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Access resistance indicates how well current carriers from a bulk medium can converge to a pore or opening
and is an important concept in nanofluidic devices and in cell physiology. In simplified scenarios, when the bulk
dimensions are infinite in all directions, it depends only on the resistivity and pore radius. These conditions
are not valid in all-atom molecular dynamics simulations of transport, due to the computational cost of large
simulation cells, and can even break down in micro- and nanoscale systems due to strong confinement. Here,
we examine a scaling theory for the access resistance that predicts a special simulation cell aspect ratio—the
golden aspect ratio—where finite-size effects are eliminated. Using both continuum and all-atom simulations, we
demonstrate that this golden aspect ratio exists and that it takes on a universal value in linear response and moderate
concentrations. Outside of linear response, it gains an apparent dependence on characteristics of the transport
scenario (concentration, voltages, etc.) for small simulation cells, but this dependence vanishes at larger length
scales. These results will enable the use of all-atom molecular dynamics simulations to study contextual properties
of access resistance—its dependence on protein and molecular-scale fluctuations, the presence of charges, and
other functional groups—and yield the opportunity to quantitatively compare computed and measured resistances.
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I. INTRODUCTION

Ion transport through narrow constrictions in biological
membranes permits the regulation of concentrations, known
as ion homeostasis, that is vital for physiological functions of
cells [1–3]. Moreover, ion transport through porous inorganic
membranes is of interest for technological applications—such
as DNA sequencing [4,5]—and industrial use [6,7]. The recent
progress in the fabrication of atomically thin membranes,
such as graphene [8–10], MoS2 [11], and hexagonal boron
nitride [12], opens new avenues in the field of ion transport:
These membranes are excellent candidates for molecular and
ionic sieves [13–15] for desalination [16,17] and gas sepa-
ration [18,19]. Their atomic thickness provides advantages
for biosensing, such as sequencing [9,10,20] and protein
folding [21]. Synthetic pores—especially ones with atomic
thickness—also provide a testing ground for understanding
biological ion channels and creating biomimetic pores. In
particular, ion currents through pores of controllable size can
probe dehydration [22,23] and directly quantify its effect on
selectivity [24,25].

The access resistance—part of the series resistance in patch
clamp measurements—is the resistance for ions to converge
from the bulk electrolyte to the mouth of the pore [26]. It
sets the upper limit of current flow through ion channels
[27,28] and can become the dominating resistance at low
salt concentration [29]. For atomically thin pores with radii
sufficiently larger than the solvation shell of ions, the access
resistance will be the only significant resistance, even at high
salt concentration. It thus becomes an important component
to understand and quantify for sensing and sequencing, which
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require high precision measurement and analysis of the ion
current. Moreover, numerous efforts, especially using water-
soluble polymers, have sought to separate pore and access
contributions to the resistance to characterize different aspects
of biological channels [30–32].

Ideally, all-atom molecular dynamics (MD) simulations
should be employed to simulate ion channels [33], as only
these simulations capture contextual aspects of the pores, such
as molecular-scale fluctuations in pore sizes and geometries
and local charges [34]. For instance, edge fluctuations and the
noncircular nature of a pore in graphene, together with van der
Waals interactions and dehydration, make the pore radius hard
to define [34]. However, MD simulations are computationally
intensive. In fact, it is often not possible to reach biologically
relevant timescales using all-atom MD [35]. Together with
the long-range nature of convergence, this makes it difficult
to reach the required simulation sizes to quantify the access
resistance [36]. Here, we examine a scaling analysis to extract
the access and pore resistances [34], demonstrating that there
is indeed a “golden aspect ratio” [different than the golden
ratio, (1 + √

5)/2] that removes finite-size effects. We use
continuum simulations to scan the necessary parameter space
and demonstrate that the golden aspect ratio indeed removes
finite size effects in MD simulation as well.

For an infinitely large, balanced (i.e., infinite in all direc-
tions), and homogeneous system, the access resistance depends
only on the resistivity of the medium, γ , and the pore radius,
a. Hall’s expression,

RHall = γ

4a
, (1)

gives the form under these idealized conditions [26]. In fact,
the access resistance, Eq. (1), was derived by Maxwell well
over a century ago in the context of the electrical current
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FIG. 1. Contour plots of potential from continuum (PNP) simulations of ion transport through a nanopore. (a) Potential drop V0 across the
simulation cell with a pore of radius a in a membrane of thickness hp . The equipotential surfaces (thick, shaded red and blue lines shown on top
of a heat map) are elliptical near the pore—i.e., an access-like region. The finite size of the simulation cell curtails the access region, forcing the
equipotential surfaces to transition into nearly flat profiles closer to the electrodes—i.e., a bulk-like region. The top half shows the rotational
elliptical coordinates, ξ and η, we employ in modeling the access resistance. (b) Equipotential surfaces in simulation cells of increasing L

and H , with H > L, show the finite-size scaling of access-resistance. (c) Potential map in simulation cells with L > H (L = 32 nm and
H = 16 nm). The equipotential surfaces are quasielliptical almost up to the end of the cell, but with the surfaces somewhat vertically distorted
when they approach the electrode surfaces on the top and bottom. (d) As the cell size increases at a constant aspect ratio α = H/L, more of the
equipotential surfaces become ellipsoidal, i.e., accesslike, and the total resistance converges to its value in an infinite bulk.

through an orifice [37]. Access resistance occurs in heat flow,
mass diffusion, and other related scenarios, such as electrical
(e.g., disk electrodes) and thermal contacts. Hence, several
authors have derived the same expression for these various
physical systems, see, e.g., Gray and Mathews [38], Brown and
Escombe [39], Gröber [40], Holm [41], and Newmann [42],
and given various names for it (access, convergence, contact,
a component of the series resistance, etc.). In the case of
electronic transport, the resistance in the ballistic regime—the
Sharvin resistance [43]—crosses over to Maxwell’s expression
when the pore is larger than the electron mean free path [44,45].
Although our focus is on ion transport, the general findings
should be applicable to other transport scenarios as well.

Moreover, the fact that the access resistance varies as
1/a rather than 1/a2, as it does for the pore resistance in
the diffusive regime, has an interesting consequence: When
the pore resistance is negligible, the current through one large
pore is less than that through several smaller pores of the same
total area if the pores do not interfere with each other. Nature
uses this effect to maximize the gas exchange rate between
the atmosphere and stomata in leaves [39], and one can envision
using the same effect for maximizing permeation through
atomically thin membranes, such as those through graphene
and MoS2, which naturally have a small pore resistance (above
the dehydration limit [24,25]).

As we discuss later, Eq. (1) reflects an idealized situation.
Access resistance can deviate significantly from this form when
the pore and the membrane are charged [46,47] or when only
one ion species is permeable [28,48]. The effect of surface
charge or concentration gradients on access resistance have
been studied elsewhere [46,48]. Here, we focus on the effect
of the finite simulation cell size.

II. MODELS AND METHODS

In addition to an infinitely large, balanced, and homoge-
neous bulk, the typical derivation of Eq. (1) assumes that
a hemispherical electrode is at infinity. This means that at
large distances the electric field lines extend radially outward
from the pore/contact. Within the pore, these field lines have
to transition to pointing along the symmetry axis, which we
take as the z axis. These symmetries can be seen from the
equipotential surfaces close to the pore, as shown in Fig. 1.
We will retain the ellipsoidal symmetry, which transitions
from circular at the pore to hemispherical at infinity, to derive
the finite-size corrections. These corrections are especially
important in simulations, but can also be relevant to nanofluidic
[49] and microelectromechanical systems (MEMS) [50].

We have shown previously [34] how to modify Eq. (1) for a
finite-size system (while retaining the symmetry of the problem
[42,51]). This setup is easier to solve using rotational elliptic
coordinates, ξ and η, which relate to cylindrical coordinates, z
and ρ, via

z = a ξ η,
(2)

ρ = a
√

(1 + ξ 2)(1 − η2).

Laplace’s equation for the electric potential in this coordinate
system is [52]

∂

∂ξ

[
(1 + ξ 2)

∂V

∂ξ

]
+ ∂

∂η

[(
1 − η2

)∂V

∂η

]
= 0. (3)

The boundary conditions are: (i) a constant potential at the
pore mouth (V = 0 at ξ = 0), (ii) no radial electric field on
the membrane surface (∂V/∂η = 0 at η = 0), and (iii) an
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ellipsoidal electrode of radius l (V = V0 at ξ = l/a). Only
condition (iii) is different than that used for an infinite bulk.

We stress that in a complex system such as ion channel,
factors such as the presence of surface charges and functional
groups, concentration gradients, selective ion transport, and
others limit the validity of these boundary conditions. Even in
a simplified system these boundary conditions only partially
hold. In particular, condition (iii) is really a fictitious electrode
placed at the end of the access region. We will use the location
as a fitting parameter, as well as an additional contribution to
capture the effect of the transition region—the region between
the access and bulk regions. Our main focus will be on
obtaining the functional dependence of the resistance on cell
dimensions and we will use continuum simulations to both
empirically motivate and validate this dependence.

The solution to Eq. (3) is, see the Appendix,

V

V0
= tan−1 ξ

tan−1(l/a)
(4)

for the potential. Thus, the access resistance is

Raccess/2 = γ tan−1(l/a)

2πa
= γ

4a

(
1 − 2a

πl
+ O

[(a

l

)3
])

≈ RHall

(
1 − 2a

πl

)
= RHall − γ

2πl
, (5)

where we ignore higher order corrections since they are
O[(a/l)3]. The notation “access/2” indicates that this is the
access resistance on a single side of the membrane. When
the (simulation) cell size has, e.g., a cross-sectional length of
10 nm, l has to be less than 5 nm. Hence, the expression shows
that the classical form is off by ≈13% for a pore radius of 1 nm.
This will get worse for even moderately larger pore sizes, not
to mention the difficulty in applying the Hall’s form when a is
ill-defined.

Scaling analysis

The simple boundary conditions and ellipsoidal symmetry
allow us to derive the expression, Eq. (5), for the access resis-
tance for an idealized finite size system. However, as mentioned
earlier, neither the boundary conditions nor the symmetry
holds exactly in practice. In ion channels, the potential in
the pore and the bulk can be coupled [47]. Nonetheless, such
coupling affects the region near the pore and the boundary
conditions can be taken as approximations. Another important
consideration is that simulations usually have parallel disk
electrodes (or homogeneous applied fields) and a uniform
cross-section. Nanopore experiments and patch-clamp mea-
surement of biological pores have even more complicated
arrangements. Furthermore, in simulations, a rectangular or
cylindrical cell are the natural choices. However, as shown in
Fig. 1, the potential still has ellipsoidal symmetry near the pore
and it starts to become flat away from the pore in the vertical
direction. This is also the case in all-atom MD simulations [34].
Most importantly, therefore, we have to consider the empirical
observation, see Fig. 1, that there are different electrostatic
regions of the cell. In what follows, we will use this observation
to develop a general scaling form.

In the case where the bulk height H (not including the
membrane thickness) is greater than the cross-sectional length
L, i.e., H � L, there are three regions on each side: (a) an
ellipsoidal access-like region extending from ξ = 0 to ξ = l/a,
(b) a flat bulk-like region extending from approximately z = l

to z = H/2 (this takes the upper membrane surface to be at
z = 0), and (c) an intermediate region between the two. When
H � L, the length l will be some fraction of the cross-sectional
length L and the resistance of the intermediate region should
decay as 1/L. Thus, the total resistance is

R = Raccess + Rbulk + Rintermediate + Rpore

= 2

(
RHall − γ

πf1L

)
+ γ

(
H − f2L

GL2

)
+ γf3

GL
+ Rpore,

(6)

whereGL2 is the cross-sectional area of the bulk cell (G = 1 for
rectangular and G = π/4 for cylindrical). We introduce factors
f1, f2, and f3 due to the uncertainty in the extent/contribution
of these regions and the transitory nature of the boundaries
between them. In Eq. (6), the access region ends at l = f1L/2
and we expect f1 to be O(1), i.e., this region encompasses a
substantial fraction of the cell width (when H � L). After the
access region and some transition region ends in the vertical
direction, the normal bulk-like region begins. It has total height
H − 2f2L/2, where f2L/2 is subtracted from each side of the
membrane (the membrane thickness is not included in H ), and
we expect f2 to also be O(1).

When the cell size is infinite in all directions, the resistance
reduces to

R → R∞ = 2RHall + Rpore. (7)

Thus, from Eqs. (6) and (7), we obtain

R =γ

G

(
H

L2
− f

L

)
+ R∞, (8)

where

f = 2G/πf1 + f2 − f3 (9)

gives a single fitting factor. This relation shows that the
finite size—and confined—correction to the access resistance
depends on both height and the cross-section of the cell. In the
context of heat flow [53,54], others have shown that, for an
infinitely tall cell, access resistance has functional dependence
on a/L, which reduces to the classical form when L � a.

Equation (8) is the resistance for H � L and its develop-
ment employed both the derivation of the corrections to Hall’s
form and the empirical observations in Fig. 1. However, Eq. (8)
does not necessarily require R∞ = 2RHall + Rpore, rather only
that the resistance convergences to some R∞. For example, R∞
can include the rectifying action of a channel [55], the effect of
charges [46,47], or an ill-defined pore radius [34]. Conditions
such as these, ones that give an access contribution other than
Hall’s form, should still obey the scaling law so long as the cell
is large enough to remove nonscaling finite size effects. The
reason is simple, the convergence is an algebraically decaying
effect, whereas structural fluctuations are completely local and
charges are screened beyond few Debye lengths. This means
that after some distance these features will no longer be felt
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FIG. 2. Variation of the resistance with changes in one of the cell dimensions. The pore radius is a = 1 nm, the membrane thickness hp = 1
nm, and the resistivity γ = 71 M	 nm (taken to match our all-atom MD value of 1 M KCl from prior results [34]). (a) The resistance R versus
cross-sectional length L with electrolyte height fixed at H = 14.5 nm. For L � H/f , R is smaller than the actual resistance for an infinite-size
electrolyte, R∞ (horizontal dotted line). The scaling form still correctly predicts R∞ when fit for small L (solid lines) but to do so it has to
display non-monotonic behavior (extrapolated, dashed lines). The computed data at large L, however, converges to a value below R∞ as given
by Eq. (11). We note that obtaining f from where R crosses R∞ gives about 1.0 for cylindrical and 1.2 for rectangular cells. This is in close
agreement with the golden aspect ratio we obtain later, with the difference from the exact values likely due to the strong non-monotonic effects
here. (b) The resistance R versus total electrolyte height H when cross-section is fixed at L = 50 nm. For H/f � L, R increases linearly with
increasing H as shown by the fitted solid lines. For H < L, R decreases with decreasing H as the negative correction term −f ′γ /H becomes
larger. The factor f ′ ≈ 0.4 obtained from fitting is similar to simple estimates (about 0.3). The standard error of the fits for f and R∞ are less
than 0.2 %. Their fitted values are shown in bold font in the legends.

by the ionic solution. We will show this explicitly in the case
of nonlinear response to large voltages, which is a much more
drastic perturbation to the medium than fluctuations of the pore
or the presence of charges.

For H � L, we will get a different form than Eq. (8)
but the considerations will be similar. Figure 1(c) shows the
equipotential surfaces for this case. The access region now
ends at l = f ′

1H/2, as it is not the horizontal boundary that
terminates the access region but the vertical. This occurs at
some fraction of the box height, f ′

1 = O(1), where the prime
indicates it is different than the fraction in the H � L case.
The normal bulk region is now almost negligible. Moreover,
the cross-sectional area that contributes to the resistance in the
normal bulk region is not L × L, but rather should be nearly
equal to H × H , as only the region above the access region
feeds ions into that region and contributes to the current. This
is also reflected by the fact that the electric field is nearly zero
for a radial distance about H away from the z axis. Hence, at
that distance away, the electrolyte does not contribute to the
resistance. We will therefore take γf ′

2/GH for the normal bulk
contribution (i.e., a height divided by a relevant cross sectional
length that is proportional to H/H 2) and f ′

2 should be very
small. The transition region will also depend on 1/H , giving

R = Raccess + Rbulk + Rintermediate + Rpore

= 2

(
RHall − γ

πf ′
1H

)
+ γf ′

2

GH
+ γf ′

3

GH
+ Rpore. (10)

Rewriting this equation gives

R = − γf ′

H
+ R∞, (11)

with f ′ = 1/πf ′
1 − f ′

2/G − f ′
3/G. This equation entails that if

we keep H constant the total resistance will stay constant as we
increase L. We estimate f ′

1 ≈ 1 and f ′
2 ≈ f ′

3 ≈ 0 giving f ′ ≈
1/π ≈ 0.32. Moreover, the correction to access resistance is
negative as it removes part of the access region to give a lower
lower total resistance.

The difficulty with the applying Eqs. (8) and (11) is that
R both depends on two geometric variables, H and L, and it
transitions from Eq. (8) to Eq. (11) at an unknown boundary
(albeit H ≈ L). On the one hand, if we hold L constant and
increase H , then R will increase linearly with H (e.g., this
would apply both in simulations and experiments where a
very narrow nanofluidic constriction leads up to the mem-
brane/pore). This is essentially increasing the larger normal
bulk region in the cell. On the other hand, if we keep H

constant and increase L, the resistance will initially decrease
due to the larger cross-sectional area available for transport
in the normal bulk region. However, the finite-size correction
in Eq. (8) becomes negative once L � H/f . At this point, R

becomes smaller than R∞ and, as Eq. (11) indicates, should
flatten out as L becomes larger. This is seen in Fig. 2. In other
words, a further increase in L does not converge R to R∞,
because the additional cross-sectional area does not contribute
to transport. One can still apply the scaling form, Eq. (8), so
long as the fit is for a range of L � H/f , which Fig. 2(a) shows
it extracts the correct R∞ (found by using the approach we
describe below). To use the scaling form in Eq. (11) one has to
set L to a large value and increase H , fitting for values H � L,
as seen in Fig. 2(b) (one cannot take H near in magnitude to
L, however, as there are corrections missing in Eq. (10) as H

approaches L from below).
For R to converge to R∞ monotonically (in the absence

of nonlinearities), whether from above or from below, both L

and H need to increase simultaneously. An intuitive method
to do so is to keep the aspect ratio, α = H/L, constant, which
simplifies Eqs. (8) and Eq. (11) to

R =
{

γ

GL
(α − f ) + R∞ for α � 1,

− γf ′
αL

+ R∞ for α < 1.
(12)

Not only do these equations give a unified scaling form R∞ +
O(1/L), i.e., both decay with L (one from above, one from
below), the former also indicates that if we choose a special
aspect ratio α
 = f then the finite size correction is eliminated
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andR is independent ofL. In other words, at this “golden aspect
ratio,” α
, R = R∞ for any L.

It is likely not possible to find a general expression f =
2G/πf1 + f2 − f3, since the transition from access-like to
bulk-like is complicated and the factors f1, f2 and f3 will
in general depend on geometric details of the pore and
the boundary conditions. Nevertheless, with some reasonable
approximations we can give an estimate of f . We expect that
f1 ≈ f2 ≈ 1 (i.e., a boundary between access and bulk-like
regions at a radial distance equal to the cell edge, l = L/2). To
estimate f3, which depends on f1 and f2, we assume that the
intermediate region has equal contributions from access- and
bulk-like behavior. This intermediate region can be assumed
to have a hemispherical boundary of radius f1L/2 and a flat
boundary of cross-section GL2 at height f2L/2 on each side
of the pore. Thus, the resistance of the intermediate region is
estimated to be

γf3

GL
= 1

2

(
2γ

πf1L
− 2γ

πL

)
+ 1

2

(
2γf2L/2

GL2

)
, (13)

giving

f3 = G
f1π

− G
π

+ f2

2
. (14)

The expression for f3 likely overestimates the bulk-like con-
tribution, while either under- or over-estimating the access
contribution. Using it in Eq. (9) simplifies f to

f = G
πf1

+ f2

2
+ G

π
. (15)

Table I shows the value of f for various values of f2 = f1.
The value of f is quite insensitive to f1 and f2 in a reasonable
range (due to the fact that one appears in a denominator and
the other in a numerator), including when f1 and f2 are varied
separately. The equipotential surfaces in Fig. 1 suggest f1 ≈
2/3 and f2 ≈ 3/4, and thus we estimate

f =
{

1.2 for rectangular box

1.0 for cylindrical box
(16)

TABLE I. Estimates of the golden aspect ratio, α
 = f , for
various values of f1 and f2. We expect f1 and f2 to be O(1).

f1 1.00 0.80 0.60 0.40
f2 1.00 0.80 0.60 0.40
α
 (rectangular) 1.14 1.12 1.15 1.31
α
 (cylindrical) 1.00 0.96 0.97 1.08

for the golden aspect ratio.
We will also examine the sensitivity of f to different

conditions, including whether one uses the Poisson-Nernst-
Planck (PNP) equations or just Laplace’s equation (i.e., Ohm’s
law). The latter—the homogeneous medium approximation—
is valid when the applied potential is small and the ion
concentration is large [8]. Poisson’s equation and the stationary
Nernst-Planck equation express the spatial dependence of the
potential V and current density J as

∇2V =
∑

ν

qνcν

ε
(17)

and

Jν = −qν(Dν∇cν + μνcν∇V ), (18)

where qν , cν , Dν , and μν are the charge, concentration,
diffusivity, and mobility of ion species ν, respectively. We use
a commercial finite element solver for both cases.

Finally, we expect that the “golden aspect ratio” is ap-
plicable to MD because, at large distance and weak enough
variation in fields, MD can be coarse-grain into a continuum
description. We test this applicability by simulating the ionic
current through graphene nanopore of radius a = 1.81 nm
immersed in 1 mol/L of KCl. We perform the all-atom MD
simulation using NAMD2 [56], the CHARMM27 [57] force
field, and a rigid TIP3P [58] water model. The details of MD
simulation are the same as in our previous work [34].
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FIG. 3. Resistance versus L for different aspect ratios α, with a = 1 nm, hp = 1 nm, and γ = 71 M	 nm. For small α, dR/dL > 0 and
for large α, dR/dL < 0. At special value of α in between—the “golden aspect ratio,” dR/dL = 0 and the resistance is constant (i.e., no finite
size effects). Here, the gold line is very close to, but not quite at, the golden aspect ratio. The solid lines show the fits R = γ

GL
(α − f ) + R∞

for α > 1 and R = − γf ′
αL

+ R∞ for α < 1, where G = π/4 for cylindrical cells (left panel) and G = 1 for rectangular cells (right panel). The fit
parameters are shown in bold. The dashed lines extrapolate these fits, which match well with the calculations for large L and yield consistent
values for R∞. The performance of the scaling analysis using small L indicates that the simulation cell sizes achievable with all-atom MD
should be sufficient to find the total resistance (pore plus access). The error of the fits for the f ’s and the R∞’s are about 0.5 % and 0.1 %,
respectively (except for α = 0.25 where the respective errors are about about 3 % and 0.5 %).
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FIG. 4. Universality of the golden aspect ratio with pore size. (a) The resistance versus L for cylindrical cells with α = 1.07, hp = 1 nm,
γ = 71 M	 nm, and various pore radii. The golden aspect ratio is fairly constant over this range of a. The solid lines show the fits R =
4γ

πL
(α − f ) + R∞ and the dashed lines show the extrapolations—which make good predictions of R at large L. The fit parameters are shown

in bold. The errors of the fits for f ’s and R∞’s are less than 0.5 % and 0.1 %, respectively. As the pore radius increases, we examine fits for
larger L, to roughly keep proportionality between L and a as there are (nonscaling) finite-size effects that will affect the simulations when
the radius starts to become comparable to the cell cross-sectional length. The range of the fitting can influence the extracted f (we expect
that ultraprecise calculations at really large L will reveal the exact golden aspect ratio, which will be close to 1.07). (b) R from fits to
R = γ (1/2a + heff/πa2) + R, for cylindrical cells of various α, with heff and R as fitting parameters. We get R ≈ 0 for the “golden
aspect ratio” α
 = 1.07 (dashed lines), the fit of which is shown in the inset. The effective height, heff , is (5 ± 1)% larger than the 1-nm membrane
thickness; see Fig. 5. (c) R in the fits R = γ /4a + R for half cylinders of different aspect ratios with the pore mouth set at potential V = 0.
We again get R ≈ 0 for α
 = 1.07 (dashed lines), whose fit is shown in the inset. The interpolated lines in the insets are for visual clarity only.

III. RESULTS

We first test the scaling form, Eq. (12), for a homogeneous
medium by solving Laplace’s equation for the electric poten-
tial. All simulations take a silica membrane with dielectric
constant 2.1. With the rectangular cell, we compute the resis-
tance using both finite and periodic cells (as is common in
all-atom molecular dynamics). Both boundary conditions give
the same results and thus we show results only for the finite
cells for the continuum case (for the all-atom simulations, we
have a periodic rectangular cell). Figure 3 shows that, for both
cylindrical and rectangular cells, the resistance increases with
L for small aspect ratios and decreases for large aspect ratios
as predicted from Eq. (12). Physically, we can understand
this as follows: When the aspect ratio (H/L) is small, the
access-like region covers most of the height of the cell. Thus,
when increasing L, the access contribution increases, as the
finite size correction—a negative correction—in Eq. (5) is
being eliminated. However, when the aspect ratio (H/L) is
large, the accesslike region is localized near the pore and the
bulk-like region covers the remainder of the height of the cell.
This bulk-like region gives a large positive contribution to the
resistance, but is decreasing with L (due to the fact that it
decreases with the area). This transition from increasing to
decreasing resistance with L suggests that there should be a
constant R at some special value of the aspect ratio. At this
special value, the two competing effects cancel. Figure 3 shows
that there is an aspect ratio that shows little variation as L

increases. Thus, indeed, the golden aspect ratio exists and is
approximately α
 = 1.07 for a cylindrical cell and α
 = 1.2
for a rectangular cell, in line with the estimate in Eq. (16).

In Fig. 4(a), we examine three pore sizes and use a
cylindrical cell with aspect ratio α = 1.07 where we get a
visually flat profile of R versus L. An inappropriately chosen

aspect ratio, however, will have R dependent on L and disagree
with the classical form of the access resistance. Figure 4(b)
shows that, around α = 1.07 and at finite L (32 nm), the form
R = γ (1/2a + hp/πa2) + R, fits the data with R ≈ 0,
thus coinciding with the classical form. For α = 2, a reasonable
value from a computational standpoint, the fit gives R ≈
3 M	, which is an error of ≈30% in R∞ at a = 4 nm.

Notice that we obtain hp = 1.05 nm from the fit, which is
different than the 1 nm membrane thickness. The expression
γ hp/πa2 assumes the potential surfaces are flat within the full
length of the pore. However, in actual pores, these surfaces are
not perfectly flat, especially near the pore mouth, as is visible
in Fig. 1. This difference in curvature will give a correction to
γ hp/πa2 and it seems likely this is responsible for the slight
difference in hp. This correction becomes negligible for thick
membranes, as shown in Fig. 5, where the correction comes
out to be 1.0 % for a 4-nm membrane (compared to 5% for the
1 nm membrane).

To test the finite-size effect of the bulk, we can remove this
source of ambiguity completely by examining the resistance
on a half cylinder—between the pore mouth set at potential
V = 0 and an electrode at one end of the cylinder. Figure 4(c)
shows this resistance versus pore radius. Since the half cylinder
does not have the pore resistance, we fit it to R = γ /4a + R.
Once again we get R ≈ 0 for the aspect ratio α = 1.07 and
a value substantially different than zero for other α. These
calculations, using Laplace’s equation, pin the golden aspect
ratio to be around α
 = 1.07 for the cylindrical box (and around
1.2 for a rectangular box). Furthermore, these values of the
golden aspect ratio are remarkably close to the estimate in
Eq. (16). We also want to examine more realistic simulations,
and thus we now examine the PNP equations, which are widely
employed to compute ion channel behavior [59–64] and MD
simulations.
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FIG. 5. The resistance versus a for cylindrical cells with L =
32 nm, the golden aspect ratio α
 = 1.07, and hp = 1.0 nm, 2.0 nm,
3.0 nm, and 4.0 nm. The resistance fits into the model, R =
γ (1/2a + heff/πa2) + R with heff and R as fitting parameters
(shown in bold in the legend). The fitted heff is slightly larger than
the actual membrane thickness but its relative difference diminishes
as the membrane thickness is increased. This is due to the curvature
of the potential at the pore mouth and not due to numerical grid-size
errors (a ten times smaller grid increases this value to 7%, and thus we
expect this height correction to converge to something of this order.).
The standard errors of heff and R are about 0.01 nm and 0.04 M	

in each case.

A. PNP Solution

We test Eqs. (12) for PNP simulations with two different
concentrations, 0.1 mol/L and 1.0 mol/L of KCl solution, and
applied voltages of 10 mV, 100 mV, and 300 mV. Figure 6
shows that for 10 mV and 100 mV we obtain a similar

golden aspect ratio as for the homogeneous medium solution.
However, this special ratio seems to decrease for the larger
voltage of 300 mV. Clearly, there are nonlinear effects coming
into play when the voltage increases and/or the concentration is
insufficient to screen the field without substantially perturbing
the medium. We will show that this decrease is just an apparent
decrease due to nonscaling [in the context of Eq. (12)] finite-
size effects. Larger L will restore the scaling form.

We first want to understand the origin of these effects, which
requires that we consider the formation of concentration gra-
dients [65]. As seen in Fig. 7, the resistivity (γ = 1/

∑
cνμν)

is fairly constant along the axis of the simulation cell for
small voltages and thus we get the same result as in the
homogeneous case. For higher voltages, however, γ is smaller
near the pore as a result of classical Wien effect [66,67].
However, the scaling form, Eq. (12), can still be employed
as long as the resistivities of different regions do not change
drastically. Relaxing the homogeneity assumption that went
into the derivation of Eq. (12), we set γb, γa , and γp to be the
resistivity in the bulk-like region, the accesslike region, and in
the pore, respectively. Then, the total resistance (for H � L) is

R = Raccess + Rbulk + Rintermediate + Rpore

= 2

(
γa

4a
− γa

πf1L

)
+ γb

(
αL − f2L

GL2

)
+ γbf3

GL
+ γphp

πa2

= γb

GL

[
α − f

(
γa

γb

)]
+ R′

∞, (19)

where R′
∞ = γa/2a + γphp/πa2 and

f

(
γa

γb

)
= 2Gγa

πf1γb

+ f2 − f3. (20)
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FIG. 6. PNP solution of the resistance versus L for cylindrical cells with hp = 1 nm, a = 1 nm, and various aspect ratios (α = 1.4, 1.1,
and 0.8 from top to bottom). The labels at the top show the applied potential and the labels at the right show the concentration of KCl. The
golden aspect ratio remains the same as in the homogeneous medium calculation for the smaller voltages (10 mV and 100 mV) and for both
1 mol/L and 0.1 mol/L concentrations. For 300 mV applied voltage, the golden aspect ratio seems to take on a lower value due to the increased
concentration of ions near the membrane, which is more pronounced for low concentrations due to a diminished ability to screen and generate
local fields. The legends show the fits to Eq. (12) with the fit parameters shown in bold. The error of the fits for f ’s and R∞’s are about 0.5%
and 0.1%, respectively.
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FIG. 7. The resistivity along the z axis for various applied
potentials and cell dimensions L. The pore radius is a = 1 nm
and the KCl concentration is 0.1 mol/L (γb = 710 M	 nm). Large
applied voltages enhance the density of charge carriers near the pore,
decreasing the resistivity. Since the access resistance contribution is
largest near the pore, see Eq. (5), this enhancement lowers the overall
access resistance and gives an apparent depression to the golden aspect
ratio when examining small simulation cells.

Within this simplified—“compartmentalized”—inhomo-
geneous system, the resistance of the infinite system and the
golden aspect ratio are linear function of γa , decreasing as γa

decreases. This qualitatively explains why we see the apparent
decrease in the golden aspect ratio—it is the depression of the
access contribution that decreases the required height of the
bulk-like region that “balances” it. Of course, the resistivity is
not constant throughout the accesslike region and, at very high
voltage and low concentration, is not even in the bulk-like
region. Thus, this simplified inhomogeneous model will not ac-
curately determine the apparent golden aspect ratio. However,
it does not need to: The extensive decrease in resistivity is due to
the fact that the simulation cells that are really small cannot sus-
tain large potential drops without a global perturbation to the
medium. Examining much larger cells shows that the scaling
form is restored, see Fig. 8, which is due to the fact that the per-
turbation to the medium becomes localized (in dimensionless
terms) around the pore, see the curves for different L in Fig. 7.

In other words, there are finite-size effects and there
are finite-size effects: The perturbation to the medium is a
nonscaling finite size effect and the simulation cells need to
be sufficiently large to accommodate the perturbed region.
An alternative scaling ansatz could potentially be developed
to handle such cases, e.g., including the perturbing effect of
local fields. Its applicability would be more limited (unlike
the general forms, Eq. (12) or Eq. (8), which, however, may
require larger L to reach the scaling regime) but still helpful.
Finite-size effects related to truncating the access region or
asymmetric dimensions can be removed via Eq. (12) or Eq. (8)
(for H � L/f ), respectively.

B. MD Solution

We test Eqs. (12) for MD simulations with 1 mol/L KCl, a
1.81-nm radius graphene pore, and a 1 V applied bias. Figure 9

360

370

380

390

51

52

53

54

32 64 128 256 512 1024 2048

0.1 mol/L

1.0 mol/L

−(0.3 γ)(0.8L) + 361.3 MΩ

4γ(1.1 − 0.9)/πL + 361.4 MΩ

4γ(1.4 − 0.7)/πL + 361.4 MΩ

−(0.4γ)(0.8L) + 52.5 MΩ

4γ(1.1 − 1.1)/πL + 52.5 MΩR
(M

Ω
)

L (nm)

4γ(1.4 − 1.0)/πL + 52.5 MΩ

FIG. 8. PNP solution of the resistance versus L at applied po-
tential of 1 V and KCl concentrations 0.1 mol/L (top panel) and
1.0 mol/L (bottom panel) for cylindrical cells with hp = 1 nm,
a = 1 nm, and aspect ratios (α = 1.4, 1.1 and 0.8). The solid lines
show the fit with f and R∞ as fitting parameters (shown in bold)
and the dashed lines show the extrapolation. Since the applied field
is large, the resistance at smaller L (<100 nm) is highly nonlinear
and cannot be scaled to extract R∞ with Eq. (12) as is done for the
smaller applied voltages in Fig. 6. Hence, a larger L is necessary
to employ the scaling form when the electric field is large and ion
concentrations are small. Note that the resistance for the 0.1 mol/L
solution is substantially smaller than at lower voltages. For 0.1 mol/L
solution, the error of the fit for f and R∞ are about 3% and 0.03%,
respectively, whereas for 1.0 mol/L solution the respective errors are
less than 1% and 0.01%.
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FIG. 9. MD results of the resistance versus L at an applied bias of
1 V and KCl concentration 1.0 mol/L, a = 1.81 nm, and aspect ratios
1.9, 1.2, and 0.5 (from top to bottom). The raw resistance from MD
is shown as open circle. Due to the equilibration, the final cell aspect
ratios are not exactly 1.9, 1.2, and 0.5. The slight change in height can
be corrected for to set H = αL + hp . The data with error bars show
this slightly corrected data. The error bars represent ±1 block standard
error, see Ref. [68], which reflects error due to finite sampling time.
The legends show the fits to Eq. (12) with the fit parameters shown in
bold. The golden aspect ratio for MD is ≈1.2, which is the same as
that from continuum simulations (for a rectangular cell). The scaling
and/or golden aspect ratio simulations yield a resistance in agreement
with the classical expression, 2RHall + Rpore, as we demonstrated with
the scaling procedure only in Sahu et al. [34].
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shows results for three different aspect ratios, 1.9, 1.2, and 0.5,
and a cross-sectional length ranging from 9.6 nm to 14.4 nm.
Both equations hold for these all-atom simulations. Moreover,
we obtain the same golden aspect ratio for MD simulation
as we do for the continuum calculations with a rectangular
simulation cell.

IV. DISCUSSION

Ion transport properties can be difficult to compute with
all-atom molecular dynamics. In the dehydration limit, for in-
stance, large free-energy barriers exist, which entails very long
(microseconds or more) simulations to accumulate enough
ion crossing events to determine the current with reasonable
accuracy [24,25]. This applies even at elevated voltages (sim-
ulations are often done at 3 V or higher [69]), which risks
introducing nonlinearities and prohibits a direct comparison
with experiment. Contextual properties of ion transport—
fluctuations of the pore or membrane, localized dipoles or
charges, van der Waals interactions and dehydration, geomet-
rically “imperfect” pore shapes, etc.—make these simulations
even more difficult to understand and control (e.g., slow
fluctuations of pore structure require long times to acquire
the requisite statistics). To capture these effects, therefore, one
would like to keep the simulation size as small as possible but
without introducing excessive errors into the computation.

We have developed a scaling theory to extract both the
pore and access contributions to resistance without going to
excessively large simulation cells (i.e., L < 16 nm for linear
response). This theory was originally employed to determine
the access contribution—including how to properly define the
pore size in the presence of contextual properties—to graphene
nanopores with all-atom MD [34]. While this does not correct
for force-field effects and related issues (sampling, conforma-
tional changes, etc.), it does solve for the geometry/dimensions
of the setup. Using this theory, we demonstrated that the
“golden aspect ratio”—a special aspect ratio where finite size
effects are eliminated—exists in both continuum and all-atom
simulations (and we expect in Brownian dynamics as well).
Previously, we only used an aspect ratio close to an initial
estimate of the golden aspect ratio (and, indeed, we had little
variation of R with L) but large enough to ensure we decrease
from above to R∞ [34].

The golden aspect ratio gives a completely flat (i.e., with-
out nonmonotonic or oscillatory behavior) resistance versus
simulation cell size. The value for the golden aspect ratio is
about α
 = 1.07 for cylindrical cells and 1.2 for rectangular
(for both continuum and all-atom simulations). It is relatively
insensitive to voltages and ion concentrations within experi-
mentally relevant regimes (i.e., around 0.1 V applied voltages
and 0.1 mol/L to 1.0 mol/L concentrations). For large voltages
and small concentrations, simulation cells must be sufficiently
large to remove nonscaling finite-size effects, after which the
scaling and the golden aspect ratio are restored.

This scaling approach will be most useful when examining
pores that do not have very high pore resistances—due to
dehydration or a long length channel—so that the access
resistance becomes a dominant or equal contributor rather than
a correction to the resistance. Graphene and other atomically
thin pores have a dominant or substantial access contribution

all the way down to the dehydration limit [34], and thus the
scaling approach is essential. Biological channels can fall into
either category, sometimes requiring a correct determination
of the access contribution. For instance, α-hemolysin pores
have a 1 G	 resistance (at 1 mol/L KCl) [70], compared to an
estimated [from Eq. (1)] 40 M	 access contribution. However,
a sodium channel of radius 0.3 nm and effective length 0.5 nm
has both an access and pore resistance that are nearly equal
[27]. In low salt concentrations, access resistance may become
the dominating resistance in a wide variety of cases [29]. While
we have not simulated a biological ion channel here, a direct
application of the golden aspect ratio would take the simulation
cell height to be 1.2 L + hp, with hp the channel length.
For instance, for α-hemolysin as a model biological channel,
hp ≈ 10 nm, the simulation cell height should be roughly on
the order of 27 nm (for the cross-sectional dimension to be
reasonably larger than channel width and protein assembly, L

should be about 14 nm [70]). However, this idea requires testing
with different biological channels, as in many cases (including
α-hemolysin), the membrane thickness and channel length are
not the same. This distorts the equipotential surfaces. Given the
ease with which the scaling approach and golden aspect ratio
can be employed (e.g., setting H ≈ 1.2 L + hp and simulating
a handful of different L), it is reasonable to use it first even in
the cases the where access resistance is a correction.

Care must be taken, though, to work with sufficiently large
L in simulations, especially all-atom MD. For instance, a
simulation cell that is too small may not have enough ions to
properly screen localized dipoles or charges (or otherwise give
a cell boundary too close to these local electrostatic variations,
preventing proper Debye screening). Similarly, the partitioning
of the voltage drop across the cell can yield a strong field across
the pore for small simulation cells (as there is less voltage drop
in the bulk medium), which can introduce nonlinearities in the
transport properties. This further supports the use of the scaling
analysis, as it will also allow one to identify these “nonscaling”
finite-size effects and eliminate them when going to large
enough simulation cells. Moreover, it goes without saying that
computations should be done as close to experimental and
biologically relevant conditions as possible. Our work gives
new reasons to do simulations in the linear response limit,
as it is only then that some nonscaling finite size effects are
negligible for simulation cell sizes in the 16-nm regime.

In addition, the classical form of access resistance assumes
an infinite bulk, which fails for micro- and nanoscale systems.
In particular, if one has a narrow (micro- or nanofluidic)
constriction leading up to a membrane or pore or some other
“active” region, then access resistance no longer follows Hall’s
expression, but rather has to be corrected for the geometric
setup [71]. Our approach gives a method to map simulations
to experimental geometries (or vice versa), thus allowing
for contextual properties to be simulated with reasonable
computational power.

The primary power of MD is to study contextual properties
of pores, such as the effect of atomic/molecular fluctuations
of the pore/membrane and the presence of (partial) charges,
but requires extensive computational resources. The golden
aspect ratio and scaling approaches will allow the quantita-
tive extraction of both pore and access contributions to the
resistance with minimal resources. Its use has already shed
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light on how to define pore size for geometrically imperfect
pores, including edge fluctuations and dehydration/van der
Waals interactions [34]. By extension, this will give the first
calculated values of access resistance in the presence of, e.g.,
molecular-scale/protein fluctuations in biological ion channels
and other contextual properties (charges/dipoles) and open
a new era in comparing computed and measured values of
resistance.
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APPENDIX: ACCESS RESISTANCE IN A FINITE REGION

Here, we calculate access resistance for a finite-size region
while keeping the ellipsoidal symmetry. This problem can be
solved using the rotational elliptic coordinates. We begin with
oblate spheroidal coordinates, (μ, ν, φ), which are defined in
terms of the Cartesian coordiates as

x = a cosh μ cos ν cos φ,

y = a cosh μ cos ν sin φ, (A1)

z = a sinh μ sin ν.

Rotational elliptic coordinates, ξ = sinh μ and η = sin ν, are
related to the cylindrical coordinates as

z = aξη,
(A2)

ρ = a
√

(1 + ξ 2)(1 − η2),

where a is the radius of the pore. Laplace’s equation in this

coordinate system is

∂

∂ξ

[
(1 + ξ 2)

∂V

∂ξ

]
+ ∂

∂η

[
(1 − η2)

∂V

∂η

]
= 0. (A3)

This equation can be solved via separation of variables, V =
H (η)�(ξ ), which gives

∂

∂ξ

[
(1 + ξ 2)

∂�

∂ξ

]
+ λ � = 0 (A4)

and

∂

∂η

[
(1 − η2)

∂H

∂η

]
− λ H = 0, (A5)

where λ is a constant. The boundary condition (ii), ∂V/∂η = 0
at η = 0, yields λ = 0. Integrating Eq. (A4) thus gives

V = H � = H

∫
b1

1 + ξ 2
dξ = H b1 tan−1 ξ + b2, (A6)

where b1 and b2 are the constants of integration. Using the
boundary condition (i), V (ξ = 0) = 0, we get b2 = 0. This
simplifies the potential to V = H b1 tan−1 ξ . The boundary
condition (iii), V (ξ = l/a) = V0, gives V0 = H b1 tan−1(l/a).
Taking the ratio of these two expressions gives Eq. (4) of the
main text,

V

V0
= tan−1 ξ

tan−1(l/a)
. (A7)

The current through the pore is

I =2π

γ

∫ a

0

∂V

∂z

∣∣∣∣
z=0

ρdρ = 2π

γ

∫ a

0

1

aη

∂V

∂ξ

∣∣∣∣
ξ=0

ρdρ

= 2πaVo

γ tan−1(l/a)
. (A8)

Equations (A7) and (A8) give Eq. (5):

Raccess/2 = γ tan−1(l/a)

2πa
≈ RHall − γ

2πl
.
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