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A switching diffusion process (SDP) is a widely used stochastic model in physics and biology, especially for
molecular motors that exhibit a discrete internal chemical kinetics as well as a continuous external mechanical
motion. The nonequilibrium thermodynamics of switching diffusion processes has not been extensively studied
yet. In the present paper, we propose the decomposition of the entropy production rate in one-dimensional SDPs,
based on the flux decomposition. However, similar decompositions of the housekeeping heat dissipation rate
and free energy dissipation rate cannot guarantee the non-negativity of each decomposed component. Hence, we
modify this decomposition with the flow of exponential relative information under steady-state fluxes, resulting
in another decomposition with all non-negative components. Furthermore, we also provide the nonequilibrium
thermodynamics of one-dimensional SDPs under the perspectives of coarse -graining and exchange of information
between the chemical kinetics and mechanical motion, resulting in several other decompositions of entropy
production rate. Finally, we generalize all the results to high-dimensional SDPs with a more general mathematical
treatment.
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I. INTRODUCTION

In the past 25 years, the modeling of molecular motors has
drawn a great amount of attention because of the tremendous
progress of experimental techniques, which has enabled the
monitoring of single biological molecules in aqueous solutions
at room temperature [1–8]. Generally, molecular motors are
microscopic objects (motor proteins) that unidirectionally
move along one-dimensional periodic structures, converting
chemical energy to mechanical work [9,10].

The chemical kinetics of an individual molecular mo-
tor, i.e., the transition between the different inner chemi-
cal (conformational) states, can be modeled by the master
equation

dpi(t)

dt
=

∑
j �=i

[qjipj (t) − qijpi(t)], i = 1,2, . . . ,N, (1)

where pi(t) is the probability distribution over chemical states
i = 1,2, . . . ,N of the system and qij is the transition rate from
chemical state i to chemical state j . On the other hand, the
unidirectional motion of an individual molecular motor can be
modeled by the Langevin equation

γ ẋ = −∂U (x)

∂x
+ f + ξ (t),
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where ξ (t) represents Gaussian white noise with intensity
2γ kBT , γ is the friction constant, f is the nonconservative
force, and we take the mass equal to 1. The probability
distribution p(x,t) of the position x(t) is governed by the
Fokker-Planck equation (Kolmogorov forward equation)

∂p(t,x)

∂t
= ∂

∂x

(
kBT

γ

∂p(t,x)

∂x
− − ∂U (x)

∂x
+ f

γ
p(t,x)

)
. (2)

However, the internal chemical kinetics and external mechani-
cal dynamics should be combined into one framework in order
to model the chemomechanical dynamics of a molecular motor
[3]. Mathematically, this combination leads to a switching
diffusion process (SDP) [11–26]. An SDP is a two-component
process Y (t) = (X(t),α(t)) with a continuous component X(t)
and a discrete component α(t) [13], where X(t) evolves
according to the diffusion process specified by the drift and
diffusion coefficients at given discrete state α(t), the alteration
of which indicates the switching.

The stochastic theory of nonequilibrium thermodynamics
in pure jumping processes (master-equation systems) and pure
diffusion processes has been established over the past two
decades [27,28]. The second law of thermodynamics is always
expressed as the non-negativity of the entropy production rate
and it vanishes if and only if the stochastic process is time
reversible. Generally, there are two different approaches to
studying the nonequilibrium thermodynamics of stochastic
processes. One is the fluctuation relation approach, in which
the entropy production can be regarded as a Kullback-Leibler
divergence between a process and suitable time reversal [29,30]
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and this fact can be used to refine the Clausius inequality by
applying the theory of optimal transport [31–33]. The other
is the approach focusing on the decomposition of the entropy
production rate, resulting also in more refined forms of the
second law [34–39].

In the present paper, we follow the second approach. The
broad goal with which we are concerned here is to develop
the mathematical structure of the nonequilibrium thermody-
namics of SDPs, especially focusing on the decomposition
of the entropy production rate and the refined second law
of thermodynamics. The dynamics of the switching diffusion
model already has a very clear decomposition of chemical
kinetics and mechanical diffusion. So we wonder whether
the corresponding thermodynamics also has such a clear
decomposition and whether such a decomposition will lead
to more refined second law of thermodynamics.

We answer these questions from two different perspec-
tives. One is the natural decomposition based on the flux
decomposition, because in SDPs, the fluxes between different
chemical states and those along the mechanical motion are
well defined and can be easily addressed separately. How-
ever, the decompositions of the housekeeping heat dissipation
rate and the free energy dissipation rate based on the flux
decomposition cannot give rise to non-negative components.
Hence, we modify these decompositions with the flow of
the exponential relative information under steady-state fluxes,
resulting in another decomposition with only non-negative
components.

The other perspective is from analyzing the nonequilibrium
thermodynamics of coarse-grained dynamics. Coarse graining
is a method that integrates groups of microscopic states
together, forming mesoscopic states, through appropriate regu-
lations such as different time scales [40–42] and limitations of
the experimental approach [43,44]. Applying the frameworks
of nonequilibrium thermodynamics under coarse graining [45],
we carefully investigate the nonequilibrium thermodynamics
for the cases where only the mechanical motion or chemical
kinetics of an SDP can be observed, identical to the approach
that has been used in experiments. The entropy production
rate then is decomposed into three non-negative terms, one
of which is equal to one of the decomposed components
obtained using flux decomposition. Finally, we apply the
framework of information thermodynamics [46,47] to provide
the expressions for the information flow in SDPs.

The structure of this paper is organized as follows. In Sec. II
we define the one-dimensional SDP and introduce the flux
decomposition. In Sec. III the decomposition of the entropy
production rate and several other thermodynamic quantities
are investigated in one-dimensional SDP. In Sec. IV the coarse-
grained dynamics of one-dimensional SDPs is given and the
corresponding decomposition of the entropy production rate
and information thermodynamics are studied. Sections V–VII
discuss the case of high-dimensional SDPs, in which the
results are parallel to the case of one-dimensional SDPs, but
with more general and detailed mathematical treatments. The
one-dimensional part (Secs. II–IV) is for general readers, em-
phasizing the physics, and one can skip the high-dimensional
part (Secs. V–VII) without losing the physics; in contrast, the
high-dimensional part is for experts who are interested in the
more general mathematical treatment, which is not completely

a straightforward generalization of the one-dimensional part
and needs more careful derivations.

II. ONE-DIMENSIONAL SDP AND FLUX
DECOMPOSITION

A one-dimensional SDP Y (t) = (X(t),α(t)) can be used to
model a single-motor protein moving unidirectionally along a
filament, converting chemical energy from adenosine triphos-
phate hydrolysis in an aqueous solution to mechanical work,
where the continuous component X(t) is one dimensional
and the discrete component α(t) has a finite state space of
M = {1,2, . . . ,N}. This SDP satisfies [13,48]

dX(t) = b(X(t),α(t))dt + σ (X(t),α(t))dw(t), (3)

P (α(t + �t) = j |α(t) = i,X(s),α(s),s � t)

= qij (X(t))�t + o(�t) for i �= j, (4)

where b(x,i), σ (x,i), and qij (x) are smooth and bounded on
R and the matrix Q = qij (x) is conservative for every x ∈ R,
i.e.,

qii(x) = −
∑
j �=i

qij (x) for any i ∈ M.

Governed by Eq. (3), the continuous component X(t) should
evolve as a diffusion process, given a frozen α(t) = i, with
the drift coefficient b(X(t),i) and the diffusion coefficient
σ 2(X(t),i). The discrete component α(t), according to Eq. (4),
is a jumping process with a random transition-probability rate
qij (X(t)) from state i to j , given X(t).

The stochastic integral σ (X(t),α(t))dw(t) in (3) is in the
anti-Itô form [27,49,50], which is defined through the Fokker-
Planck equation satisfied by the joint probability p(t,x,i) of
the motor protein with internal state i and external position x

at time t [3,13,21],

∂p(t,x,i)

∂t
= ∂

∂x

(
1

2
σ 2(x,i)

∂p(t,x,i)

∂x
− b(x,i)p(t,x,i)

)

+
N∑

j=1

p(t,x,j )qji(x) for any x ∈ R,i ∈ M.

(5)

The stationary distribution of Y (t) is a unique probability
distribution density π (x,i) that cancels the right-hand side of
(5), i.e.,

∂

∂x

(
1

2
σ 2(x,i)

∂π (x,i)

∂x
− b(x,i)π (x,i)

)

+
N∑

j=1

π (x,j )qji(x) = 0 for any x ∈ R,i ∈ M. (6)

The state space of SDP Y (t) = (X(t),α(t)), namely,
R × M , could be recognized as N parallel lines,
{state 1,state 2, . . . ,state N}, indexed by the chemical state i

of the motor. Then Y (t) could be understood as N diffusion
processes on N different parallel lines [13]. As shown in Fig. 1
for an illustration of the trajectory with N = 4, the process
is initially at (X(0),α(0)) = (x,1), diffusing along the line
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FIG. 1. Sample path of the SDP Y (t) = (X(t),α(t)) with N = 4.

of state 1 for a random time τ1, which is the sojourn time in
state 1 of the jumping process. Then the state α(t) switches
to state 3, with the drift and diffusion coefficients determined
by α(t) = 3. The process wanders along the line of state 3
until another jumping time τ2, then switches to state 2, and
so on. The illustration makes it clear that the fluxes of Y (t)
should have two different directions, moving along the lines
due to the subprocess of diffusion (mechanical dynamics)
and switching among the chemical states according to the
subprocess of jumping (chemical kinetics).

Based on the two different subprocesses, we can define
two fluxes accordingly, i.e., J mech

i (t,x), named the mechanical
flux, is the flux due to diffusion and J chem

x (t,i), named the
chemical flux, is the flux due to chemical states jumping. Then
the Fokker-Planck equation (5) could be rewritten as

∂p(t,x,i)

∂t
= − ∂

∂x
J mech

i (t,x) + J chem
x (t,i)

= − ∂

∂x
J mech

i (t,x) +
∑
j �=i

J chem
x,ji (t)

for any x ∈ R,i ∈ M, (7)

in which

J mech
i (t,x) = b(x,i)p(t,x,i) − 1

2
σ 2(x,i)

∂p(t,x,i)

∂x
,

J chem
x,ji (t) = p(t,x,j )qji − p(t,x,i)qij (x)

for any x ∈ R and i,j ∈ M, (8)

where J chem
x,ji (t) is the net flux from chemical state j to

chemical state i at position x. At the steady state, the sta-
tionary fluxes Jmech

i (x) = b(x,i)π (x,i) − 1
2σ 2(x,i) ∂π(x,i)

∂x
and

Jchem
x,ji = π (x,j )qji − π (x,i)qij (x) would cancel out each other

according to Eq. (7),

∂Jmech
i (x)

∂x
= Jchem

x (i) =
∑
j �=i

Jchem
x,ji . (9)

It has been proved that a stationary SDP Y (t) is time
reversible if and only if there exists a function V (x,i) such
that 2b(x,i)

σ 2(x,i) = − ∂V (x,i)
∂x

, where V (x,i) satisfies [21]

N∑
i=1

∫ +∞

−∞
e−V (x,i)dx < ∞

and

e−V (x,i)qij (x) = e−V (x,j )qji(x) for any x ∈ R, i,j ∈ M.

In this case, V (x,i) = − ln π (x,i) + C, in which C is a
constant and

2b(x,i)

σ 2(x,i)
= ∂ ln π (x,i)

∂x
, π (x,i)qij (x) = π (x,j )qji(x), (10)

which is the detailed balance relation of the SDP [21]. The
detailed balance (10) is equivalent to the vanishing of all the
fluxes at the steady state, i.e.,

Jmech
i (x) ≡ 0, Jchem

x,ji ≡ 0 (11)

for all x ∈ R and i ∈ M , which is indeed the equilibrium
state.

III. DECOMPOSITION OF THE ENTROPY PRODUCTION
RATE IN A ONE-DIMENSIONAL SDP

A. Decomposition based on flux decomposition

Throughout the present work, kB = 1 and the temperature
T is assumed to be a constant. We can define the entropy of
the whole system as

S(t) = −
N∑

i=1

∫ +∞

−∞
p(t,x,i) ln p(t,x,i)dx. (12)

For a frozen chemical state i, the evolution of the system is
a pure diffusion process, so we can define the force along
the diffusion direction of the SDP following the definition
of force for a pure diffusion process, i.e., F mech

i (x) = 2b(x,i)
σ 2(x,i)

[27,28]. Similarly, the system follows the master equation at
a frozen position x, so we can define the force between the
chemical states as F chem

ij (x) = ln qij (x)
qji (x) [27,28]. It is widely

known that the change of entropy dS(t) could be decom-
posed into two different terms [51–54]. So we can derive
that

dS(t)

dt
=−

N∑
i=1

∫ +∞

−∞
J mech

i (t,x)
∂ ln p(t,x,i)

∂x
dx

+
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)

p(t,x,j )
dx

= ep(t) − hd (t), (13)

where

ep(t) =
N∑

i=1

∫ +∞

−∞

2
[
J mech

i (t,x)
]2

σ 2(x,i)p(t,x,i)
dx

+
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
dx (14)

is the instantaneous entropy production rate at time t [21,55]
and

hd (t) =
N∑

i=1

∫ +∞

−∞
J mech

i (t,x)F mech
i (x)dx

+
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t)F chem

ij (x)dx (15)
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is due to the exchange of heat with the exterior, called the
heat dissipation rate. By convention, we take the sign of the
heat to be positive when it flows from the system to the heat
bath. The total heat transport with the surroundings is given by
Qtot(t) = T hd (t).

According to the flux decomposition, the entropy change
could be separated into two different contributions in a straight-
forward manner as

dS(t)

dt
= Ṡ(1)(t) + Ṡ(2)(t),

where

Ṡ(1)(t) = −
N∑

i=1

∫ +∞

−∞
J mech

i (t,x)
∂ ln p(t,x,i)

∂x
dx

is the entropy change due to the mechanical flux and

Ṡ(2)(t) =
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)

p(t,x,j )
dx

is the entropy change according to the chemical flux. Also ep(t)
can be decomposed into two components according to the flux
decomposition

ep(t) = emech
p (t) + echem

p (t),

where

emech
p (t) =

N∑
i=1

∫ +∞

−∞

2
[
J mech

i (t,x)
]2

σ 2(x,i)p(t,x,i)
dx (16)

is the entropy production arising from the mechanical flux and

echem
p (t) = ∫ +∞

−∞
1
2

∑
i �=j J chem

x,ij (t) ln p(t,x,i)qij (x)
p(t,x,j )qji (x)dx (17)

is the contribution of the chemical flux. It is easy to see that

emech
p (t) � 0, echem

p (t) � 0, ep(t) � 0.

The equality ep(t) = 0 is equivalent to emech
p (t) = echem

p (t) = 0
and holds if and only if the system, which is at the steady state,
satisfies detailed balance (10). Similarly, the flux decompo-
sition also leads to the decomposition of the heat dissipation
rate

hd (t) = hmech
d (t) + hchem

d (t),

where

hmech
d (t) =

N∑
i=1

∫ +∞

−∞
J mech

i (t,x)F mech
i (x)dx,

hchem
d (t) =

∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t)F chem

ij (x)dx.

The above decompositions are consistent with each other,
namely,

Ṡ(1)(t) = emech
p (t) − hmech

d (t),

Ṡ(2)(t) = echem
p (t) − hchem

d (t),

followed by two more detailed Clausius inequalities

T Ṡ(1)(t) + Qmech
tot (t) = T Ṡ(1)(t) + T hmech

d (t)

= T emech
p (t) � 0,

T Ṡ(2)(t) + Qchem
tot (t) = T Ṡ(2)(t) + T hchem

d (t)

= T echem
p (t) � 0.

B. Three faces of the second law

During the past ten years, it has been found that in both
master equation and diffusion systems, the entropy production
rate can be decomposed into two non-negative terms, which are
the housekeeping heat dissipation rate Qhk(t) and the free en-
ergy dissipation rate fd (t) [34–36,56,57]. The non-negativity
of ep(t), Qhk(t), and fd (t) is called the three faces of the second
law [34,57]. We determine that the same decomposition

T ep(t) = Qhk(t) + fd (t)

and the non-negativity of each term also hold in SDPs (see
Sec. VI B for the detailed derivation and proof in the case of
high dimension), where the housekeeping heat dissipation rate
is given by

Qhk(t) =
N∑

i=1

T

∫ +∞

−∞
J mech

i (t,x)
2Jmech

i (x)

σ 2(x,i)π (x,i)
dx

+
∫ +∞

−∞

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx (18)

and the free energy dissipation rate is given by

fd (t) =
N∑

i=1

T

∫ +∞

−∞
J mech

i (t,x)
∂ ln π(x,i)

p(t,x,i)

∂x
dx

+
∫ +∞

−∞

T

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx. (19)

The reason why we call fd (t) the free energy dissipation rate
is that −fd (t) is just the time derivative of the relative entropy,
which is a generalization of the free energy, i.e.,

dF (t)

dt
= −fd (t), (20)

where

F (t) = T

N∑
i=1

∫ +∞

−∞
p(t,x,i) ln

p(t,x,i)

π (x,i)
dx. (21)

The housekeeping heat dissipation rate Qhk(t) = 0 if and
only if the detailed balance relation (10) is satisfied and has
nothing to do with the transient distribution p(t,x,i) (see
Sec. VI B for the detailed derivation and proof in the case
of high dimension). Breaking of the detailed balance relation
(10) indeed implies that the system is driven by either the
nonconservative force or gradient of chemical potentials [21].
So Qhk(t) implies the nonequilibrium essence of the system.
On the other hand, fd (t) = 0 if and only if the system is at the
steady state. So the positivity of fd (t) implies the spontaneous
nonstationarity of the system.

We now derive the extended Clausius inequality. Defining
Qex(t) = Qtot(t) − Qhk(t), we then obtain

T dS(t) + Qex(t) = T ep(t) − Qtot(t) + Qex(t)

= T ep(t) − Qhk(t) = fd (t) � 0. (22)
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C. Decomposition of the housekeeping heat dissipation
rate and the free energy dissipation rate

Due to the flux decomposition, Qhk(t) could naturally be
decomposed into two parts Qmech

hk (t) and Qchem
hk (t):

Qmech
hk (t) =

N∑
i=1

T

∫ +∞

−∞
J mech

i (t,x)
2Jmech

i (x)

σ 2(x,i)π (x,i)
dx, (23)

Qchem
hk (t) =

∫ +∞

−∞

T

2

∑
i �=j

J chem
x,ij (t) ln

qij (x)π (x,i)

qji(x)π (x,j )
dx. (24)

However, the non-negativity of Qmech
hk (t) and Qchem

hk (t) cannot
be guaranteed. So we would like to search for another decom-
position with both non-negative components.

We note that for a pure diffusion process described by
dX(t) = b(x)dt + σ (x)dw(t), the housekeeping heat dissipa-
tion rate can be rewritten as [35]

T

∫ +∞

−∞

2
[
b(x) − 1

2σ 2(x) ∂ ln π(x)
∂x

]2

σ 2(x,i)
p(t,x)dx,

in which [b(x) − 1
2σ 2(x) ∂ ln π(x)

∂x
]π (x) is the steady-state flux.

Therefore, we can similarly define a modified version of
the housekeeping heat dissipation rate along the diffusion
component of the SDP system,

Q̃mech
hk (t) =

N∑
i=1

T

∫ +∞

−∞

2
[Jmech

i (x)
π(x,i)

]2

σ 2(x,i)
p(t,x,i)dx � 0,

and the remainder is the modified housekeeping heat dissipa-
tion rate due to jumping between the chemical states, given
by

Q̃chem
hk (t) = Qhk(t) − Q̃mech

hk (t)

=
∫ +∞

−∞
T

∑
i,j

p(t,x,i)qij (x)

×
[

ln
π (x,i)qij (x)

π (x,j )qji(x)
+ π (x,j )qji(x)

π (x,i)qij (x)

]
dx,

which is also non-negative (see Sec. VI C for the detailed
derivation and proof in the case of high dimension). Here
Q̃mech

hk (t) = Q̃chem
hk (t) = 0 if and only if the system satisfies the

detailed balance relation (10). Therefore,

Qhk(t) = Q̃chem
hk (t) + Q̃mech

hk (t) (25)

is exactly the decomposition of housekeeping heat dissipation
rate that we are looking for. This is one of the main results in
the present paper.

We then turn to studying the difference between Q̃mech
hk (t)

and Qmech
hk (t), i.e.,

Qmech
hk (t) − Q̃mech

hk (t)

= T

N∑
i=1

∫ +∞

−∞
Jmech

i (x)
∂

p(t,x,i)
π(x,i)

∂x
dx

= −T

2

∫ +∞

−∞

∑
i �=j

Jchem
x,ij

[
p(t,x,j )

π (x,j )
− p(t,x,i)

π (x,i)

]
dx. (26)

After defining the relative information of each state (x,i)
at time t as IR(t,x,i) = ln p(t,x,i)

π(x,i) , the difference between

Q̃mech
hk (t) and Qmech

hk (t) can be regarded as the flow of expo-
nential relative information under steady-state fluxes along
the mechanical diffusion or between different chemical states.
More precisely, we define the flow of exponential relative
information under the steady-state flux along the mechanical
diffusion as

J mech
ERI (t) = T

N∑
i=1

∫ +∞

−∞
Jmech

i (x)
∂

p(t,x,i)
π(x,i)

∂x
dx

and that between different chemical states as

J chem
ERI (t) = T

2

∫ +∞

−∞

∑
i,j

Jchem
x,ij

[
p(t,x,j )

π (x,j )
− p(t,x,i)

π (x,i)

]
dx.

According to Eq. (26), we obtain J mech
ERI (t) = −J chem

ERI (t). It is
easy to derive that, for a pure diffusion process or master
equation dynamics, J mech

ERI (t) and J chem
ERI (t) always vanish for

each t . In conclusion, we found two decompositions of Qhk(t),

Qhk(t) = Qmech
hk (t) + Qchem

hk (t)

= Q̃mech
hk (t) + Q̃chem

hk (t),

in which

Q̃chem
hk (t) = Qmech

hk (t) − J mech
ERI (t) � 0,

Q̃chem
hk (t) = Qchem

hk (t) − J chem
ERI (t) � 0.

Based on the flux decomposition, we can also decompose
the free energy dissipation rate fd (t), i.e., fd (t) = f mech

d (t) +
f chem

d (t), where

f mech
d (t) =

N∑
i=1

T

∫ +∞

−∞
J mech

i (t,x)
∂ ln π(x,i)

p(t,x,i)

∂x
dx,

f chem
d (t) =

∫ +∞

−∞

T

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx.

The f mech
d (t) and f chem

d (t) are also not always non-negative.
However, after modifying them also by the flows of exponential
relative information J mech

ERI (t) and J chem
ERI (t), we obtain two non-

negative components (see Sec. VI C for the detailed derivation
and proof in the case of high dimension)

f̃ mech
d (t) = f mech

d (t) − J mech
ERI (t)

=
N∑

i=1

T

∫ +∞

−∞

σ 2(x,i)

2

[
∂ ln π(x,i)

p(t,x,i)

∂x

]2

p(t,x,i)dx

� 0,

f̃ chem
d (t) = f chem

d (t) − J chem
ERI (t)

=
∫ +∞

−∞
T

∑
i,j

p(t,x,i)qij (x)

×
[

ln
p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
+ p(t,x,j )π (x,i)

p(t,x,i)π (x,j )

]
dx

� 0,
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and fd (t) = f̃ mech
d (t) + f̃ chem

d (t). Here f̃ mech
d (t) = f̃ chem

d (t) =
0 if and only if the system is at the steady state.

IV. ONE-DIMENSIONAL SDP UNDER COARSE GRAINING
AND INFORMATION THERMODYNAMICS

A. Coarse-grained dynamics

Applying the framework of nonequilibrium thermodynam-
ics under coarse graining [45], we are interested in the
nonequilibrium thermodynamics in terms of only the dynamics
of the transitions among the chemical states or unidirectional
mechanical diffusion. The probability of the system at position
x is given by

p(t,x) =
N∑

i=1

p(t,x,i). (27)

Summing Eq. (5) over i, we obtain the Fokker-Planck equation
for the dynamics of the mechanical motion only

∂p(t,x)

∂t
= ∂

∂x

(
1

2
Ã(t,x)

∂p(t,x)

∂x
− b̃(t.x)p(t,x)

)
, (28)

where

Ã(t,x) =
N∑

i=1

P(t,i|x)σ 2(x,i),

b̃(t,x) =
N∑

i=1

(
b(x,i)P(t,i|x) − 1

2
σ 2(x,i)

∂P(t,i|x)

∂x

)
,

and

P(t,i|x) = p(t,x,i)

p(t,x)

is the probability of being in chemical state i conditioned on
position x. On the other hand, the probability of the system in
chemical state i is given by

pi(t) =
∫ +∞

−∞
p(t,x,i)dx, (29)

followed by the dynamics of transitions among chemical states
only given by

dpi(t)

dt
=

N∑
j=1

q̃j i(t)pj (t), (30)

in which

q̃j i(t) =
∫ +∞

−∞
P(t,x|j )qji(x)dx, (31)

where

P(t,x|i) = p(t,x,i)

pi(t)
(32)

is the probability of being at positionx conditioned on chemical
state i.

B. Nonequilibrium thermodynamics of the continuous
mechanical diffusion only

The total dynamics of an SDP is decomposed into three dif-
ferent contributions: mesostate dynamics described by p(t,x)
under coarse graining, microstate dynamics for every fixed
mesostate x according toP(t,i|x), and the remaining dynamics
that characterizes the difference of mechanical diffusions under
different chemical states. We use the subscripts meso, micro,
and rem to represent the three different dynamics components.

For the dynamics of the mesostates, the entropy is given by

Smech
meso (t) = −

∫ +∞

−∞
p(t,x) ln p(t,x)dx. (33)

The microscopic entropy of a mesostate x is defined as

S(t,x) = −
N∑

i=1

P(t,i|x) lnP(t,i|x). (34)

We then obtain the total microstate entropy of the system as

Smech
micro(t) =

∫ +∞

−∞
S(t,x)p(t,x)dx

= −
∫ +∞

−∞

N∑
i=1

p(t,x,i) lnP(t,i|x)dx. (35)

It turns out that the remaining dynamics has no contribution to
the total entropy of the system which is given by

S(t) = Smech
meso (t) + Smech

micro(t). (36)

By making use of the evolution of the dynamics of the
mesostates (28) and the dynamics of the original SDP (7),
we can decompose the evolution of the total entropy into
three contributions according to three dynamics components
(see Sec. VII B for the detailed derivation in the case of high
dimension)

dS(t)

dt
= Ṡ(1,mech)(t) + Ṡ(2,mech)(t) + Ṡ(3,mech)(t). (37)

The first term Ṡ(1,mech)(t) denotes the entropy change due to
the coarse-grained mesostate dynamics and it is just the time
evolution of the coarse-grained mesostate dynamics Smech

meso (t),
i.e.,

Ṡ(1,mech)(t) = −
∫ +∞

−∞

∂p(t,x)

∂t
ln p(t,x)dx = dSmech

meso (t)

dt
.

(38)

The second one Ṡ(2,mech)(t) is the entropy change of microstate
dynamics and is evaluated as the ensemble average of the
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microstates entropy change within each mesostate,

Ṡ(2,mech)(t)

=
∫ +∞

−∞
p(t,x)

⎡
⎣∑

i �=j

P(t,i|x)qij (x) ln
P(t,i|x)

P(t,j |x)

⎤
⎦dx.

It is easy to derive that the entropy change of the microstate
dynamics is just the entropy change arising from the chemical
flux in Sec. III A, i.e.,

Ṡ(2,mech)(t) = Ṡ(2)(t).

The third contribution Ṡ(3,mech)(t) is the entropy change due to
the remaining dynamics

Ṡ(3,mech)(t) = −
∫ +∞

−∞
p(t,x)

×
(

N∑
i=1

J(t,i|x)
∂ lnP(t,i|x)

∂x

)
dx,

where

J(t,i|x) = b(x,i)P(t,i|x) − 1

2
σ 2(x,i)

∂P(t,i|x)

∂x

is the diffusion flux according to the conditional probability
P(t,i|x). It is very clear that both the second and third contri-
butions arise from the transitions between the microstates, i.e.,

Ṡ(2,mech)(t) + Ṡ(3,mech)(t) = dSmech
micro(t)

dt
, (39)

which together contain all the information of entropy change
that we lose under coarse graining.

We can also decompose the entropy production rate into
three contributions according to the mesostate, microstate,
and remaining subsystems (see Sec. VII B for the detailed
derivation in the case of high dimension)

ep(t) = emech
p,meso(t) + emech

p,micro(t) + emech
p,rem(t), (40)

in which

emech
p,meso(t) =

∫ +∞

−∞

2
[
J mech

meso (t,x)
]2

Ã(t,x)p(t,x)
dx, (41)

where J mech
meso (t,x) = b̃(t.x)p(t,x) − 1

2 Ã(t,x) ∂p(t,x)
∂x

is the diffu-
sion flux of the coarse-grained dynamics of the mesostates,

emech
p,micro(t) =

∫ +∞

−∞
p(t,x)

×
⎡
⎣∑

i �=j

P(t,i|x)qij (x) ln
P(t,i|x)qij (x)

P(t,j |x)qji(x)

⎤
⎦dx

is equal to echem
p (t), and

emech
p,rem(t) = emech

p (t) − emech
p,meso(t)

=
∫ +∞

−∞
2

[
N∑

i=1

(J(t,i|x))2

P(t,i|x)σ 2(x,i)
− b̃2(t,x)

Ã(t,x)

]

× p(t,x)dx

arises from the difference between the diffusion processes
caused by the transition between chemical states [57]. We
can prove that emech

p,rem(t) � 0 (see Sec. VII B for the detailed
derivation in the case of high dimension). Therefore, the
three contributions of the total entropy production rate are all
non-negative, i.e.,

emech
p,meso(t) � 0, emech

p,micro(t) � 0, emech
p,rem(t) � 0. (42)

Since emech
p,micro(t) + emech

p,rem(t) � 0, we would underestimate the
entropy production rate of the total system after coarse grain-
ing.

The heat dissipation rate can also be decomposed into three
terms

hd (t) = hmech
d,meso(t) + hmech

d,micro(t) + hmech
d,rem(t), (43)

where

hmech
d,meso(t) =

∫ +∞

−∞
J mech

meso (t,x)F mech
meso (t,x)dx,

hmech
d,micro(t) =

∫ +∞

−∞
p(t,x)

[
1

2

∑
i �=j

(P(t,i|x)qij (x)

− P(t,j |x)qji(x)) ln
qij (x)

qji(x)

]
dx

=hchem
d (t),

hmech
d,rem(t) =hmech

d (t) − hmech
d,meso(t)

=
∫ +∞

−∞

[
N∑

i=1

J mech
i (t,x)F mech

i (t,x)

− J mech
meso (t,x)F mech

meso (t,x)

]
dx,

whereF mech
meso (t,x) = 2b̃(t,x)

Ã(t,x)
is the force along the coarse-grained

diffusion system. The above decompositions are consistent
with each other, i.e.,

Ṡ(1,mech)(t) = emech
p,meso(t) − hmech

d,meso(t),

Ṡ(2,mech)(t) = emech
p,micro(t) − hmech

d,micro(t), (44)

Ṡ(3,mech)(t) = emech
p,rem(t) − hmech

d,rem(t),

followed by the more detailed Clausius inequalities

T Ṡ(1,mech)(t) + Qmech
tot,meso(t) = T emech

p,meso(t) � 0,

T Ṡ(2,mech)(t) + Qmech
tot,micro(t) = T emech

p,micro(t) � 0,

T Ṡ(3,mech)(t) + Qmech
tot,rem(t) = T emech

p,rem(t) � 0.

C. Nonequilibrium thermodynamics of the discrete
chemical kinetics only

Similar to the preceding section, we can write

S(t) = Schem
meso (t) + Schem

micro(t), (45)
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where

Schem
meso (t) = −

N∑
i=1

pi(t) ln pi(t) (46)

is the entropy due to the dynamics of mesostates and

Schem
micro(t) =

N∑
i=1

S(t,i)pi(t) (47)

is the ensemble average of the entropy within each mesostate

S(t,i) = −
∫ +∞

−∞
P(t,x|i) lnP(t,x|i)dx. (48)

Then (see Sec. VII C for the detailed derivation in the case of
high dimension)

dS(t)

dt
= Ṡ(1,chem)(t) + Ṡ(2,chem)(t) + Ṡ(3,chem)(t), (49)

in which

Ṡ(1,chem)(t) = 1

2

∑
i �=j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
pi(t)

pj (t)

= dSchem
meso (t)

dt
, (50)

Ṡ(2,chem)(t) =
N∑

i=1

pi(t)
∫ +∞

−∞
−Ji(t,x)

∂ lnP(t,x|i)
∂x

dx

= Ṡ(1)(t), (51)

where Ji(t,x) = b(x,i)P(t,x|i) − 1
2σ 2(x,i) ∂P(t,x|i)

∂x
, and

Ṡ(3,chem)(t) = dSchem
micro(t)

dt
− Ṡ(2,chem)(t)

=
∑
i �=j

pi(t)
∫ +∞

−∞
P(t,x|i)qij (x)

× ln
P(t,x|i)
P(t,x|j )

dx. (52)

The entropy production rate ep(t) can also be decomposed into
three contributions (see Sec. VII C for the detailed derivation
in the case of high dimension)

ep(t) = echem
p,meso(t) + echem

p,micro(t) + echem
p,rem(t), (53)

in which

echem
p,meso(t) = 1

2

∑
i �=j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
pi(t)q̃ij (t)

pj (t)q̃j i(t)
,

(54)

echem
p,micro(t) =

N∑
i=1

pi(t)
∫ +∞

−∞

2(Ji(t,x))2

σ 2(x,i)P(t,x|i)dx

= emech
p (t), (55)

and

echem
p,rem(t) =

∑
i �=j

pi(t)q̃ij (t)Dij (t), (56)

where

Dij (t) =
∫ +∞

−∞
fij (t,x) ln

fij (t,x)

fji(t,x)
dx,

fij (t,x) = P(t,x|i)qij (x)

q̃ij (t)
.

We can prove that (see Sec. VII C for the detailed proof in the
case of high dimension)

Dij (t) � 0;

therefore,

echem
p,meso(t) � 0, echem

p,micro(t) � 0, echem
p,rem(t) � 0.

Finally, we give the corresponding decomposition of the heat
dissipation rate

hd (t) = hchem
d,meso(t) + hchem

d,micro(t) + hchem
d,rem(t), (57)

where

hchem
d,meso(t) = 1

2

∑
i,j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
q̃ij (t)

q̃j i(t)
, (58)

hchem
d,micro(t) =

N∑
i=1

pi(t)
∫ +∞

−∞
Ji(t,x)F mech

i (x)dx

= hmech
d (t), (59)

hchem
d,rem(t) =

∑
i �=j

pi(t)q̃ij (t)
∫ +∞

−∞
fij (t,x)

× ln
fij (t,x)P(t,x|j )

fji(t,x)P(t,x|i) dx, (60)

followed by

Ṡ(1,chem)(t) = echem
p,meso(t) − hchem

d,meso(t),

Ṡ(2,chem)(t) = echem
p,micro(t) − hchem

d,micro(t),

Ṡ(3,chem)(t) = echem
p,rem(t) − hchem

d,rem(t).

D. Information thermodynamics of a one-dimensional SDP

Applying the framework of information thermodynamics in
[46],

Smech
meso (t) + Schem

meso (t) − S(t) = I (t), (61)

in which I (t) denotes the mutual information [46]

I (t) =
N∑

i=1

∫ +∞

−∞
p(t,x,i) ln

p(t,x,i)

p(t,x)pi(t)
dx, (62)

which measures the correlations that quantify how much one
subsystem “knows” about the other. It should be noted that

I (t) � 0,

where I (t) = 0 if and only if the two subsystems are statisti-
cally independent.
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The evolution of I (t) describes a flow of information and
can be decomposed into two parts

dI (t)

dt
=

N∑
i=1

∫ +∞

−∞
J mech

i (t,x)
∂ lnP(t,i|x)

∂x
dx

−
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t) ln

P(t,x|i)
P(t,x|j )

dx.

We denote the two parts of information flow by İmech(t) and
İ chem(t), i.e.,

dI (t)

dt
= İmech(t) + İ chem(t), (63)

where

İmech(t) =
N∑

i=1

∫ +∞

−∞
J mech

i (t,x)
∂ lnP(t,i|x)

∂x
dx

= −Ṡ(3,mech)(t), (64)

İ chem(t) = −
∫ +∞

−∞

1

2

∑
i �=j

J chem
x,ij (t) ln

P(t,x|i)
P(t,x|j )

dx

= −Ṡ(3,chem)(t). (65)

Taking the derivative of Smech
meso (t) + Schem

meso (t) − S(t) = I (t), we
have

emech
p (t) = dSmech

meso (t)

dt
+ hmech

d (t) − İmech(t), (66)

echem
p (t) = dSchem

meso (t)

dt
+ hchem

d (t) − İ chem(t). (67)

At the steady state, the entropy change and total information
flow would vanish

dS(t)

dt
= 0,

dSmech
meso (t)

dt
= 0,

dSchem
meso (t)

dt
= 0,

and

İmech + İ chem = dI (t)

dt
= 0.

Defining İ = İ chem, we have İmech = −İ ; then Eqs. (66) and
(67) can be rewritten as

emech
p = hmech

d + İ � 0, (68)

echem
p = hchem

d − İ � 0, (69)

followed by hmech
d + hchem

d = emech
p + echem

p = ep, which is the
first law of thermodynamics.

It is well known that a molecular motor transforms the
chemical energy hchem

d to the mechanical energy hmech
d , which

implies that hchem
d > 0 and hmech

d < 0, but hchem
d − (−hmech

d ) >

0. Once İ > 0, according to (69), the chemical energy takes
the information flow İ as its lower bound hchem

d � İ and the
extracted mechanical energy −hmech

d has an upper bound İ ,
i.e., −hmech

d � İ according to (68).

V. HIGH-DIMENSIONAL SDP AND FLUX
DECOMPOSITION

In this section, we consider a d-dimensional SDP, i.e., X(t)
has a state space of Rd . The SDP (X(t),α(t)) satisfies [13]

dX(t) = b(X(t),α(t))dt + σ (X(t),α(t))dW (t), (70)

P (α(t + �t) = j |α(t) = i,X(s),α(s),s � t)

= qij (X(t))�t + o(�t) for i �= j, (71)

where b(·,·) : Rd × M → Rd is smooth; σ (·,·) : Rd × M →
Rd × Rd is smooth, nonsingular, and bounded matrix for
any x ∈ Rd and i ∈ M; and W (t) is an Rd -valued stan-
dard Brownian motion. Mathematically, we also need the
diffusion coefficients A(x,i) = σ (x,i)σT (x,i) satisfying [21]
the following conditions: (i) A(x,i) is positive definite and
bounded for any x ∈ Rd and i ∈ M and (ii) for the local ellipse
condition, for any x ∈ Rd and i ∈ M , there exists r(x,i) > 0
such that

d∑
k,l=1

akl(x,i)ξkξl � r(x,i)
d∑

k=1

ξ 2
k , (ξ1,ξ2, . . . ,ξd ) ∈ Rd .

The stochastic integral σ (X(t),α(t))dW (t) is in the anti-Itô
form [27,49,50], which is defined through the corresponding
Fokker-Planck equation [21]

∂p(t,x,i)

∂t
= ∇ ·

[
1

2
A(x,i)∇p(t,x,i) − b(x,i)p(t,x,i)

]

+
N∑

j=1

p(t,x,j )qji(x) for any x ∈ Rd , i ∈ M.

(72)

Note that this anti-Itô form is neither Stratonovich nor a post-
point stochastic integral in the high-dimensional case, although
it matches the postpoint integral in the one-dimensional case.
Its justification comes from the convergence theorem from
the underdamped second-order dynamics to the corresponding
overdamped limit [49,50]. Physically, it comes also from the
local fluctuation-dissipation relation.

In the high-dimensional case, an SDP could be described
as N different diffusion processes sitting on N parallel
d-dimensional planes. We can define the mechanical flux
J mech

i (t,x) and chemical flux J chem
x (t,i), as we have done for

one-dimensional case, such that

∂p(t,x,i)

∂t
= −∇ · J mech

i (t,x) + J chem
x (t,i), (73)

where

J mech
i (t,x) = b(x,i)p(t,x,i) − 1

2A(x,i)∇p(t,x,i), (74)

J chem
x (t,i) =

N∑
j=1

J chem
x,ji (t), (75)

J chem
x,ji (t) = p(t,x,j )qji(x) − p(t,x,i)qij (x). (76)
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At the steady state, the unique stationary distribution of the
SDP {π (x,i)} satisfies

∇ · Jmech
i (x) = Jchem

x (i) =
∑
j �=i

Jchem
x,ji , (77)

where Jmech
i (x) and Jchem

x,ji are the stationary fluxes given by the
diffusion component and the transition between the chemical
states, i.e.,

Jmech
i (x) = b(x,i)π (x,i) − 1

2A(x,i)∇π (x,i),

Jchem
x,ji = π (x,j )qji(x) − π (x,i)qij (x).

The detailed balance condition in the high-dimensional case is

2A−1(x,i)b(x,i) = ∇ ln π (x,i),

π (x,i)qij (x) = π (x,j )qji(x),
(78)

which is equivalent to

Jmech
i (x) ≡ 0, Jchem

x,ij ≡ 0 (79)

for any x ∈ Rd and i,j ∈ M .

VI. DECOMPOSITION OF THE ENTROPY PRODUCTION
RATE IN A HIGH-DIMENSIONAL SDP

A. Decomposition based on flux decomposition

The entropy of the system is defined as

S(t) = −
N∑

i=1

∫
Rd

p(t,x,i) ln p(t,x,i)dx. (80)

Then, by using the Fokker-Planck equation (72), we can derive

dS(t)

dt
= ep(t) − hd (t), (81)

where

ep(t) =
N∑

i=1

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]J mech
i (t,x)

}
p(t,x,i)

dx

+
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
dx (82)

is the instantaneous entropy production rate [21], and noting
that F mech

i (x) = 2A−1(x,i)b(x,i) and F chem
ij (x) = ln qij (x)

qji (x) are
the force along the diffusion and the force between chemical
states [27,28], we obtain

hd (t) =
N∑

i=1

∫
Rd

J mech
i (t,x) · F mech

i (x)dx

+
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t)F chem

ij (x)dx, (83)

which is due to the exchange of heat with the exterior and
is called the heat dissipation rate [52]. The total heat Qtot(t)
conducting with the surroundings is equivalent to the heat
dissipation rate hd (t):

Qtot(t) = T hd (t). (84)

The change of entropy dS(t) can be separated into the mechan-
ical and chemical components due to the decomposition of the
flux

dS(t)

dt
= Ṡ(1)(t) + Ṡ(2)(t),

where

Ṡ(1)(t) = −
N∑

i=1

∫
Rd

J mech
i (t,x) · ∇ ln p(t,x,i)dx,

Ṡ(2)(t) =
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)

p(t,x,j )
dx.

Similar to the one-dimensional case, we can derive that

ep(t) = emech
p (t) + echem

p (t),

where

emech
p (t) =

N∑
i=1

∫
Rd

J mech
i (t,x) · {[2A−1(x,i)]J mech

i (t,x)
}

× 1

p(t,x,i)
dx, (85)

echem
p (t) =

∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
dx, (86)

and

hd (t) = hmech
d (t) + hchem

d (t),

with

hmech
d (t) =

N∑
i=1

∫
Rd

J mech
i (t,x) · F mech

i (x)dx,

hchem
d (t) =

∫
Rd

1

2

∑
i �=j

J chem
x,ij (t)F chem

ij (x)dx.

It is easy to see that

emech
p (t) � 0, echem

p (t) � 0, ep(t) � 0 (87)

and the equalities hold if and only if the system satisfies the
detailed balance relation (78) and is at the steady state. Based
on these decompositions, the following more detailed Clausius
inequalities are satisfied:

T Ṡ(1)(t) + Qmech
tot (t) = T emech

p (t) � 0,

T Ṡ(2)(t) + Qchem
tot (t) = T echem

p (t) � 0.

B. Three faces of the second law

For a high-dimensional SDP system, we first give the
expressions of housekeeping heat dissipation rate Qhk(t) and
free energy dissipation rate fd (t):

Qhk(t) =
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {[2A−1(x,i)]Jmech

i (x)
}

π (x,i)
dx

+
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx, (88)
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fd (t) =
N∑

i=1

T

∫
Rd

J mech
i (t,x) ·

(
∇ ln

π (x,i)

p(t,x,i)

)
dx

+
∫
Rd

T

2

∑
i,j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx. (89)

The entropy production rate of the SDP system can be decom-
posed as T ep(t) = Qhk(t) + fd (t) and the non-negativity of
each term holds, which is called three faces of the second law
together with the non-negativity of ep(t) [34,57].

We give the derivation and proof as follows:

Qhk(t) + fd (t) =
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]Jmech
i (x)

}
π (x,i)

dx +
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx

+
N∑

i=1

T

∫
Rd

J mech
i (t,x) ·

(
∇ ln

π (x,i)

p(t,x,i)

)
dx +

∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx

=
N∑

i=1

T

∫
Rd

J mech
i (t,x) ·

[
2A−1(x,i)

Jmech
i (x)

π (x,i)
+ ∇ ln

π (x,i)

p(t,x,i)

]
dx

+
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t)

[
ln

π (x,i)qij (x)

π (x,j )qji(x)
+ ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)

]
dx

=
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,t)]J mech
i (t,x)

}
p(t,x,i)

dx +
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
dx

= T ep(t).

Next we can prove the non-negativity of Qhk(t) and fd (t),

Qhk(t) =
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]Jmech
i (x)

}
π (x,i)

dx +
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx

=
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]Jmech
i (x)

}
π (x,i)

dx −
N∑

i=1

T

∫
Rd

∇ · Jmech
i (x)

p(t,x,i)

π (x,i)
dx

+
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx +

N∑
i=1

T

∫
Rd

N∑
j=1

Jchem
x,ji

p(t,x,i)

π (x,i)
dx

=
N∑

i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]Jmech
i (x)

}
π (x,i)

dx +
N∑

i=1

T

∫
Rd

Jmech
i (x) · ∇p(t,x,i)

π (x,i)
dx

+
∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx +

∫
Rd

T

2

∑
i �=j

J chem
x,ij (t)

π (x,j )qji(x)

π (x,i)qij (x)
dx

=
N∑

i=1

T

∫
Rd

Jmech
i (x) · {

[2A−1(x,i)]Jmech
i (x)

}p(t,x,i)

π2(x,i)
dx+

∫
Rd

T
∑
i �=j

p(t,x,i)qij (x)

[
ln

π (x,i)qij (x)

π (x,j )qji(x)
+ π (x,j )qji(x)

π (x,i)qij (x)

]
dx

� 0,

where the second equality is due to

∇ · Jmech
i (x) = Jchem

x (i) =
N∑

j=1

Jchem
x,ji (90)

under the stationary distribution π (x,i), the third equality is obtained by using integration by parts, and the last inequality is
obtained according to the non-negativity of the integrant and by making use of the inequality ln x � x − 1 for x > 0. Hence,
the equality Qhk(t) = 0 holds if and only if the system satisfies the detailed balance relation (78) and has nothing to do with the
transient distribution p(t,x,i), which implies the nonequilibrium essence of the system. On the other hand, since

T

N∑
i=1

∫
Rd

⎡
⎣−∇ · Jmech

i (x) +
N∑

j=1

Jchem
x,ji

⎤
⎦p(t,x,i)

π (x,i)
dx = 0,
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then

fd (t) = T

N∑
i=1

∫
Rd

J mech
i (t,x) ·

(
∇ ln

π (x,i)

p(t,x,i)

)
dx − T

N∑
i=1

∫
Rd

∇ · Jmech
i (x)

p(t,x,i)

π (x,i)
dx

+ T

∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx + T

N∑
i=1

∫
Rd

N∑
j=1

Jchem
x,ji

p(t,x,i)

π (x,i)
dx

= T

N∑
i=1

∫
Rd

[(
∇ ln

π (x,i)

p(t,x,i)

)T
A(x,i)

2

(
∇ ln

π (x,i)

p(t,x,i)

)]
p(t,x,i)dx

+ T

∫
Rd

∑
i,j

p(t,x,i)qij (x)

[
ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
+ p(t,x,j )π (x,i)

p(t,x,i)π (x,j )

]
dx

� 0.

Here fd (t) = 0 if and only if the system is at the steady state. So
the positivity of fd (t) implies the spontaneous nonstationarity
of the system. We define the excess heat of the system Qex (t) =
Qtot(t) − Qhk(t) and we obtain

T dS(t) + Qex(t) = T ep(t) − Qtot(t) + Qex(t)

= T ep(t) − Qhk(t) = fd (t) � 0,

which is the extended Clausius inequality.

C. Decomposition of the housekeeping heat dissipation
rate and the free energy dissipation rate

As we have done in Sec. III C, we first give the natural
decomposition of Qhk(t) according to flux decomposition, i.e.,

Qhk(t) = Qmech
hk (t) + Qchem

hk (t),

in which

Qmech
hk (t) =

N∑
i=1

T

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]Jmech
i (x)

}
π (x,i)

dx,

Qchem
hk (t) =

∫
Rd

T

2

∑
i �=j

J chem
x,ij (t) ln

π (x,i)qij (x)

π (x,j )qji(x)
dx.

The two parts Qmech
hk (t) and Qchem

hk (t) would not always be
non-negative. So we must modify the decomposition. First,
we define the relative information of state (x,i) at time t as
IR(t,x,i) = ln p(t,x,i)

π(x,i) and express the flows of the exponential
relative information along diffusion and between different
chemical states under steady-state fluxes as

J mech
ERI (t) = T

N∑
i=1

∫
Rd

Jmech
i (x) · ∇eIR (t,x,i)dx

= T

N∑
i=1

∫
Rd

Jmech
i (x) · ∇p(t,x,i)

π (x,i)
dx,

J chem
ERI (t) = T

2

∫
Rd

∑
i �=j

Jmech
x,ij [eIR(t,x,j ) − eIR(t,x,i)]dx

= T

2

∫
Rd

∑
i �=j

Jmech
x,ij

[
p(t,x,j )

π (x,j )
− p(t,x,i)

π (x,i)

]
dx.

It can be easily derived that J mech
ERI (t) + J chem

ERI (t) = 0. Then we
modify Qmech

hk (t) and Qchem
hk (t) with the flow of exponential

relative information, i.e.,

Q̃mech
hk (t) = Qmech

hk (t) − J mech
ERI (t)

=
N∑

i=1

T

∫
Rd

Jmech
i (x) · {[2A−1(x,i)]Jmech

i (x)
}

× p(t,x,i)

π2(x,i)
dx,

Q̃chem
hk (t) = Qchem

hk (t) − J chem
ERI (t)

=
∫
Rd

T
∑
i,j

p(t,x,i)qij (x)

×
[

ln
π (x,i)qij (x)

π (x,j )qji(x)
+ π (x,j )qji(x)

π (x,i)qij (x)

]
dx

such that

Qhk(t) = Q̃mech
hk (t) + Q̃chem

hk (t).

We can derive that Q̃mech
hk (t) � 0 and Q̃chem

hk (t) � 0 due to
the positive definiteness ofA−1(x,i) and by using the inequality
ln x � x − 1 for x > 0, respectively. In addition, we note that
Q̃mech

hk (t) = Q̃chem
hk (t) = 0 if and only if the detailed balance

(78) is satisfied. Similarly, we give the natural decomposition
of fd (t) according to the flux decomposition as

fd (t) = f mech
d (t) + f chem

d (t), (91)

where

f mech
d (t) =

N∑
i=1

T

∫
Rd

J mech
i (t,x) ·

(
∇ ln

π (x,i)

p(t,x,i)

)
dx,

f chem
d (t) =

∫
Rd

T

2

∑
i,j

J chem
x,ij (t) ln

p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
dx.

However, the non-negativity of f mech
d (t) and f chem

d (t) cannot
be guaranteed. So we should also modify the decomposition
of free energy dissipation rate fd (t) by the flow of exponential
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relative information, i.e.,

f̃ mech
d (t) = f mech

d (t) − J mech
ERI (t)

=
N∑

i=1

T

∫
Rd

(
∇ ln

π (x,i)

p(t,x,i)

)T

× A(x,i)

2

(
∇ ln

π (x,i)

p(t,x,i)

)
p(t,x,i)dx,

f̃ chem
d (t) = f chem

d (t) − J chem
ERI (t)

=
∫
Rd

T
∑
i,j

p(t,x,i)qij (x)

×
[

ln
p(t,x,i)π (x,j )

p(t,x,j )π (x,i)
+ p(t,x,j )π (x,i)

p(t,x,i)π (x,j )

]
dx,

such that

fd (t) = f̃ mech
d (t) + f̃ chem

d (t).

The positive definiteness of A(x,i) implies that f̃ mech
d (t) � 0,

and by using the inequality ln x � x − 1 for x > 0, we obtain
that f̃ chem

d (t) � 0. Furthermore, f̃ mech
d (t) = f̃ chem

d (t) = 0 if
and only if the system is at the steady state.

VII. HIGH-DIMENSIONAL SDP UNDER COARSE
GRAINING AND INFORMATION THERMODYNAMICS

A. Coarse-grained dynamics

By using the method of coarse graining [45], we can
get two different mesostate coarse-grained systems. First, by
integration of discrete chemical states, we obtain the marginal
distribution p(t,x) = ∑N

i=1 p(t,x,i), which satisfies

∂p(t,x)

∂t
= ∇ ·

[
1

2
Ã(t,x)∇p(t,x) − b̃(t.x)p(t,x)

]
, (92)

where

Ã(t,x) =
N∑

i=1

P(t,i|x)A(x,i),

b̃(t,x) =
N∑

i=1

J(t,i|x),

J(t,i|x) = b(x,i)P(t,i|x) − 1

2
A(x,i)∇P(t,i|x),

and

P(t,i|x) = p(t,x,i)

p(t,x)
.

Second, integrating continuous microstates, we get a mesostate
system governed by the distribution of i,

pi(t) =
∫
Rd

p(t,x,i)dx,

which satisfies

dpi(t)

dt
=

N∑
j=1

q̃j i(t)pj (t), (93)

where

q̃j i(t) =
∫
Rd

P(t,x|j )qji(x)dx, (94)

with

P(t,x|i) = p(t,x,i)

pi(t)
. (95)

Just like what we have done in Secs. IV B and IV C, the
SDP system could be distinguished into three different subdy-
namics: the first one, the mesostate subdynamics, arising from
coarse graining; the second one, the microstate subdynamics,
describing the dynamics within each mesostate; and the last
one, the remaining subdynamics, arising from the difference
of diffusion processes (or jumping processes) under different
discrete components (or continuous components). We use the
subscripts meso, micro, and rem to represent the three different
subsystems.

B. Nonequilibrium thermodynamics of the continuous
mechanical diffusion only

For the dynamics of the mesostates, the entropy is defined
as

Smech
meso (t) = −

∫
Rd

p(t,x) ln p(t,x)dx (96)

and the microscopic entropy of each mesostate x is given by

S(t,x) = −
N∑

i=1

P(t,i|x) lnP(t,i|x), (97)

followed by

Smech
micro(t) =

∫
Rd

S(t,x)p(t,x)dx

= −
∫
Rd

N∑
i=1

p(t,x,i) lnP(t,i|x)dx. (98)

It turns out that

S(t) = Smech
meso (t) + Smech

micro(t). (99)

Then we can decompose the entropy change of the SDP system
into three parts according to the three different dynamics of the
system

dS(t)

dt
= Ṡ(1,mech)(t) + Ṡ(2,mech)(t) + Ṡ(3,mech)(t). (100)

By taking the derivative of Eq. (99), we get

dS(t)

dt
= dSmech

meso (t)

dt
+ dSmech

micro(t)

dt
(101)

= Ṡ(1,mech)(t)

+
∫
Rd

N∑
i=1

−∂p(t,x,i)

∂t
lnP(t,i|x)dx

+
∫
Rd

N∑
i=1

−p(t,x,i)
∂ lnP(t,i|x)

∂t
dx, (102)
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where

Ṡ(1,mech)(t) = dSmech
meso (t)

dt

= −
∫
Rd

J mech
meso (t,x) · ∇ ln p(t,x)dx

is the entropy change of the coarse-grained system,

J mech
meso (t,x) = b̃(t,x)p(t,x) − 1

2 Ã(t,x)∇ ln p(t,x)

is the diffusion flux of the coarse-grained mechanical dynamics, and the expression (102) vanishes due to the conservation of
P(t,i|x), i.e.,

∫
Rd

N∑
i=1

−p(t,x,i)
∂ lnP(t,i|x)

∂t
dx =

∫
Rd

N∑
i=1

−p(t,x,i)
1

P(t,i|x)

∂P(t,i|x)

∂t
dx

=
∫
Rd

−p(t,x)

[
N∑

i=1

∂ lnP(t,i|x)

∂t

]
dx = 0.

According to the Fokker-Planck equation (72), we can divide the second term on the right-hand side of (102) into two parts

∫
Rd

N∑
i=1

−∂p(t,x,i)

∂t
lnP(t,i|x)dx =

∫
Rd

N∑
i=1

−∇ ·
[

1

2
A(x,i)∇p(t,x,i) − b(x,i)p(t,x,i)

]
lnP(t,i|x)dx

−
∫
Rd

N∑
i=1

⎡
⎣−

N∑
j=1

p(t,x,j )qji(x) lnP(t,i|x)

⎤
⎦dx

=
∫
Rd

p(t,x)
1

2

∑
i �=j

[P(t,i|x)qij (x) − P(t,j |x)qji(x)] ln
P(t,i|x)

P(t,j |x)
dx

+
∫
Rd

N∑
i=1

[
1

2
A(x,i)∇p(t,x,i) − b(x,i)p(t,x,i)

]
· ∇ lnP(t,i|x)dx

=
∫
Rd

p(t,x)
1

2

∑
i �=j

[P(t,i|x)qij (x) − P(t,j |x)qji(x)] ln
P(t,i|x)

P(t,j |x)
dx

+
∫
Rd

p(t,x)
N∑

i=1

[
A(x,i)

2
∇P(t,i,|x) − b(x,i)P(t,i|x)

]
· ∇ lnP(t,i|x)dx

= Ṡ(2,mech)(t) + Ṡ(3,mech)(t),

where

Ṡ(2,mech)(t) =
∫
Rd

p(t,x)
∑
i �=j

P(t,i|x)qij (x) ln
P(t,i|x)

P(t,j |x)
dx

is the ensemble average of entropy change according to the microstates within a mesostate and

Ṡ(3,mech)(t) =
∫
Rd

p(t,x)
N∑

i=1

[
A(x,i)

2
∇P(t,i|x) − b(x,i)P(t,i|x)

]
· ∇ lnP(t,i|x)dx

= −
∫
Rd

p(t,x)

[
N∑

i=1

J(t,i|x) · ∇ lnP(t,i|x)

]
dx

is the entropy change according to the difference of the diffusion processes arising from the transition between the chemical
states, and recall that

J(t,i|x) = b(x,i)P(t,i|x) − 1
2A(x,i)P(t,i|x).

012418-14



DECOMPOSITION OF THE ENTROPY PRODUCTION RATE … PHYSICAL REVIEW E 98, 012418 (2018)

Then we can also divide the entropy production rate into three
terms according to different subsystems, i.e.,

ep(t) = emech
p,meso(t) + emech

p,micro(t) + emech
p,rem(t). (103)

First, according to the Fokker-Planck equation of the coarse-
grained system (92), the entropy production rate of mesostates
dynamics can be defined as

emech
p,meso(t) =

∫
Rd

J mech
meso (t,x) · {

[2Ã−1(t,x)]J mech
meso (t,x)

}
p(t,x)

dx.

Noting that for any x ∈ Rd and i ∈ M , A(x,i) is positive
definite and the coarse-grained diffusion coefficient Ã(t,x)
is also positive definite because it is the average of A(x,i)
according to the conditional probability distribution P(t,i|x).
Then emech

p,meso(t) � 0 due to the positive-definite property of
Ã−1(t,x).

Next, for a fixed mesostate x, the microstate dynamics in
the mesostate are governed by P(t,i|x) as a jumping process.
Therefore, the entropy production rate within a mesostate x is
given as

∑
i �=j

P(t,i|x)qij (x) ln
P(t,i|x)qij (x)

P(t,j |x)qji(x)
. (104)

Then the ensemble average over the mesostates of (104) is
the total microstate entropy production rate, which is the
second part of our decomposition. Meanwhile, we can derive
that the total microstates entropy production rate is just the
entropy production rate of chemical flux according to flux
decomposition, i.e.,

emech
p,micro(t) =

∫
Rd

p(t,x)

×
⎡
⎣∑

i �=j

P(t,i|x)qij (x) ln
P(t,i|x)qij (x)

P(t,j |x)qji(x)

⎤
⎦dx

= echem
p (t).

Then

emech
p,rem(t) = ep(t) − emech

p,meso(t) − emech
p,micro(t)

= emech
p (t) − emech

p,meso(t)

=
N∑

i=1

∫
Rd

J mech
i (t,x) · {

[2A−1(x,i)]J mech
i (t,x)

}
p(t,x,i)

dx

−
∫
Rd

J meso(t,x) · {[2Ã−1(t,x)]J meso(t,x)}
p(t,x)

dx

= 2
∫
Rd

{
N∑

i=1

J(t,i|x) · {[A−1(x,i)]J(t,i|x)}
P(t,i|x)

− b̃(t,x) · [Ã−1(t,x)b̃(t,x)]

}
p(t,x)dx

is the entropy production rate according to the remaining
dynamics. Here emech

p,micro(t) is obviously non-negative and we

can prove that emech
p,rem(t) � 0 by making use of the inequality

N∑
i=1

Xi · (
A−1

i Xi

)
�

N∑
i=1

Xi ·
⎡
⎣

(
N∑

i=1

Ai

)−1 N∑
i=1

Xi

⎤
⎦ (105)

for the positive-definite Ai and by setting Xi = J(t,i|x) and
Ai = A(x,i)P(t,i|x). Therefore, the three contributions to the
entropy production are all non-negative,

emech
p,meso(t) � 0, emech

p,micro(t) � 0, emech
p,rem(t) � 0.

The heat dissipation rate can also be decomposed as

hd (t) = hmech
d,meso(t) + hmech

d,micro(t) + hmech
d,rem(t),

where

hmech
d,meso(t) =

∫
Rd

J mech
meso (t,x) · F mech

meso (t,x)dx,

hmech
d,micro(t) =

∫
Rd

p(t,x)

⎡
⎣1

2

∑
i �=j

[P(t,i|x)qij (x)

− P(t,j |x)qji(x)]F chem
ij (x)

⎤
⎦dx

=hchem
d (t),

and

hmech
d,rem(t) = hmech

d (t) − hmech
d,meso(t)

=
∫
Rd

[
N∑

i=1

J mech
i (t,x) · F mech

i (x)

− J mech
meso (t,x) · F mech

meso (t,x)

]
dx,

where F mech
meso (t,x) = 2Ã−1(t,x)b̃(t,x) is the force of the

mesostate system, followed by the equations of entropy bal-
ance

Ṡ(1,mech)(t) = emech
p,meso(t) − hmech

d,meso(t),

Ṡ(2,mech)(t) = emech
p,micro(t) − hmech

d,micro(t), (106)

Ṡ(3,mech)(t) = emech
p,rem(t) − hmech

d,rem(t)

and the Clausius inequalities

T Ṡ(1,mech)(t) + Qmech
tot,meso(t) = T emech

p,meso(t) � 0,

T Ṡ(2,mech)(t) + Qmech
tot,micro(t) = T emech

p,micro(t) � 0,

T Ṡ(3,mech)(t) + Qmech
tot,rem(t) = T emech

p,rem(t) � 0.

C. Nonequilibrium thermodynamics of the discrete
chemical kinetics only

The entropy of the coarse-grained subsystem is given by

Schem
meso (t) = −

N∑
i=1

pi(t) ln pi(t) (107)
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and the entropy due to the transformation of microstates is

Schem
micro(t) =

N∑
i=1

S(t,i)pi(t), (108)

where

S(t,i) = −
∫
Rd

P(t,x|i) lnP(t,x|i)dx. (109)

Then the total entropy of the system is given by

S(t) = Schem
meso (t) + Schem

micro(t). (110)

The entropy change of the system can be decomposed into
three contributions

dS(t)

dt
= Ṡ(1,chem)(t) + Ṡ(2,chem)(t) + Ṡ(3,chem)(t). (111)

As we have done in the preceding section, taking the derivative
of Eq. (110), we obtain

dS(t)

dt
= dSchem

meso (t)

dt
+ dSchem

micro(t)

dt
(112)

= Ṡ(1,chem)(t) −
N∑

i=1

∫
Rd

∂p(t,x,i)

∂t
lnP(t,x|i)dx

−
N∑

i=1

∫
Rd

p(t,x,i)
∂ lnP(t,x|i)

∂t
dx, (113)

in which

Ṡ(1,chem)(t) = dSchem
meso (t)

dt

= 1

2

∑
i �=j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
pi(t)

pj (t)

is the entropy change due to the mesostate subsystem and

N∑
i=1

∫
Rd

p(t,x,i)
∂ lnP(t,x|i)

∂t
dx

=
N∑

i=1

∫
Rd

p(t,x,i)
1

P(t,x|i)
∂P(t,x|i)

∂t
dx

=
N∑

i=1

pi(t)

[∫
Rd

∂P(t,x|i)
∂t

dx

]

= 0.

Based on the Fokker-Planck equation (72), we can decompose
the second term on the right-hand side of (113) into

−
N∑

i=1

∫
Rd

∂p(t,x,i)

∂t
lnP(t,x|i)dx

=
N∑

i=1

∫
Rd

−J mech
i (x) · ∇ lnP(t,x|i)dx

+
∫
Rd

N∑
i �=j

J chem
x,ij (t) ln

P(t,x|i)
P(t,x|j )

dx

=
N∑

i=1

pi(t)
∫
Rd

−Ji(t,x) · ∇ lnP(t,x|i)dx

+
∑
i �=j

pi(t)
∫
Rd

P(t,x|i)qij (x) ln
P(t,x|i)
P(t,x|j )

dx

= Ṡ(2,chem)(t) + Ṡ(3,chem)(t),

where

Ṡ(2,chem)(t) =
N∑

i=1

pi(t)
∫
Rd

−Ji(t,x) · ∇ lnP(t,x|i)dx

is the contribution of entropy change according to the mi-
crostate subsystem,

Ṡ(3,chem)(t) =
∑
i �=j

pi(t)
∫
Rd

P(t,x|i)qij (x) ln
P(t,x|i)
P(t,x|j )

dx

is the entropy change arising from the difference of the jumping
processes due to different positions, and

Ji(t,x) = b(x,i)P(t,x|i) − 1
2A(x,i)∇P(t,x|i)

is the flux due to the conditional probability distribution
P(t,x|i). Furthermore, we notice that

Ṡ(2,chem)(t) = Ṡ(1)(t).

Also, we can derive the decomposition of the entropy produc-
tion rate ep(t) of the SDP system

ep(t) = echem
p,meso(t) + echem

p,micro(t) + echem
p,rem(t). (114)

First, according to the mesostate dynamics, we can define the
corresponding entropy production rate of this dynamics as

echem
p,meso(t) = 1

2

∑
i �=j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
pi(t)q̃ij (t)

pj (t)q̃j i(t)
.

Next, within each mesostate i, we express the entropy produc-
tion rate due to mesostate i as

∫
Rd

Ji(t,x) · {[2A−1(x,i)]Ji(t,x)}
p(t,x|i) dx

and the ensemble average for all mesostates is the second
contribution of the entropy production rate

echem
p,micro(t) =

N∑
i=1

pi(t)
∫
Rd

Ji(t,x) · {[2A−1(x,i)]Ji(t,x)}
P(t,x|i) dx

= emech
p (t).
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Finally, the final contribution

echem
p,rem(t) = ep(t) − echem

p,meso(t) − echem
p,micro(t)

=
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
dx − 1

2

∑
i �=j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
pi(t)q̃ij (t)

pj (t)q̃j i(t)

=
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t)

[
ln

p(t,x,i)qij (x)

p(t,x,j )qji(x)
− ln

pi(t)q̃ij (t)

pj (t)q̃j i(t)

]
dx

=
∫
Rd

∑
i �=j

p(t,x,i)qij (x) ln
p(t,x,i)qij (x)pj (t)q̃j i(t)

p(t,x,j )qji(x)pi(t)q̃ij (t)
dx

=
∑
i �=j

pi(t)q̃ij (t)
∫
Rd

P(t,x|i)qij (x)

q̃ij (t)
ln

P(t,x|i)qij (x)
q̃ij (t)

P(t,x|j )qji (x)
q̃j i (t)

dx.

If we define fij (t) = P(t,x|i)qij (x)
q̃ij (t) and

Dij (t) =
∫
Rd

fij (t,x) ln
fij (t,x)

fji(t,x)
dx,

echem
p,rem(t) can be rewritten as∑

i �=j

pi(t)q̃ij (t)Dij (t).

Using the inequality ln x � x − 1 for x > 0 and the nor-
malization of fij (t,x),

∫
Rd fij (t,x)dx = 1, we can derive

that

Dij (t) � −
∫
Rd

fij (t,x)

[
fji(t,x)

fij (t,x)
− 1

]
dx

=
∫
Rd

fij (t,x)dx −
∫
Rd

fji(t,x)dx = 0.

Then echem
p,rem(t) � 0. In addition, echem

p,meso(t) and echem
p,micro(t) are

obviously non-negative. Therefore,

echem
p,meso(t) � 0, echem

p,micro(t) � 0, echem
p,rem(t) � 0.

Finally, we give the corresponding decomposition of the heat
dissipation rate as

hd (t) = hchem
d,meso(t) + hchem

d,micro(t) + hchem
d,rem(t), (115)

where

hchem
d,meso(t) = 1

2

∑
i,j

[pi(t)q̃ij (t) − pj (t)q̃j i(t)] ln
q̃ij (t)

q̃j i(t)
,

hchem
d,micro(t) =

N∑
i=1

pi(t)
∫
Rd

Ji(t,x) · F mech
i (x)dx

= hmech
d (t),

and

hchem
d,rem(t) = hd (t) − hchem

d,meso(t) − hchem
d,micro(t)

= hchem
d (t) − hchem

d,meso(t)

=
∑
i �=j

pi(t)q̃ij (t)
∫
Rd

fij (t,x)

× ln
fij (t,x)P(t,x|j )

fji(t,x)P(t,x|i) dx,

followed by the more detailed entropy balance equations

Ṡ(1,chem)(t) = echem
p,meso(t) − hchem

d,meso(t),

Ṡ(2,chem)(t) = echem
p,micro(t) − hchem

d,micro(t),

Ṡ(3,chem)(t) = echem
p,rem(t) − hchem

d,rem(t).

D. Information thermodynamics of a high-dimensional SDP

To measure the correlation of the two subsystems, we can
define the mutual information as [46]

I (t) =
N∑

i=1

∫
Rd

p(t,x,i) ln
p(t,x,i)

p(t,x)pi(t)
dx, (116)

where it is easy to derive that I (t) � 0 and I (t) = 0 if and only
if the two subsystems are statistically independent, and we can
also derive that

I (t) = Smech
meso (t) + Schem

meso (t) − S(t).

The time derivative of information I (t) describe the informa-
tion flow between the subsystems

dI (t)

dt
=

N∑
i=1

∫
Rd

∂p(t,x,i)

∂t
ln

p(t,x,i)

p(t,x)pi(t)
dx

=
N∑

i=1

∫
Rd

J mech
i (t,x) · ∇ lnP(t,i|x)dx

−
∫
Rd

1

2

∑
i �=j

J chem
x,ij (t) ln

P(t,x|i)
P(t,x|j )

dx

= İmech(t) + İ chem(t),

where the decomposition of the information flow is due to the
flux of the subsystems and we can find that

İmech(t) = −Ṡ(3,mech)(t),

İ chem(t) = −Ṡ(3,chem)(t).
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TABLE I. Decomposition of the entropy production rate.

ep(t) = emech
p (t) + echem

p (t), emech
p (t) � 0, echem

p (t) � 0

T ep(t) = Qhk(t) + fd (t), Qhk(t) � 0, fd (t) � 0

Qhk(t) = Qmech
hk (t) + Qchem

hk (t) = Q̃mech
hk (t) + Q̃chem

hk (t), Q̃mech
hk (t) � 0, Q̃chem

hk (t) � 0

fd (t) = f mech
d (t) + f chem

d (t) = f̃ mech
d (t) + f̃ chem

d (t), f̃ mech
d (t) � 0, f̃ chem

d (t) � 0

ep(t) = emech
p,meso(t) + emech

p,micro(t) + emech
p,rem(t), emech

p,meso(t) � 0, emech
p,micro(t) = echem

p (t) � 0, emech
p,rem(t) � 0

ep(t) = echem
p,meso(t) + echem

p,micro(t) + echem
p,rem(t), echem

p,meso(t) � 0, echem
p,micro(t) = emech

p (t) � 0, echem
p,rem(t) � 0

emech
p (t) = dSmech

meso (t)
dt

+ hmech
d (t) − İmech(t), echem

p (t) = dSchem
meso (t)
dt

+ hchem
d (t) − İ chem(t)

Then we have

emech
p (t) = dSmech

meso (t)

dt
+ hmech

d (t) − İmech(t), (117)

echem
p (t) = dSchem

meso (t)

dt
+ hchem

d (t) − İ chem(t). (118)

At the steady state, the entropy change and information flow
vanish

dS(t)

dt
= 0,

dSmech
meso (t)

dt
= 0,

dSchem
meso (t)

dt
= 0,

and

İmech + İ chem = dI (t)

dt
= 0.

If we define İ = İ chem, then İmech = −İ and Eqs. (117) and
(118) can be rewritten as

emech
p = hmech

d + İ � 0, (119)

echem
p = hchem

d − İ � 0. (120)

VIII. CONCLUSION AND DISCUSSION

As a mathematical model used to describe complex systems,
an SDP has become more popular and has drawn increasing
attention in the fields of control engineering, manufacturing
systems, estimation and filtering, financial engineering, and es-
pecially modern biology [3,58–61]. The nonequilibrium ther-
modynamics of the master-equation model and pure diffusion
process have already been established, while that of a switching
diffusion process has not been carefully investigated. Here we
mainly focused on the decomposition of the entropy production
rate and the question of whether the decomposed components
are non-negative, which has now been summarized in Table I.
We not only developed the framework of the nonequilibrium
thermodynamics of an SDP, parallel to the cases of the master-
equation model and pure diffusion processes, but also found
equalities and inequalities that emerge from the crosstalk
between the mechanical motion and chemical kinetics, such
as the modification of the decomposition of Qhk(t) and fd (t)

with the exponential relative information flow in order to make
each decomposed component non-negative.

We only considered the time-independent SDP systems. In
the time-dependent case, the drift vector b(x,i), the diffusion
matrix A(x,i), and transition rates qij (x) all depend on time.
The corresponding Fokker-Planck equation is

∂p(t,x,i)

∂t
= ∇ ·

[
1

2
A(t,x,i)∇p(t,x,i) − b(t,x,i)p(t,x,i)

]

+
N∑

j=1

p(t,x,j )qji(t,x) for any x ∈ Rd , i ∈ M.

(121)

The quasistationary distribution at time t , π (t,x,i), which
vanishes on the right-hand side of Eq. (121), should also be
time dependent.

All results remain exactly the same except for the time
derivative of the generalized free energy (relative entropy)
given by

F (t) = T

N∑
i=1

∫
Rd

p(t,x,i) ln
p(t,x,i)

π (t,x,i)
dx.

In the time-dependent case, we have

dF (t)

dt
= −fd (t) + Wd (t), (122)

in which

Wd (t) = −T

N∑
i=1

∫
Rd

p(t,x,i)
∂ ln π (t,x,i)

∂t
dx (123)

is called dissipative work by Jarzynski and Crooks
[35,62–68].
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