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Family-size variability grows with collapse rate in a birth-death-catastrophe model
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Forest-fire and avalanche models support the notion that frequent catastrophes prevent the growth of very
large populations and as such, prevent rare large-scale catastrophes. We show that this notion is not universal.
A new model class leads to a paradigm shift in the influence of catastrophes on the family-size distribution of
subpopulations. We study a simple population dynamics model where individuals, as well as a whole family, may
die with a constant probability, accompanied by a logistic population growth model. We compute the characteristics
of the family-size distribution in steady state and the phase diagram of the steady-state distribution and show
that the family and catastrophe size variances increase with the catastrophe frequency, which is the opposite of
common intuition. Frequent catastrophes are balanced by a larger net-growth rate in surviving families, leading to
the exponential growth of these families. When the catastrophe rate is further increased, a second phase transition
to extinction occurs when the rate of new family creations is lower than their destruction rate by catastrophes.
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I. INTRODUCTION

Catastrophes leading to partial or total population extinction
are common in nature. From forest fires to collapsed markets,
catastrophes have a crucial effect on the population dynamics
of human beings. Accordingly, catastrophes have been studied
extensively in multiple contexts, including ecology [1–11] and
economics [12–16].

Theoretic models of catastrophes have focused on self-
organized criticality (SOC) models [17], such as the forest-fire
[18,19] and sand-pile models [20,21]. In these models, steady-
state size distributions are famously characterized by an inverse
relation between catastrophe frequency and catastrophe size.

This inverse relation is intuitive and may be easily ex-
plained, as was done in the context of a simple spatial model
of forest fires [4,18], as well as more complex parallel models
[22–25]. In the simplest forest-fire model, trees are randomly
planted on a grid at a constant rate, and sparks that can induce
forest fires are randomly ignited. The probability of a forest fire
scales like a power law of the fire area. At low spark frequencies
the number of forest fires is small but the burnt area is large,
since the clusters of planted trees can percolate and spread over
large areas. At high spark frequencies, the opposite occurs.
Thus, in these models, more catastrophes are associated with
a lower tree cluster size and catastrophes of smaller size. The
strategy of allowing small forest fires in order to prevent large
ones is an accepted approach to fire prevention [25].

The well-established inverse relation between frequency
and severity of catastrophes in SOC models may lead to the
belief that catastrophes prevent the growth of very large family
sizes, or alternatively, major market crashes in economics.

*Corresponding author: louzouy@math.biu.ac.il

However, in both population dynamics and economics, catas-
trophes are very frequent and family-size distributions have a
fat tail [26–31]. Thus, frequent catastrophes (e.g., population
extinction or a collapse of a large company) do not seem
to prevent the growth of fat-tailed family-size distributions.
Moreover, there is currently no good theory for the effect of
such catastrophes in nonspatial models or models that do not
have a limited local capacity.

In such models, the intuitive inverse relation between
catastrophe frequency and the frequency of large families may
fail. Indeed, we here show that a new class of systems emerges
from population dynamics of nonspatial models with catas-
trophes in which higher catastrophe rates are correlated with a
more inhomogeneous family-size distribution and more severe
crashes. We study a simple, solvable, birth-death-innovation
process that exhibits a direct relation between catastrophe
frequency and catastrophe severity. While the model contains a
minor modification of the reactions, the dynamics are governed
by completely different phase transitions than the regular
birth, death, innovation models (BDIM). We further show that
applying the novel principles of the current model to other
systems leads to novel dynamics in different systems, including
network dynamics and spatial birth-death models.

The current model has a limited total capacity that can
be set to be arbitrarily large. However, beyond that it has no
limit on the size of each family. New families are created by
“mutations,” and a catastrophe is the annihilation of an existing
family. In order to estimate the effect of catastrophes on the
population structure, we analyze the family-size distribution.
Such distributions have been studied mainly in duplication,
loss, and change (DLC) models or BDIM [29,32–36], but so far
no study has included catastrophes in a multivariable system.
In single-variable models, such as those for ecosystem car-
bon content, catastrophes were introduced to simulate drastic
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changes in the environment and studied using semistochastic
models [2]. We show here that the main model results can be
reproduced by a semistochastic model. The exponential model
presented later is very similar to the ecosystem carbon content
model.

II. MODEL AND RESULTS

Formally, we study the effect of large-scale events (catas-
trophes) in a simple extension of the classical BDIM model.
As in a BDIM, individuals belong to families, and the three
processes of the neutral BDIM apply:

(1) Birth: birth of an individual, the size of a certain family
increases by 1.

(2) Death: death of an individual, the size of a certain family
decreases by 1.

(3) Mutation: a constant fraction of all birth events leads
to the emergence of new families; in effect, this is the creation
of a new family of size 1.

To this we add one more process.
(4) Catastrophe: a family is deleted and all individuals in

this family are deleted from the system.
In order to equilibrate the total population size, we assume

that the death rate is proportional to the total population size,
as in the standard logistic model.

The birth and death rates are equal among families. The
catastrophe rate is equal for all families (i.e., the probability
that a family would die in a catastrophe is not affected by
its size). Since catastrophes affect large and small families at
the same rate, one could expect catastrophes to induce a more
homogeneous family-size distribution. We here show that the
model’s results are the opposite. The presence of catastrophes
cause, in effect, a larger variance of family sizes.

Formally, we denote the size of each family k as the number
of individuals in this family. The zero moment m0 [Eq. (2)] is
the total number of families, and the first momentm1 [Eq. (2)] is
the total number of individuals over all families. m0 and m1 are
not constant. The four processes above can be computed using
the following reactions: (1) A birth of an individual occurs at
rate α. (2) A death of an individual occurs at rate δ = m1

N̄
, N̄

being some arbitrary number that would be the population size
in equilibrium in the absence of catastrophes. (3) The fraction
of mutations out of all birth events is μ. (4) A catastrophe
occurs at rate γ . α, N̄ , μ, and γ are free parameters.

Technically, at every time step, the total number of individ-
uals, m1, is calculated and the death rate is set to be δ = m1

N̄
.

Once δ is determined, α, δ, and γ are normalized by their sum
and a process (birth, death, or catastrophe) is chosen randomly
according to these relative probabilities.

Denoting the number of families of size k by Nk , the
master equations resulting from the four processes above are
as follows (up to a time scaling, see Appendix A for equation
derivations):

dN1

dt
= m1

[
μα − α(1 − μ)

N1

m1
+ 1

N̄
(−N1 + 2N2) − γN1

m0

]
dNk

dt
= m1

[
α(1 − μ)

m1
((k − 1)Nk−1 − kNk)

+ 1

N̄
(−kNk + (k+1)Nk+1)− γNk

m0

]
for k>1. (1)

In order to estimate the macroscopic dynamics described in
Eqs. (1), it is instructive to compute the moments of the
distribution,

mj =
∑

k

kjNk, j = 0,1,2, (2)

where j is the moment order. Substituting Eqs. (1) into Eqs. (2)
and summing over k leads to the time derivative of the moments
Eqs. (3) (see Appendix A for equation derivations):

dm0

dt
= m1

[
μα − N1

N̄
− γ

]
dm1

dt
= m1

[
α − m1

N̄
− γ

m1

m0

]
dm2

dt
= m1

[
α + m1

N̄
+ m2

[
2α(1 − μ)

m1
− 2

N̄
− γ

m0︸ ︷︷ ︸
B

]]
. (3)

The m0 and m1 equations are closed and independent of m2.
They require, however, the value of N1. The equation for m2 is
likewise exact and closed, requiring no higher order moments.
This system of equations may be solved consistently if N1 can
be estimated.

In order to relate N1 to the moments, one can proceed with
two additional assumptions: the scale-free assumption and
the continuous limit assumption. The scale-free assumption
assumes that Nk(k) has a scale-free distribution,

Nk = N1k
−η, (4)

where η is the yet undetermined power. This is true for the
model without catastrophes before the exponential cutoff and
is reasonable for low k in the model with catastrophes. It is
also justified by a good fit between simulation and theory, as
discussed below.

Equation (4) and the continuous limit assumption yield

mj =
∫ kmax

1
N1k

j−ηdk = N1
(
k

j+1−η
max − 1

)
j + 1 − η

, j = 0,1,2

N2 = N12−η. (5)

Substituting N2 = N12−η into dN1
dt

of Eqs. (1) leads to the
steady-state equations:

N1 = N̄ (μα − γ )

m0 = γN1(2 − μ)

μα + N1

N̄
(21−η − 2 + μ)

m1 = α
γ

m0
+ 1

N̄

m2 = α(N̄γ + 2m0)

(N̄γ + m0)
[

γ

m0
(2μ − 1) + 2μ

N̄

] . (6)

An important result of the approximation of this relation
when μ � 1 is that m2 is flat for values of γ < μ and increases
with the value of γ as γ approaches μ (Fig. 1). As will be
further shown, when γ > μ the scale-free assumption here
fails and a novel catastrophe-induced transition to extinction
occurs (i.e., the total population collapses to 0).
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FIG. 1. Comparison of simulation results with theoretic results.
Upper plot: m0 the number of families, m1 the number of individuals,
and m2 the second moment. Each dot represents a dot on the black
line of Fig. 2. See Appendix B for parameters. Each simulation result
is the average over five realizations and 50 time points separated by
106 time steps after steady state has been established. The lines are
the theory and the dots are the simulation. Theory and simulation are
in perfect fit. m2 diverges from dot 7 on (dots 7–22). The theoretic
m2 in this regime is negative and is not shown here. Empty regions
represent values of 0. Lower plot: similar results for N1.

The theoretical solutions above are valid when

∀k,Nk � 0 =⇒ ∀j,mj � 0. (7)

Imposing these conditions on the steady-state equations
[Eqs. (6)] leads to

N1 � 0 =⇒ μα � γ (8)

and

m0 � 0 =⇒ D = μα + N1

N̄
(21−η − 2 + μ) � 0. (9)

The positivity of m1 is trivial. The positivity of m2 is discussed
below. The phase transition defined by both Eq. (8) and Eq. (9)
represents the extinction-survival transition.

With no loss of generality, one can set α ≈ 1, leading to
m1 ≈ N̄ , for low enough γ values. In such a case, the first
request resulting from the conditions above is a mutation
rate higher than the catastrophe rate, in order to balance the
removed families by the creation of new families. The second
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FIG. 2. Phase diagram. “Low diversity” phase where m2 conver-
gence (green/light gray), “high diversity” phase (blue/dark gray), and
extinction phase (white). Results of the theoretic model and solved
numerically. Dots on the black line were simulated and compared
with the numeric solution (see Fig. 1).

condition ensures a positive net entry of families to the k = 1
family size. If any of these two conditions is breached, the total
population collapses.

When one considers the positivity of m2, a novel phase
transition occurs. Both convergence and positivity of m2

are determined by B, the prefactor of m2 in dm2
dt

[Eq. (3)].
B < 0 is the condition for convergence and for positivity.
When B is positive the power-law assumption fails and the
moment approximations no longer hold. However, the power-
law assumption is a good enough approximation to predict the
location of the second phase transition, as the comparisons
with simulation show. Substituting m1 into B we get

γ >
2μ

1 − 2μ

m0

N̄
(10)

as the condition for both positivity and convergence. In devel-
oping this equation we assumed that μ < 1

2 , as extremely large
mutation rates lead to a population collapse [37].

Thus, a critical transition emerges where the family-size
variance diverges. This new second phase transition divides the
survival phase into “low variance” and “high variance” phases.
The diversity of the family-size distribution is governed by m2,
and when B becomes positive one can expect high diversity
in family size over time and realizations. With the increasing
diversity in family size comes an increasing sensitivity to the
collapse of very large families and the resulting fluctuating
dynamics. See Appendix B for simulated m0, m1, and m2 as
a function of time. The differences between the dynamics on
the two sides of the phase transition are very clear.

The different phases of the model are summarized in the
two-dimensional phase diagram, Fig. 2, which is a numeric
solution of the first two equations of Eqs. (5) and the first
three equations of Eqs. (6). It denotes the extinction phase in
white. The line separating it from the survival phase is given
by Eq. (8). Equation (9) is automatically satisfied when Eq. (8)
is satisfied. The “high variance” phase defined by Eq. (10) is
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FIG. 3. Numeric solution showing both phase transitions. The
first phase transition from extinction to survival phase is evident
in D, the denominator of m0. The second phase transition, from
“high diversity” to “low diversity,” is evident in m2. Here γ = 0.01,
α = 1.99, and N̄ = 103 890.

denoted in blue (dark gray). The green area (light gray) is the
“low variance” phase, where B < 0.

One is thus led to the surprising result that as γ increases
beyond some value the diversity diverges, and the model
above fails. Moreover, even in the domain where the model
assumptions hold, m2 grows with γ . Thus, in contradiction
with current concepts, in the current model, increasing the
catastrophe rate actually increases the diversity in time and
in the family-size distribution. When γ further grows to
kill more families than are produced by mutations, the total
population collapses and extinction occurs through a novel
phase transition.

Both phase transitions are further illustrated in Fig. 3, where
the theoretic solution for the moments and the denominator of
m0 is given, with fixed α, γ , and N̄ , but changing μ. For small
μ values the system is extinct. A first phase transition occurs at
μ � 0.006, where the system enters the “high variance” phase,
and although m0 and m1 are positive, m2 would be negative
in the scale-free approximation. After μ � 0.03, m2, becomes
positive too.

Simulation results confirming the theoretic solution are
given in Fig. 1. See Appendix B for the set of parameters
corresponding to each dot in Fig. 1. We chose a set of systems
sampling all phases of the model. The first six dots are
systems in the “low variance” phase, the next six dots are
systems in the “high variance” phase, and the remaining
ten dots are systems in the extinction phase. The theoretic
solution is valid in the “low variance” phase, where a very
good agreement with simulations can be observed. In the
“high variance” phase, a good agreement with simulations is
observed for all moments except m2. The ten extinction phase
simulations converged very quickly with all moments reaching
zero and are not plotted in the graphs.

The increase in m2 is also clear in the simulated steady-state
family-size distribution. The steady-state size distributions of
systems corresponding to the dots on the black line are given
in Fig. 4. As γ increases, the slope of the power law decreases,

10
0

10
2

10
4

10
−8

10
−6

10
−4

10
−2

10
0

k

N
k/k

 

 

γ=0.0001

γ=0.00014

γ=0.0002

γ=0.00026

γ=0.0004

γ=0.00048

FIG. 4. Simulated steady-state family-size distribution, Nk/k. A
line represents a system with parameters defined by dots on the
black line of Fig. 2 (see Appendix B for parameters). As γ increases
the number of catastrophes increases, the relative number of larger
families increases. The maximal family size increases as well.

the fraction of large-size families increases, and the maximal
family size increases.

The intuition behind this mechanism is simple. In the
absence of catastrophes, births and deaths must be balanced,
leading to a Ewens-like family-size distribution [38]. However,
in the presence of catastrophes, the average birth rate of
families can be higher than the death rate, with the total
population balanced by catastrophes. In such a regime, with
an average net-growth rate of θ , the family size of a family k

is on average as eθτk , where τk is the time from the emergence
of this family through a mutation to the current time, unless it
was destroyed by a catastrophe. For large enough values of μ

the total number of families is arbitrarily large, and the time
between catastrophes for a given family increases linearly with
the number of families.

In order to validate that such a model does produce the
increase in diversity following the increase in catastrophes rate,
we simulated a model where in each time step �t , the following
reactions occur:

(i) γm0 out of m0 families are destroyed using a random
choice with a binomial distribution.

(ii) μm1 families are produced randomly with a Poisson
distribution.

(iii) Each family grows by a factor of exp [(α − μ −
m1/N )�t].

Here, as in the original model, α is the birth rate, N is
some arbitrary large number, μ is the mutation rate, and γ is
the catastrophes rate. Indeed, this simulation reproduces the
relation above (see Appendix C for family-size distribution of
this model) with the clear phase transition to very high m2

values. Moreover, the catastrophe size increases with γ . When
γ becomes larger than μ, the total population collapses as in
the original model.

III. DISCUSSION

While we have here studied a single specific model, the same
results hold in different domains, with different dynamics (see
Appendix D and Appendix E for details of other models where
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the same results hold). The main element driving these results
is that, in equilibrium, the total population is governed by a
balance between family growth and decay. Since a part of the
death term is balanced by the catastrophes, the remaining total
death term is lower than the total birth rate. Thus, for families
not dying by catastrophes, the net difference between growth
and death is positive, leading to an exponential growth until
a catastrophe occurs. Therefore, increasing the catastrophe
rate increases the net-growth rate and decreases the time
between catastrophe events. Such a balance can be observed
in many scenarios, such as the growth of stock values in stock
markets, family growth in highly fluctuating environments, or
the dynamics of network, where vertices can accumulate edges,
until a vertex deletion event happens.

While large jumps in single families (e.g., Lévy flights)
have been extensively studied [39], these jumps are assumed
to be averaged and not to induce very large changes in
large ensembles. This is in clear contrast with large-scale
fluctuations observed, among others, in the total market value
of stock markets. The influence of frequent catastrophes may
be one element explaining these fluctuations. An important
element obviously missing from the current description is the
interaction between families and the possibility of cascades
from one collapsing population to the other. We now plan
to study whether the mechanisms described here apply when
interactions are taken into account.

APPENDIX A: MAIN MODEL

1. Derivation of differential equations for d Nk
dt

Since the system is linear, it is possible to consider the
contribution of each reaction separately. For convenience we

write dNk

dt
= dNb+m

k

dt
+ dNd

k

dt
+ dNc

k

dt
, where dNb+m

k

dt
refers to the

contribution of birth+mutation processes, dNd
k

dt
refers to the

contribution of the death process, and dNc
k

dt
refers to the catastro-

phe’s contribution. The mutation is naturally integrated into the
birth process, and therefore birth and mutation processes are
considered in the first term together. See Table I for a summary
of symbols definitions.

a. The birth and mutation contribution,
d Nb+m

k
dt

When an individual is born, it must be added either to a
new family or to an existing family. A birth into a new family
creates a new family of size 1, and is, therefore, a mutation.
This term appears only in the equation for N1. A birth into an
existing family could happen into any family size, k � 1, and
it increases the family size by 1. Such birth events increase or
decrease Nk as follows:

TABLE I. Main model symbols definitions.

Parameter Name

α Birth rate
δ Death rate
μ Mutation rate
γ Catastrophe rate
T Total number of time steps, 108

(1) If an individual is born to a family of size (k − 1), the
family size increases to k and Nk increases, Nk(t) = Nk(t −
1) + 1.

(2) In parallel, if an individual is born to a family of size k,
the family size increases to (k + 1) and Nk(t) = Nk(t − 1) − 1.

In both cases the overall number of individuals is increased
by 1, m1(t) = m1(t − 1) + 1. The rate of a birth into a k − 1
family is proportional to the product of three terms: the
overall number of people in these families [(k − 1)Nk−1],
the probability of an individual “giving birth” α, and the
probability of this birth not being a mutation (1 − μ). It is
more convenient, as will be apparent later, to multiply by m1

m1
.

Thus we have the first term in Eq. (A1). The loss term in Nk(t)
is constructed in a similar way and forms the second term in
Eq. (A1). It decreases Nk , thus the negative prefactor:

dNb+m
k

dt
= m1

[
α(1 − μ)(k − 1)

Nk−1

m1
− α(1 − μ)k

Nk

m1

]
.

(A1)

The above equation holds for k > 1. The dNb+m
k

dt
for k = 1 is

somewhat different. First, whenever a mutation birth occurs,
N1 increases by 1. This adds a positive term αμ. This is the
rate of mutation births and it is independent of N1. Second,
since k = 0 is not a family, the term responsible for births in a
k − 1 family does not exist here. We are left with Eq. (A2):

dNb+m
1

dt
= m1

[
αμ − α(1 − μ)

N1

m1

]
. (A2)

b. The death contribution,
d Nd

k
dt

The death terms are constructed in a very similar way to the
birth terms. When an individual dies, its family decreases by
1. We consider first families with k > 1. A death increases or
decreases Nk according to the following:

(1) If an individual in a family of size k dies, the family
size decreases to (k − 1), and Nk(t) = Nk(t − 1) − 1.

(2) In parallel, if an individual in a family of size (k + 1)
dies, the family size decreases to k, andNk(t) = Nk(t − 1) + 1.

In both cases the overall number of individuals is decreased
by 1, m1(t) = m1(t − 1) − 1. The rate of a death in a family of
size k is proportional to the overall number of people in these
families (kNk) multiplied by the probability of an individual
dying, δ. We again multiply by m1

m1
. Thus we have the first term

in Eq. (A3). This term, as expected, tends to decrease Nk , thus
the negative prefactor. The gain term in Nk(t) is constructed in
a similar way and forms the second term in Eq. (A3):

dNd
k

dt
= m1

[
−δk

Nk

m1
+ δ(k + 1)

Nk+1

m1

]
. (A3)

We may replace δ by m1

N̄
and get

dNd
k

dt
= m1

[
−k

Nk

N̄
+ (k + 1)

Nk+1

N̄

]
. (A4)

The contribution of the death process to dN1
dt

has exactly the
same terms as for k > 1. Note that a death in k = 1 causes the
family to disappear from the system, decreasing the total size
of the system by 1, but requires no special treatment. Therefore
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we may arrive to the dN1
dt

by substituting k = 1:

dNd
1

dt
= m1

[
−N1

N̄
+ 2

N2

N̄

]
. (A5)

c. The catastrophes contribution,
d Nc

k
dt

The rate of catastrophes to families of size k is proportional
to γ , the independent catastrophe rate, and to the frequency
of such families in the system, Nk

m0
. It is multiplied by m1 to

describe the number of individuals killed in the catastrophe
and added with a negative prefactor to indicate that it tends to
decrease Nk:

dNc
k

dt
= m1

[
−γ

Nk

m0

]
. (A6)

This term is applicable to k � 1, but for clarity, we write
the k = 1 term explicitly:

dNc
1

dt
= m1

[
−γ

N1

m0

]
. (A7)

As explained in the main text, the total number of in-
dividuals, m1, is recalculated and the death rate is set to
δ = m1

N̄
at every time step. After δ is determined, α, δ, and

γ are normalized by the sum α + δ + γ , so that the sum of
all effective rates is 1. This adds the prefactor 1

α+δ+γ
to the

master equations. To simplify our notation we do not write
this prefactor in the master equation. It contributes only a time
scaling to the results and does not affect the steady state.

d. Final equation d Nk
dt

By adding all these contributions together we arrive at the
following equation:

dN1

dt
=m1

[
μα − α(1 − μ)

m1
N1 + 1

N̄
(−N1 + 2N2) − γN1

m0

]
dNk

dt
=m1

[
α(1 − μ)

m1

[
(k − 1)Nk−1 − kNk

]
+ 1

N̄
[−kNk + (k + 1)Nk+1] − γNk

m0

]
for k > 1.

(A8)

2. Developing dm j

dt

All moment differential equations begin from the definition

mj =
∑

k

kjNk, j = 0,1,2. (A9)

We differentiate with respect to time,

dmj

dt
=

∑
k

kj dNk

dt
, j = 0,1,2, (A10)

and continue with inserting Eqs. (A8).

a. Developing dm0
dt

Inserting j = 0 in Eq. (A10) we get

dm0

dt
=

∑
k

k0 dNk

dt
=

∑
k

dNk

dt
, (A11)

and

dm0

dt
= m1

[
μα − α(1 − μ)

N1

m1
− N1

N̄
+ 2N2

N̄
− γN1

m0

+
k=∞∑
k=2

(
α(1 − μ)(k − 1)

Nk−1

m1
− α(1 − μ)k

Nk

m1

− kNk

N̄
+ (k + 1)Nk+1

N̄
− γNk

m0

)]
. (A12)

All birth terms cancel when we perform the sum. Also, most
death terms cancel, except for a single term:

dm0

dt
= m1

[
μα − N1

N̄
−

k=∞∑
k=1

γNk

m0

]
. (A13)

Using again the definition of m0, Eq. (A9), we get

dm0

dt
= m1

[
μα − N1

N̄
− γ

]
. (A14)

b. Developing dm1
dt

Inserting j = 1 in Eq. (A10) we get

dm1

dt
=

∞∑
k=1

k
dNk

dt
(A15)

and

dm1

dt
= m1

[
μα − α(1 − μ)

N1

m1
− N1

N̄
+ 2N2

N̄
− γN1

m0

+
k=∞∑
k=2

k

(
α(1 − μ)(k − 1)

Nk−1

m1
− α(1 − μ)k

Nk

m1

− kNk

N̄
+ (k + 1)Nk+1

N̄
− γNk

m0

)]
. (A16)

This time the birth terms do not cancel completely, but rather

dm1

dt
= m1

[
μα + α(1− μ)

m1

(
−N1 +

k=∞∑
k=2

k(k − 1)Nk−1 −
k=∞∑
k=2

k2Nk

)
+ 1

N̄

(
k=∞∑
k=1

−k2Nk +
k=∞∑
k=1

(k + 1)kNk+1

)
−

k=∞∑
k=1

γ kNk

m0

]
.

(A17)
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Changing the summation variable so that only Nk appears in the equation,

dm1

dt
= m1

[
μα + α(1 − μ)

m1

(
−N1 + 2N1 +

k=∞∑
k=2

(k + 1)kNk −
k=∞∑
k=2

k2Nk

)

+ 1

N̄

(
k=∞∑
k=1

−k2Nk +
k=∞∑
k=2

k(k − 1)Nk

)
−

k=∞∑
k=1

γ kNk

m0

]
. (A18)

When changing summation variables here and in the following,
we neglect Nk,k → ∞. Since the population is finite on
average, Nk → 0 exponentially as k → ∞.

Next, higher order k terms are canceled,

dm1

dt
= μα + α(1 − μ)

m1

[
N1 +

k=∞∑
k=2

kNk

]

+ 1

N̄

[
−N1 +

k=∞∑
k=2

−kNk

]
−

k=∞∑
k=1

γ kNk

m0
, (A19)

and substituting sums over Nk by moments we get

dm1

dt
= μα + α(1 − μ)

m1
[m1] + 1

N̄
[−m1] − γ

m1

m0
. (A20)

And finally,

dm1

dt
= m1

[
α − m1

N̄
− γ

m1

m0

]
. (A21)

c. Developing dm2
dt

Inserting j = 2 in Eq. (A10) we get

dm2

dt
=

∞∑
k=1

k2 dNk

dt
(A22)

and

dm2

dt
= m1

[
μα − α(1 − μ)

N1

m1
− N1

N̄
+ 2N2

N̄
− γ

N1

m0

+
∞∑

k=2

k2

(
α(1 − μ)(k − 1)

Nk−1

m1
− α(1 − μ)k

Nk

m1

− k
Nk

N̄
+ (k + 1)

Nk+1

N̄
− γ

Nk

m0

)]
. (A23)

Whenever the k = 1 terms are identical to the higher k terms
they are inserted into the sum,

dm2

dt
= m1

[
μα + α(1 − μ)

m1

( ∞∑
k=2

k2(k − 1)Nk−1 −
∞∑

k=1

k3Nk

)
+ 1

N̄

∞∑
k=1

(−k3Nk + k2(k + 1)Nk+1) − γ

∞∑
k=1

k2 Nk

m0

]
. (A24)

A change of variable for some sums rearranges the terms so that we are left with Nk only:

dm2

dt
= m1

[
μα + α(1 − μ)

m1

( ∞∑
k=1

(k + 1)2kNk −
∞∑

k=1

k3Nk

)
+ 1

N̄

( ∞∑
k=1

−k3Nk +
∞∑

k=2

k(k − 1)2Nk

)
− γ

m2

m0

]
, (A25)

dm2

dt
= m1

[
μα + α(1 − μ)

m1

( ∞∑
k=1

(k + 1)2kNk −
∞∑

k=1

k3Nk

)
+ 1

N̄

(
−

∞∑
k=1

k3Nk +
∞∑

k=2

k(k − 1)2Nk

)
− γ

m2

m0

]
. (A26)

k3 birth terms are readily canceled, while the death terms need one more step. However, since starting the summation from
k = 1 instead of k = 2 adds a zero term to the sum, we can write

dm2

dt
= m1

[
μα + α(1 − μ)

m1

( ∞∑
k=1

(2k2 + k)Nk

)
+ 1

N̄

( ∞∑
k=1

−k3Nk +
∞∑

k=1

k(k2 − 2k + 1)Nk

)
− γ

m2

m0

]
, (A27)

dm2

dt
= m1

[
μα + α(1 − μ)

m1

( ∞∑
k=1

(2k2 + k)Nk

)
+ 1

N̄

( ∞∑
k=1

(−2k2 + k)Nk

)
− γ

m2

m0

]
, (A28)

dm2

dt
= m1

[
μα + α(1 − μ)

m1
(2m2 + m1) + 1

N̄
(m1 − 2m2) − γ

m2

m0

]
, (A29)

dm2

dt
= m1

[
α + 2α(1 − μ)

m2

m1
+ 1

N̄
(m1 − 2m2) − γ

m2

m0

]
. (A30)
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FIG. 5. Dependence of simulated m0, m1, and m2 on time. The
first system γ = 0.000 26 (line 4 of Table II) is in the low diversity
phase. The second system γ = 0.001 20 (line 9 of Table II) is in the
high diversity phase. Results are averaged over five replicas. The high
diversity of the second system is evident in m0, m1, and m2.

Finally, collecting all terms multiplied by m2, we reach the
final equation:

dm2

dt
= m1

[
α + m1

N̄
+ m2

(
2α(1 − μ)

m1
− 2

N̄
− γ

m0

)]
.

(A31)

APPENDIX B: SUPPORTING MATERIAL
FOR MAIN MODEL

The data in this section refers to the original model (main
text). In Fig. 5, the time development of the moments m0, m1,
and m2 with two γ values are compared. The higher variance
of the system in the “high variance” phase is clear. In Table II
we give the parameters of the dots on the black line of Fig. 2.

TABLE II. Parameters of dots on the black line of Fig. 2. The equation of the black line is log10(μ) = −0.4729 log10(γ ) − 3.6611. Note
that any other combination could have been chosen with similar results, as long as both phase transitions are traversed. η and kmax are a result
of the theoretic calculation.

γ μ α N̄ Phase η kmax

1 0.00010 0.01700 1.0099 102860 B < 0 1.0290 66
2 0.00014 0.01465 1.0136 102860 B < 0 1.0285 77
3 0.00020 0.01260 1.0186 102870 B < 0 1.0305 90
4 0.00026 0.01089 1.0254 102880 B < 0 1.0347 107
5 0.00040 0.00940 1.0348 102890 B < 0 1.0478 133
6 0.00048 0.00809 1.0476 102900 B < 0 1.0603 167
7 0.00070 0.00700 1.0651 102920 B > 0 1.0925 233
8 0.00090 0.00601 1.0892 102940 B > 0 1.1321 352
9 0.00120 0.00520 1.1221 102980 B > 0 1.1924 636
10 0.00169 0.00447 1.1671 103020 B > 0 1.2808 1664
11 0.00230 0.00390 1.2287 103090 B > 0 1.3653 5348
12 0.00316 0.00332 1.3131 103180 B > 0 1.3847 11587
13–22 γ > 0.0032 on line μ < 0.0033 on line α > 1.31 N̄ > 103180 N1 < 0
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FIG. 6. Family-size distribution of the exponential model. The
tail size increases as the catastrophe rate γ increases. Here the bins
are logarithmic, and α = 1, μ = 1 × 10−8, N = 1 × 108.

APPENDIX C: EXPONENTIAL MODEL

In this section we give the family-size distribution of the
exponential model in Fig. 6. This family-size distribution has
a similar relation between γ and the family-size distribution
variance as the original model, and it shows that systems with
higher catastrophe frequencies also have higher frequencies of
large families.

APPENDIX D: SPATIAL EPIDEMICS MODEL

In this section we briefly introduce a stochastic spatial
model with births, competition, epidemic, and diffusion events.
The epidemics in this model, similar to the catastrophes in the
original model, increase the inhomogeneity of the system.

This is a one-dimensional spatial model with N sites. At
each site i there is one population, a family, with a discrete
number of agents Bi . These families have a birth rate α, a
diffusion rate D, and a competition rate ε (equal for all sites).
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FIG. 7. Spatial epidemics model. Mean and variance of B, taken
over families (left) and over time (right), as a function of the
diffusion rate. The parameters that were used: N = 1000, α = 1, ε =
0.01, γ = 0.1.

Bi can be described by the following equation:

dBi

dt
= αBi + D

[
1

2
(Bi+1 + Bi−1) − Bi

]
− εB2

i . (D1)

In addition, at each time step there is a chance γ that the entire
family at site i goes to extinction. γ is called the epidemics
rate. The diffusion is from site i to its nearest neighbors i − 1
and i + 1 with periodic boundary conditions. All reactions are
independent random events.

Monte Carlo simulations of this model were performed on
a one-dimensional 1X1000 lattice. We initiated the agents at
random positions and enacted each reaction independently of
the other reactions. At each site we computed the probability
of each reaction and performed reactions according to the
prescribed probabilities. In each time step all lattice sites were
updated. The dynamics were simulated for different parameter
values. The simulation framework was described in detail in
previous publications [40,41].

In Figs. 7 and 8 the simulation results for different values
of γ and D are plotted. Figure 7 left and Fig. 8 left show the
mean and variance of B taken over different sites (different
families) as a function of the diffusion rate and the epidemics
rate, respectively. Figure 7 right and Fig. 8 right show the mean
and variance of B taken over time as a function of the diffusion
rate and the epidemic rate, respectively.

The diffusion in the spatial epidemics model (D) corre-
sponds to the mutation rate of the original model (μ). The
epidemic rate in the spatial epidemics model (γ ) corresponds
to the catastrophe rate of the original model (γ ). In Fig. 7,
for very large diffusion rates the diversity of the population is

FIG. 8. Spatial epidemics model. Mean and variance of B, taken
over families (left) and over time (right), as a function of epidemics
rate γ . The parameters that were used: N = 1000, α = 1, ε = 0.01,
D = 0.01.

low. Decreasing the diffusion rate increases the diversity of the
population. For very small diffusion rates the entire population
goes to extinction. These dynamics are similar to those in the
original model, if the diffusion rate is replaced by the mutation
rate (see Fig. 1). In Fig. 8, for very low epidemic rates, the
diversity of the population is low. Increasing the epidemics
rate increases the diversity. For a very high epidemics rate the
entire population goes to extinction (the diversity goes to zero).
These results are similar to the results of the original model,
most notably, that increasing the catastrophe/epidemics rate
increases rather than decreases system diversity.

APPENDIX E: NETWORK MODEL

In this section we briefly introduce a network generation
model where we compare two types of edge deletion:

(1) Deletion of a single edge, and
(2) Deletion of all edges connected to a node,

FIG. 9. Network model. Degree distribution of the two types of
edge addition with either random edge deletion (black line) or the
removal of all edges from a node (blue/gray line). Upper plot – linear
preferential attachment. Lower plot – triadic closure. As was the case
in all previous systems studied, the simultaneous removal of all edges
from a node increases the variance in the degree distribution (i.e., it
leads to a fatter tail). In this case, we do not have a continuous variable
for the removal but rather a binary decision – only catastrophes or only
single deaths.
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where the overall number of edges is constant. An edge
deletion is comparable to a single death in the original
model, while deletion of all edges belonging to a node is
comparable to a catastrophe in the original model. In the
first case the edge to be deleted is chosen randomly; in
the second case, the node whose edges are to be deleted
is chosen randomly. The total number of edges is kept
constant by adding the same number of edges as has been
deleted.

We check two types of edge addition.
(A) Linear preferential attachment — A node is chosen

with probability c + 1, where c is the node degree. A second
node is chosen randomly, and a new edge is created between
the pair if they are unconnected. If the pair is already connected
the process is started afresh until an unconnected pair is chosen
and a new edge is added between them.

(B) Triadic closure — A node is chosen randomly and an
edge is added between two of its neighbors. The algorithm is as
follows. A node is chosen randomly. Then, two of its neighbors
are chosen randomly. If an edge already exists between these
two neighbors, we start afresh from the beginning. If the first
node has less than two neighbors, a new edge is created between
that node and another randomly selected node.

We compare single edge deletion and multiple edge deletion
in both types of edge addition. See [42] for model and
simulation details.

The degree distributions of a random Erdos-Renyi networks
in equilibrium are given in Fig. 9. Upper and lower plots
correspond to edge addition types (A) and (B), respectively. In
both types of edge addition, the degree distribution of deletion
of all edges of a node (catastrophes) has a fatter tail compared
with a single edge deletion, as was the original model.
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