensionalized Eq. (3)

becomes:

r t̃ , + Mn cos 2θ (s̃,t̃)r ,s̃s̃ + r ,s̃s̃s̃s̃ + (�̃r ,s̃),s̃ = 0. (5)

The equation of motion only depends on a single dimensionless

number Mn = 8πa2( a
l
)4

χ2B2L2

3μ0κ[1− 4
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l
)3

χ][1+ 2
3 ( a

l
)3

χ]
, which is the magnetoe-

lastic number [23,31], representing the relative strength of
magnetic to elastic forces.

IV. NUMERICAL METHODS

In order to quantitatively analyze the contractile buckling
dynamics, a Brownian dynamics (BD) simulation [38] is
performed. The colloidal filament is modeled as a bead-spring
model, in which the colloidal particles are considered as the
beads and the DNA linkers are modeled as Hookean springs.
The contributing forces in this discretized system are magnetic
dipolar interactions Fmag, elastic bending forces Fbend, hy-
drodynamic drag forces Fhydro, and filament constraint forces
Fconstr . We also include thermal motion, which is denoted as a
stochastic term �x.

The deterministic governing equation for a buckling para-
magnetic filament is

Fi
mag + Fi

bend + Fi
hydro + Fi

constr = mi

d2r i

dt2
∼= 0, (6)

where mi and r i are the mass and position of particle i, and N

is the number of particles in the simulated filament. In Eq. (6),
Fi

mag is calculated under a mutual dipolar model [39]; Fi
bend

is obtained using Euler beam theory; Fi
constr are composed

of stretching and repulsive terms, which obeys Hooke’s law
and the force-distance relation [40] of compressions between
two polyelectrolyte coated particles, respectively. The detailed
algorithm to calculate the values of Fi

mag, Fi
bend, and Fi

constr

can be found in Appendix B.

The hydrodynamic drag force on particle i is given by:
Fi

hydro = −kBT vi/Di , where v i is the relative velocity of the
particle, and Di is the diffusion constant, which is applied
using a Rotne-Prager-Yamakawa tensor [41,42]. Utilizing the
convention of Ermak and McCammon [43], the position vector
r i (t + �t) of the bead i at time t + �t is related to the previous
position vector r i (t) as

r i (t + �t) = r i (t) −
(

�t

kBT

) N∑
j=1

Dij · Fhydro
j + �x. (7)

The stochastic term �x is obtained utilizing a second-order
Brownian dynamics algorithm [44], and the value can be
calculated using Eq. (B7b).

Combining Eqs. (6) and (7), the position of the particle i

evolves as

r i (t + �t) = r i (t) +
(

�t

kBT

) N∑
j=1

Dij

·(Fj
mag + Fj

bend + Fj
constr

) + �xi, (8)

The buckling motion of superparamagnetic filaments is
simulated according to Eq. (8) with an optimized time step
of 5 × 10−6 s.

V. RESULTS AND DISCUSSION

A. Comparing higher-order mode buckling dynamics with
simpler buckling

The dependence of filament length on buckling dynamics
can be readily observed in Fig. 2. Short rigid filaments
simply rotate to realign with the buckling magnetic field. With
increasing filament length, the filament rotates to align with the
buckling magnetic field direction but also exhibits a buckling
mode, which is able to relax, as shown in the lower right
corner of each panel in Fig. 2. For longer filaments, deformed
configurations such as hairpin shapes are formed, with the
two arms aligned with the new field direction. The filaments
adopt a multimode buckled shape during the buckling process
that rearranges into a single buckling mode. These hairpin
shapes are quasistable over the timescale of the experiment.
For much longer filaments, S shapes or higher-order buckling
mode shapes are observed. These structures take significantly
longer to evolve and reach a quasistable configuration. The
dynamics of these filaments is a result of the contractions
along the original aligned direction rather than a rotational
torque that acts to realign the filament with the orthogonal
external field, resulting from the coupling of the transverse
buckling and longitudinal displacement. These experimental
results agree with Roper et al. [23] in that filaments with larger
magnetoelastic numbers (Mn) tend to result in higher-order
mode buckling shapes. It also provides a method to achieve
complex folding of microfilaments. Notably, the buckling
shapes in our experiments are sawtooth rather than smooth
curves, due to the large ratio of magnetic to elastic stresses
in our experimental buckling conditions, which provides large
Mn for moderate filament length. We will focus on the long
filaments below that are able to exhibit contractile buckling
dynamics.
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FIG. 2. A time series of snapshots of three superparamagnetic filament buckles in the experiment. The shortest filament realigns to the
direction of the magnetic field 2.5 s after the buckling initiation (c); the filament with the medium length buckles into a quasistable hairpin shape
5.5 s from the direction switch of the external field (d); and it takes 11.5 s for the longest filament to fold into a 14-curve shape (e). Persistence
length of the filaments Lp = 1.20 mm. The buckling field strength B = 77 Gauss. Scale bar, 100 μm.

B. Three stages of contractile buckling dynamics

During contractile buckling, the magnetic potential energy
is converted into elastic bending energy and dissipated through
hydrodynamic friction. The repartitioning of magnetic and
elastic energy, calculated using Eq. (1), continues throughout
the entire process as the buckling modes develop and coarsen,
as shown in Fig. 3(b). We identified three stages of contractile
buckling behavior based on the energy evolution: initiation,
development, and decay.

During the prebuckling stage [Fig. 3(b), Sec. I], an align-
ment magnetic field is applied. The filament is extended in
the direction of Balign due to the dipoles within the particles
aligning with the external magnetic field. As a result, the elastic
bending energy is small, and the magnetic potential energy is
at its minimum. At t = 0 in Fig. 3, when the field is switched
to the perpendicular direction (Bbuckle) there is a rapid increase
in the magnetic potential energy due to the instantaneous
repulsive dipoles along the filament backbone. This marks the
beginning of buckling instability and the starting point for the
initiation stage.

The straight configuration of the filament is unstable
with respect to small transverse perturbation. Bulges start to

develop on the filament contour. For short times, the transverse
movement is achieved by taking advantage of the initial local
thermal roughness without any longitudinal displacement.
Buckling filaments in the initiation stage satisfy two criteria:
nonlocal longitudinal movement is negligible compared to
transverse displacement and buckling curves have amplitude
much smaller than wavelength. Reflecting on the equation of
motion, the line tension � ∼ 0 and cos θ ∼ 1. The dimension-
less equation of motion Eq. (5) reduces to

wt̃, + Mnw,s̃s̃ + w,s̃s̃s̃s̃ = 0, (9)

where w (s̃,t̃) is the contour displacement, which has a di-
rection perpendicular to the filament initial alignment. The
initial instability is assessed using a linear stability analysis
[20,23,45]. Proposing a small transverse deformation with
normalized wavelength λ̃ = λ/L and a dimensionless growing
rate ω̃ = ( ζL4

κ
)ω: w(s̃,t̃) ∼ exp( 2πis̃

λ̃
+ ω̃t̃), and substituting it

into the equation of motion, Eq. (9), we arrive at a relation
ω̃(λ̃) = ( 2π

λ̃
)2Mn − ( 2π

λ̃
)4. The fastest growing perturbation

has the normalized growing rate ω̃0 = Mn2/4 with a wave-
length λ0 = λ̃0L = 2

√
2πL

√
1/Mn, and the smallest existing

wavelength λc = λ̃cL = 2πL
√

1/Mn. Filaments with a length
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FIG. 3. Plot of (a) filament shape evolution captured in experiments (left) and numerical simulations (right), and (b) magnetic potential and
elastic bending energy evolution in a buckled filament when an orthogonal magnetic field is applied, based on both experiment and numerical
simulation results. Persistence length of the filament Lp = 1.33 mm. The buckling field strength B = 43 G. Scale bar, 24 μm. Filament length
L = 155 μm. The numerical simulation result of energy evolution is calculated based on 100 runs. The shaded area indicates the error.

smaller than λc will rotate and realign to the orthogonal
magnetic field without an initial buckling stage. It takes τ0 =
1
ω̃0

( ζL4

κ
) < 0.1 s for the fastest growing deformation to be

significant in this linearized dynamics, which can serve as the
time span for the initiation stage. As a result, the initial stage
[Fig. 3(b), Sec. II] is relatively short for buckling conditions
studied in this paper and cannot be fully resolved with our
experiments.

As the buckling modes continue to grow along the filament
backbone, the buckling dynamics enters the development
stage. The standard linear stability analysis no longer applies.
Secondary- and higher-order buckling bifurcations appear
as the buckled curves coarsen, resulting in an increase in
their wavelength and amplitude, as shown in Fig. 3(a). The
elastic energy gradually increases as new curves develop and
rearrange along the filament backbone, while the magnetic
potential decreases due to the realignment of the dipoles
[Fig. 3(b), Sec. III]. The decrease in the magnetic potential
energy is much larger than the gain in elastic bending energy,
which is needed to satisfy the experimental requirement of
large Mn and moderate filament length. The majority of the
magnetic potential energy is dissipated through hydrodynamic
friction. With increasing time, the variance in elastic bending
energy increases, which is an effect of stochasticity in the
rearrangements among the buckling modes that occur in this
system. The experimental data and simulation agree well in the
energy plot with the exception that the bending energy calcu-
lated from experiments is typically smaller than that observed
from simulations. This is likely due to small heterogeneities in
the experimental filaments that encourage early coarsening of
curves. Detailed discussion of the dynamics in the development
stage will be given in the next section.

The buckling process enters the decay stage when the
curves on the filament contour reach a balance between the
magnetic and elastic forces. The relaxation time of the buckling
mode exceeds its formation time, resulting in a quasistable
configuration. Comparing the experiment and simulation data
in Fig. 3(a), the buckled filament appears to have a stable
shape after reaching the decay stage in the experiment, while in

simulation, the buckled filament continues to relax. A similar
phenomenon is observed in the energy evolution in Fig. 3(b),
Sec. IV, whereby energy curves from experimental data reach
a plateau, while in simulations, the magnetic potential energy
continues to decrease, and the elastic bending energy also
decreases after reaching its maximum value. The anomalous
stability of the experimental shapes indicates a deviation of the
experimental filament condition at the quasistable stage from
the assumption of ideal paramagnetic colloidal filaments with
uniform elastic modulus. The magnetic heterogeneity within
the paramagnetic colloidal particles and the possible nonlinear
elastic deformation [23] may be responsible for this deviation.

C. Analysis of nonlinear dynamics of contractile buckling

In the development stage, the paramagnetic colloidal fila-
ments exhibit inhomogeneous contractile buckling dynamics.
Due to the inextensibility of the filament, a buckling mode
on the filament backbone must decrease the filament length
along the primary alignment axis to grow and evolve. The
transverse movement is coupled with the longitudinal one.
The buckling modes in the middle section of the filament
are typically confined so the free tail ends of the filament
must pull towards the center. Hydrodynamic friction limits
the development of buckling modes in the center section of
the filament. Similar to the inhomogeneous recoil dynamics
of a suddenly released prestretched polymer [37,46,47], the
nonuniform friction leads to an inhomogeneous dynamics in
our studied system. As shown in Fig. 4(a), the amplitudes of
buckling curves increase slower with time when approaching
the center of the filament.

There are two regimes along the contour of a buckling
filament in the early development stage, which can be observed
in Fig. 4(a). More obviously, when the tangent angle is used
to describe the evolving shape in Fig. 4(b), the region with
similar tangent angle fluctuations is separated by the white
dashed line from the region where the tangent angle fluctuation
is greatly amplified. Located at the center of the filament, the
bulk regime is defined as the segment of filament that does not
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FIG. 4. The development stage of simulated contractile buckling
dynamics of a paramagnetic colloidal filament with filament length
L = 246 μm, persistence length Lp = 1.33 mm. The buckling field
strength is 43 G. (a,b) Color maps showing the relationship between
(a) transverse displacement from the initial aligned configuration and
(b) tangent angle, along the filament and normalized contour length s

(by filament contour length) as well as time t . (c) Contraction speed
v‖(s,t) in the longitudinal direction along the filament backbone at
different times. Results based on 100 runs. The shaded area indicates
the error. (d) Log-log colormap of normalized Fourier mode amplitude
of the filament shape (by the maxium mode amplitude) with the
normalized wave number k̃ and time t .

exhibit significant longitudinal movement at any given time.
On the other hand, the end regime is defined as the tail sections
of a filament that exhibit significant longitudinal displacement.
Figure 4(c) shows there is a relatively clear front that separates
the bulk from the end regime, especially at smaller timescales,
and from this graph, we can track a decay length at which
the longitudinal speed drops to half of its maximum value.
We find that at moderate Mn, the length of the propagation
layer, corresponding to the white dashed line in Fig. 4(b), is
approximately double the decay length mentioned above. With
increasing time, the propagation front of the buckling modes
moves from the filament ends to the center. After the end regime
propagates to the center of the filament, the contraction of
different segments along the filament starts to become more
uniform and the inhomogeneity of the contractile movement
gradually reduces.

To investigate the wavelength evolution of the contractile
buckling dynamics, a standard Fourier analysis is applied onto
the series of buckling shapes. The Fourier mode amplitude
of the buckling filament, normalized by the maxium mode
amplitude, is plotted out as a function of the normalized wave
number k̃ = 2L/λ and time t in Fig. 4(d). The dominant k̃ has a
normalized Fourier mode amplitude of 1. The initiation stages

FIG. 5. (a) Snapshots of the simulated filament conformation
during the orthogonal magnetic field induced buckling process with-
out contraction. The buckling process has Mn = 1.47 × 105, the
persistence length of the filament Lp = 1.33 mm, and the buckling
field strength B = 77 G. (b) The rescaled slope-slope correlation
function of buckling shapes in (a) collapse onto a single curve. (c,d)
The temporal evolution of (c) normalized amplitude w/w0 and (d)
normalized wavelength λ/λ0 of the buckling filament. Simulation
system is restricted to only transverse displacement by coupling the
dynamics of the free ends together. Experimental results from the
system of the same buckling condition with the same Mn but the ends
of the filament remain free.

can be observed in this plot. At small timescales t < τ0, the
dominant k̃ remains constant, 2L/λ0 = √

Mn/
√

2π . Exiting
the initiation stage, the dominant k̃ evolution demonstrates
an asymptotic power law of −4. This power law is well
followed until t ∼ 2 s, which is approximately the time when
the end regime covers half of the contour length. In the later
development stage, the dominant k̃ deviates from the power
law of −4 and the decreasing of k̃ gradually slows.

The transverse buckling dominated bulk regime is respon-
sible for the asymptotic power law of −4 of the wave number
in Fig. 4(d). Here we show that the wavelength evolution
obeys λ ∼ λ0(t/τ0)1/4 when the buckling dynamics of the
paramagnetic filament exhibits negligible longitudinal motion.
The time and wavelength of the filament, τ0 and λ0, respec-
tively, denote when the buckling dynamics exits the initiation
stage and enters the development stage. Analytically, these two
parameters obey λ0 ∼ 2

√
2πL

√
1/Mn and τ0 ∼ 4ζL4

κMn2 , which
are obtained from the linear stability analysis. Their exact
values are affected by the initial thermal fluctuation conditions.

To prove the statement above, a numerical method is ap-
plied. We designed a simplified buckling system with no global
longitudinal movement, by virtually connecting the two ends
of the filament to eliminate the significant end deformation
that leads to contraction. The length of the simulated chain is
set to be long enough so that the coupled ends do not signifi-
cantly influence the transverse buckling dynamics. The initial
filament shape is set to have small random undulations with
a hidden contour of ε = 2.8% to enable buckling. Figure 5(a)
shows the evolution of the filament conformation during the
buckling process without contraction. Following Ref. [45],
wavelength λ of the filament is calculated using the slope-
slope correlation method and root mean square amplitude
w is measured to quantify the transverse displacement. The
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slope-slope correlation function of distance n along the contour
and time t is defined as

Ktt (n,t) = 〈t(s = s0 + n,t) · t(s = s0,t)〉, (10)

where the symbol 〈· · · 〉 denotes the ensemble spatial average
over the contour length of the filament; t(s,t) is the tangent
unit vector at the arc length s and the time t . The wavelength
λ is four times the value of the first zero n1(t) of Ktt (n,t).
The wavelength and amplitude are normalized by λ0 and w0,
respectively, which are the values of λ and w at the end of
the initiation stage. In experiment and numerical simulation,
w0 and λ0 are determined as the value at the time when the
wavelength starts to increase significantly. Figures 5(c) and
5(d) show the simulated wavelength and amplitude evolution of
the simplified undulance dominated system, and a power law of
1/4 is obtained for both. The rescaled slope-slope correlation
function at different times collapses into a single curve, as
shown in Fig. 5(b), which indicates the time developing
buckling conformation of the paramagnetic filament exhibits
self-similarity. This in return supports that there is a dynamic
scaling for the buckling shape evolution. In comparison to
the buckling dynamics without contraction, data from an
experiment with similar conditions (Mn = 1.47 × 105) but
allowing free-end contraction is plotted out in Figs. 5(c) and
5(d). Both the amplitude and wavelength evolution curves
from experimental data deviate from the power law of 1/4,
due to the coupling of contraction dynamics and transverse
buckling relaxation in the end regime. Notably, we applied
different methods to analyze the wavelength evolution in
Figs. 4(d) and 5(d). In Fig. 4(d), the normalized Fourier modes
amplitude with the mode number and time are plotted out.
When the bulk regime is dominant, the dominant amplitude
mode (which corresponds to the mode of the bulk regime),
results in a 1/4 scaling at early buckling times. For Fig. 5(d),
the slope-slope correlation method is applied to calculate
the characteristic wavelength, which is affected by both the
bulk and the end regime, so the scaling deviates from 1/4,
even at initial buckling timescales. The overall trend of the
wavelength evolution in the early development stage is the
same in both figures, where the contraction dynamics slows
down the transverse relaxation.

To understand this nontrivial scaling relation within the bulk
regime, we present a scaling analysis. Although contractile
buckling of paramagnetic filaments is intrinsically nonlinear,
the dynamics within the bulk regime can be predicted analyti-
cally using a linear calculation within the weakly bending limit.
Neglecting the axial movement, the dimensionless equation of
motion, Eq. (5), in the transverse direction becomes

wt̃, + Mn cos 2θ (s̃,t̃)w,s̃s̃ + w,s̃s̃s̃s̃ + (�̃w,s̃),s̃ = 0, (11)

where w (s̃,t̃) is the normal displacement. In the weak bend-
ing limit, ε = 1 − (r‖(s̃ = 1,t̃ = 0) − r‖(s̃ = 0,t̃ = 0))/L �
1, where r‖ (s̃,t̃) is the position on the axial direction; ε is the
normalized contour length stored in the lateral undulations.
Since w,s̃ is of order O(ε1/2) and �̃ ,s̃ is of order O(ε),
Eq. (11) is to the leading order O(ε1/2) given by a balance of
hydrodynamic drag force, effective line tension, and bending
force:

wt̃, + f (t̃) w,s̃s̃ + w,s̃s̃s̃s̃ = 0, (12)

where the spatial average f (t̃) = ∫1
0 ds̃[Mn cos2θ (s̃,t̃) + �̃].

Consider a transverse buckling dominated filament governed
by the balance of the drag force with bending force and tension
(or elastic stretching force for extensible filaments). Evidence
from previous studies [48–50] shows that the bending term
and tension term are of the same order, as long as there is no
significant longitudinal movement in the buckling dynamics.
Note that when the magnetic field induces buckling within
the bulk regime, the contribution of magnetic interactions is
absorbed into the line tension term in the governing equation
described by Eq. (12). The bending force and effective line
tension are of the same order of magnitude, analogous to
previously published research results mentioned above. The
scaling analysis of Eq. (12) has the form

w̄

t̃
∼ w̄

λ̃4
+ w̄

λ̃2
f (t̃), (13)

where w̄ and λ̃ are the characteristic curve amplitude and
normalized wavelength, respectively. The bending force (∝
w̄

λ̃4 ) is comparable to the induced tension in the filament
[∝ w̄

λ̃2 f (t̃)] resulting from the magnetic dipolar interactions
and the inextensibility of the backbone, as long as the lon-
gitudinal motion is negligible compared to the transverse
motion. Therefore, f (t̃) ∼ λ̃−2 is achieved and λ̃ ∝ t1/4. For a
more comprehensive understanding, the theoretical analysis of
Hallatschek et al. [51] for the initially buckled incompressible
rod in the uniformly buckled bulk regime in viscous media can
be extended to our system: The ubiquitous −1/2 power-law
temporal decay of the tension and the 1/4 power law of wave-
length evolution are quantitatively derived. Briefly, Eq. (12)
has a group of solutions with separated variables of wave
and temporal evolving mode amplitudes. Mode amplitudes are
related to the line tension force history,f (t̃). The stored contour
length can be separated into different buckling modes whose
value can also be expressed in mode amplitudes. Therefore,
the mode amplitudes relate the conservation of stored contour
length and the time integral of line tension together, which
results in a −1/2 power-law temporal decay of the tension
and therefore a 1/4 power law of wavelength evolution. The
amplitude evolution in the bulk regime of the magnetic field
induced buckling system follows the same power law of
1/4 due to its coupling with the wavelength to maintain a
constant ε.

For the transverse dynamics dominated bulk regime in the
early development state, the far-field hydrodynamic interac-
tions do not significantly affect the dynamics. Reflecting on the
simulation result of the filament buckling without contraction,
it follows the 1/4 scaling law concluded from analytical theory.
For the late development state, however, far-field hydrody-
namic interactions cannot be neglected. The analytical method
without long range hydrodynamic interactions only gives a
qualitative description of the dynamics.

The nonlinear longitudinal movement is the key to the
inhomogeneity of the development stage contractile buckling
dynamics. In the early development stage where the end and
bulk regimes coexist, significant inhomogeneous contraction
within the propagation layer leads to a nonuniform buckling
conformation. In the late development stage, where the bulk
regime vanishes, the nonlinear longitudinal movement along
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FIG. 6. Normalized longitudinal displacement along the filament backbone at (main plot) 10% end-to-end contraction ratio and (inset) four
different end-to-end contraction ratios of 10%, 20%, 30%, and 40%, with a system of different Mn. The normalized longitudinal displacement
is defined as the displacement of a small segment on the filament at a particular time from the initial straight configuration normalized by
the length of the filament, and the normalized contour length from center is defined as the distance between the segment and the center of
the filament normalized by the length of the filament. Both experiment (solid points) and numerical simulation (hollow points) results of
higher-order buckling (Mn : 2.7 × 103−1.7 × 105, or approximately 8–45 buckling modes) are plotted out. The numerical simulation result
is an average of 100 runs with the error bars indicating the variance. The first (Mn = 16) and second (Mn = 63) mode buckling results are also
included in the main plot with two example buckling shapes for each case next to the result curves and the shaded area (light blue for Mn = 16
and light pink for Mn = 63) indicating the error. Example buckling conformations of 10%, 20%, 30%, and 40% end-to-end contraction ratios
of a Mn = 1.7 × 104 system is shown at the top left corner of the inset.

the filament contour remains and continue to contribute to the
nonuniform dynamics. Here the longitudinal displacement of
the filament can be used as an indicator for inhomogeneous
dynamics. The full nonlinear equation of motion, Eq. (3), needs
to be considered. Figure 6 plots out the normalized longitudinal
displacement along the filament contour for different contrac-
tile buckling experiments. The nonlinearity of the dynamics
increases as the longitudinal displacement curve deviates from
the straight line.

In the early development stage, higher-order buckling
dynamics tends to have similar inhomogeneous contrac-
tions, while for smaller mode number buckling systems, the
contraction dynamics becomes more linear as the buckling
mode number decreases. As shown in Fig. 6, at moderate
Mn (2.7 × 103−1.7 × 105), which covers most of the higher-
order mode contractile buckling experiments considered in
this paper, the longitudinal displacement curves with respect
to filament contour under different experimental conditions
collapse onto a single curve, given by the same 10% end-to-end
contraction ratio. However, for smaller Mn (Mn = 16, 63),
which is characteristic of the smaller buckling modes, the
curve tends to approach a straight line connecting the center
zero displacement with the largest displacement at the end,
which is indicative of pure rotation at conditions with Mn
close to zero. The first mode buckling has an almost linear
longitudinal displacement (blue dashed line in Fig. 6) and the
second mode buckling (red short dashed line in Fig. 6) shows
increase longitudinal nonlinearity. With increasing Mn, the
change in contraction linearity becomes less sensitive to the
increase in the mode number and the longitudinal dynamics

along the filament backbone are similar for higher-order mode
buckling.

Thermal fluctuations have a significant impact on the
longitudinal dynamics of the contractile buckling system with
small buckling modes. Figure 6 shows that at small Mn, there
is a large variance in the longitudinal displacement. With
increasing Mn, this variance decreases and from our numerical
simulation results, the variance becomes negligible when the
buckling mode number is greater than 8 (Mn < 2.7 × 104).
The variance reveals the influence of thermal fluctuations on
the filament buckling dynamics. For the first and second mode
buckling dynamics, thermal fluctuations have a considerable
impact on the longitudinal movement. For buckling dynamics
with higher modes, the effect of stochasticity averages out
among all the buckling modes and the collective result of
longitudinal movement is not significantly affected.

The nonlinearity of higher-order mode contractile buckling
initially increases and then decreases throughout the develop-
ment stage. For a small contraction ratio such as 10%, as shown
by the black data points in Fig. 6, the longitudinal displacement
curve with small values (0–0.3) of the contour length from
center is approximately zero. When the end-to-end contraction
ratio increases, the value of the previously zero longitudinal
displacement increases until the entire longitudinal displace-
ment curve becomes positive except at the center point, which
marks the end of the early development stage (around 20%
end-to-end contraction). The nonlinearity of buckling shapes
increases monotonically in the early development stage as the
longitudinal displacement curves continues to deviate from the
straight line. After that, the buckling dynamics enters the late
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development stage where the longitudinal movement starts to
slow down near the end region. The nonlinearity decreases
as the contraction ratio increases and becomes more linear,
as shown by the 30% and 40% end-to-end contraction data
given by the purple and blue data points in the inset of Fig. 6,
respectively. The buckling shapes will continue to become
more uniform until reaching the decay stage, which is the end
of the continuous longitudinal movement.

VI. CONCLUSION

In this paper we have described the contractile buckling
dynamics of a superparamagnetic filament using an orthogonal
magnetic field in aqueous media. As a result of the competition
between magnetic interactions, elastic bending forces, and
hydrodynamic friction, the paramagnetic filament undergoes
an intrinsically nonlinear relaxation process. Flexible magnetic
filaments under a strong external field (large Mn) tend to
have higher-order buckling with contractions along the original
aligned direction in the early stage, rather than rotations to
realign with the orthogonal external field. For these higher-
order buckling dynamics, we identified three stages: initiation,
development, and decay. The initiation stage represents the
onset of magnetoelastic buckling instability. Transverse dy-
namics is dominant in the initiation stage and periodic higher-
order mode buckling curves are formed. Following bucking
initiation, the development stage is a transient state due to
the competition between magnetic, elastic, and hydrodynamic
forces. Here, small buckling curves coarsen into larger folds
and the transverse displacement increases, while the filament
experiences rapid contraction in the longitudinal direction. In
the final decay stage, the filament reaches a balance between
the magnetic and elastic forces. The relaxation time of a
buckling mode exceeds its formation time, resulting in the
filament obtaining a quasistable buckling shape. Brownian
dynamic simulations prove to be useful to studying the con-
tractile buckling dynamics, and match well with experimental
results. Compared to the wrinkling of vesicles in elongation
flow [52,53] which also demonstrates the three dynamical
stages, the system studied in this paper exhibits nonlinear
contractile buckling. With experimental and theoretical, as
well as numerical approaches, we analyze the inhomogeneous
coarsening of the buckling curves. Two regimes in the early
development stage are identified: a bulk regime in the center
of the filament where longitudinal movement is negligible and
an end regime where contraction movement is significant. We
demonstrated the asymptotic power law of 1/4 for buckling
wavelength coarsening in the early development stage is due
to the transverse buckling dominated bulk regime. We also
observed that for moderate Mn, the inhomogeneity of higher-
order mode contractile buckling for different conditions is
similar and follows first an increasing and then a decreasing
trend until approaching the decay stage.
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APPENDIX A: INTERNAL STRESSES CALCULATION [37]

Internal stress σ and the deterministic functional of the
filament E are related by

E =
∫ L

0
dsσ (s)r(s), (A1)

at a particular time t . Introducing a virtual displacement
δr which is an assumed infinitesimal change of the
filament position vector, the new filament position
vector becomes r̂(s) = r(s) + δr(s). Substituting r(s)
with r̂(s) in Eq. (A1) and the change in energy
functional it reads δE = ∫L

0 dsσ (s)δr(s). From Eq. (1),
δE = ∫ L

0 ds{C1 + C2[(r,s + δr,s)e]2 + κ
2 (r,ss + δr,ss)2} −∫ L

0 ds[C1 + C2(r,s · e)2 + κ
2 r,ss2] = ∫L

0 ds[2C2(r,se)(δr,se) +
κ r,ssδr,ss], where e is the unit vector in the same direction as the

external magnetic field, constants C1 = 2πa3χB2[ 4
3 ( a

l
)3

χ−1]

3μ0l[1− 4
3 ( a

l
)3

χ ][1+ 2
3 ( a

l
)3

χ ]

and C2 = − 4πa2( a
l
)4

χ2B2

3μ0[1− 4
3 ( a

l
)3

χ][1+ 2
3 ( a

l
)3

χ]
. The implicitly expressed

line tension � is not included here and will appear later
in this calculation. Given the inextensibility of the filament
backbone, we have r,s = t and δr,s = C(s)n. As a result,

δE =
∫ L

0
ds(C2 sin 2θδr,s + κ r,ssδr,ss) =

∫ L

0
dsσ δr,

(A2)

which can be rearranged to be

∫ L

0
ds

[
C(s)

(
−C2 sin 2θ + κ r,sss +

∫ s

0
ds̄σ

)
· n

]
+ const. = 0, (A3)

in which const. is only related to boundary conditions. To
satisfy Eq. (A3) under different virtual displacement, that is,
a different function C(s), (−C2 sin 2θ + κ r,sss + ∫ s

0 ds̄σ ) · n
has to vanish. As a result,

−C2 sin 2θ + κ r,sss +
∫ s

0
ds̄σg(s)r,s , (A4)

where g(s) = −�(s), and �(s) has the physical meaning
of the line tension and enforcing the constraint of local
inextensibility. The internal stress can be written as

σ = −2C2 cos 2θ r,ss + κ r,ssss + (�r,s),s . (A5)
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APPENDIX B: BROWNIAN DYNAMIC SIMULATION ALGORITHM

The discretized version of magnetic force [54] on particle i can be approximated as

Fi
mag =

N∑
j=1,j �=i

3μ0

4πr5

[
(mi · r i j )mj + (mj · r i j )mi + (mi · mj )r i j − 5(mi · r i j )(mj · r i j )

r i j
2

r i j

]
, (B1)

where r ij = rj−r i is the center-to-center vector of the two particles. Applying the mutual dipolar model [39], the magnetic
dipole moment for particle i has an expression of mi = 4

3πa3χeff (B/μ0 + ∑N
j=1,j �=i Hdip), where Hdip = 1

4π
[ 3r j i (mj ·r j i )

|r j i |5 − mj

|r j i |3 ]

is the induced magnetic field by the other dipole j .
Considering the elastic bending forces, the colloidal filament is simplified to an Euler beam. The discretized elastic bending

energy U bend of the DNA linkers between neighboring particles can be expressed using beam theory:

U bend = LpkBT

l

N∑
i=1

pi(1 − t i,i+1 · t i−1,i)pi =
{

1; i = 2,3, . . . ,N − 1
0; i = 1,N

, (B2)

where t ij is the unit vector of r ij . Therefore, the bending force between particle i and its adjoining particle j , Fij
bend is given

by [38]

Fi
bend = LpkBT

l2
[pi−1 t i−2,i−1 − (pi−1 t i−2,i−1 · t i−1,i + pi + pi t i−1,i · t i,i+1)t i−1,i

+ (pi t i−1,i · t i,i+1 + pi + pi+1 t i,i+1 · t i+1,i+2)t i,i+1 − pi+1 t i+1,i+2],

pi =
{

1; i = 2,3, . . . ,N − 1
0; i = 1,N

. (B3)

Filament constraint forces contain repulsive and stretching forces:

Fi
constr = Fi

rep + Fi
stretch, (B4)

The charge and steric repulsive force Frep of the neighboring particle i and j are caused by the DNA-grafted surfaces, and
can be written in terms of the surface-to-surface distance Ds

ij of the colloidal particles i and j as follows [40],

Frep
i =

∑
j

{
C3

[
1 + ln(18 Å) − ln

(
Ds

ij

)]/
Ds

ij
2 + 2C4D

s
ij

}

i =
⎧⎨⎩ 1; j = 2

2,3, . . . ,N − 1; j = i ± 1
N ; j = N − 1

, (B5)

where the constants C3 and C4 are influenced by the molecular weight of the DNA linkers, and the concentration and valence of
the surrounding ionic medium. In this study, the constants are treated as fit parameters to the experimental data obtained using
the method described by Li et al. [55].

The stretching force Fstretch
i between neighboring particle i and j obeys Hooke’s law,

Fstretch
i = −k

∑
j

(lij − l)2, i =
⎧⎨⎩ 1; j = 2

2,3, . . . ,N − 1; j = i ± 1
N ; j = N − 1

. (B6)

where (li j−l) is the deviation of the distance from the equilibrium distance and the constant k is set to 5.0 × 10−3 N/m which is
large enough to approximate an inextensible filament.

For the stochastic term corresponding to Brownian motion, different approaches [44,56,57] have been reported to represent
thermal fluctuations both qualitatively and quantitatively. Here we utilize a second-order Brownian dynamics algorithm [44] to
compute the stochastic displacement, �xi , of the colloidal particles that qualitatively represents the thermal motion:

r ′
i (t + �t) = r i (t) +

(
�t

kBT

) N∑
j=1

Dij · (
Fj

mag + Fj
bend + Fj

constr
) + N (0, 2Dt), (B7a)

�xi = r i (t + �t) − r ′
i (t + �t) =

(
�t

kBT

) N∑
j=1

Dij · (
Fj

′ − Fj
mag − Fj

bend − Fj
constr), (B7b)
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where the diffusion constant D = kBT /6πηa, and Fj
′ is the forces calculated for the conformation r ′

i (t + �t) calculated in
Eq. (B7a).
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