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The characterization of information processing is an important task in complex systems science. Information
dynamics is a quantitative methodology for modeling the intrinsic information processing conducted by a process
represented as a time series, but to date has only been formulated in discrete time. Building on previous work
which demonstrated how to formulate transfer entropy in continuous time, we give a total account of information
processing in this setting, incorporating information storage. We find that a convergent rate of predictive capacity,
comprising the transfer entropy and active information storage, does not exist, arising through divergent rates
of active information storage. We identify that active information storage can be decomposed into two separate
quantities that characterize predictive capacity stored in a process: active memory utilization and instantaneous
predictive capacity. The latter involves prediction related to path regularity and so solely inherits the divergent
properties of the active information storage, while the former permits definitions of pathwise and rate quantities.
We formulate measures of memory utilization for jump and neural spiking processes and illustrate measures
of information processing in synthetic neural spiking models and coupled Ornstein-Uhlenbeck models. The
application to synthetic neural spiking models demonstrates that active memory utilization for point processes
consists of discontinuous jump contributions (at spikes) interrupting a continuously varying contribution (relating
to waiting times between spikes), complementing the behavior previously demonstrated for transfer entropy in
these processes.
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I. INTRODUCTION

Information dynamics [1–4] is a framework that seeks
to characterize distributed computation by identifying prim-
itives of information processing in autonomously evolving or
“computing” systems. Specifically, this involves modeling how
information is stored in and transferred between variables in
the system when the values of these variables are dynamically
updated in time. These primitive information processing op-
erations studied by the framework, information storage and
transfer, are measured by the active information storage [4]
and transfer entropy [5] (and higher orders thereof in larger
multivariate systems [3,6]), respectively. The measures in this
framework have been used to characterize and explain behavior
observed in various complex systems, providing novel insights
across a broad range of fields including canonical complex
systems such as cellular automata [6] and random Boolean
networks [7], interpretation of dynamics in [8] and improved
algorithms for machine learning [9], characterizing informa-
tion processing signatures in biological signaling networks
[10], collective behavior in swarms [11,12], nonlinear time
series forecasting [13], and computational neuroscience appli-
cations identifying neural information flows from brain imag-
ing data [14–16], inferring effective network structure [17–19],
providing evidence for the predictive coding hypothesis [20],
and identifying differences in predictive information in autism
spectrum disorder subjects and controls [21].

However, to date, no complete theoretical account for how
this framework should be applied to continuous time systems
has been offered, despite such systems being ubiquitous in
fields throughout all of science. Recently we have given an

account of how to formulate transfer entropy in such systems
[22]. In this paper we build upon these developments by
addressing the concept of predictive capacity, comprising
the transfer entropy and active information storage, in these
systems. We find that such a quantity is much more complicated
owing to the predictive properties that can be derived from
the regularity properties of continuous time processes. As
such, we focus in this paper on investigating the nature of
the active information storage in continuous time processes.
To proceed we find that it is necessary to decompose the
active information storage into two components related to two
distinct characteristics of information processing. We call these
two quantities active memory utilization and instantaneous
predictive capacity. The former is designed to behave as a rate
and to be complementary to transfer entropy. Meanwhile the
latter relates intrinsic uncertainty and path regularity properties
of the process. This may be interpreted asymptotically and
independently of both the transfer entropy and active memory
utilization. The results bring our understanding of the nature
of information storage in such systems in line with that of
information transfer, which is important not only in that they
are both fundamental components of models of information
processing, but also because of the insight these results bring
to the growing role of information storage analyses in neural
imaging data in particular [14,20,21]. Our insights reveal, for
example, the expected behavior of active information storage
and its components when measured on discrete time samples
of underlying continuous time processes, whereby the active
memory utilization is the only quantity that will approach a
limiting value as the discrete time step approaches zero; this
has significant implications for empirical analyses.
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The overall plan of the paper is as follows. In Sec. II we
introduce information dynamics as currently conceptualized.
Following on from this in Sec. III we discuss information-
theoretic measures in continuous time and outline the central
problem under consideration, the definition and identification
of predictive information associated with information storage
in continuous time. Next in Sec. IV we present a set of postu-
lates from which we deduce the central division of the active
information storage, identifying the active memory utilization
and instantaneous predictive capacity before describing their
general behavior. In Sec. V we then detail the relation between
the these quantities and other information-theoretic measures
of stochastic processes such as excess entropy and differential
entropy measures on continuous state spaces. Finally, before
concluding in Sec. VIII, we present applications and exam-
ples chosen to complement previous demonstrations of the
properties of the transfer entropy in continuous time [22,23].
In Sec. VI such quantities are presented for neural spiking
models including analytical results for some simple synthetic
models followed by a numerical full information processing
description of a more complicated model comprising two spike
trains, consisting of both active memory utilization and transfer
entropy. In Sec. VII a coupled Ornstein-Uhlenbeck process
is discussed where analytical results for transfer entropy and
active memory utilization can be derived.

II. INFORMATION DYNAMICS

First, we summarize the basic principles of information
dynamics as formulated in discrete time. Central to the con-
cept of information dynamics is the idea that each evolving
state can be modeled as being “computed” from the past,
in the sense of an “intrinsic computation” [24], and that
this computation is characterized by the predictive capacity.
This concept is made concrete in the context of two random
processes X{0:m} = {X0, . . . ,Xm} and Y{0:m} = {Y0, . . . ,Ym}
taking individual outcomes x{0:m} = {x0, . . . ,xm} and y{0:m} =
{y0, . . . ,ym}, wherein the predictive capacity of the state Xn+1

at time n < m is considered, axiomatically, to be the reduction
of uncertainty in Xn+1 that arises from knowing the path
histories X{0:n} = x{0:n} and Y{0:n} = y{0:n}, at time n, over
having no other knowledge.

This predictive capacity is then formalized mathematically
as CX, given as a mutual information or the difference between
two (conditional) entropies [3,6]

CX ≡ I (Xn+1; X{0:n},Y{0:n})

= H (Xn+1) − H (Xn+1|X{0:n},Y{0:n}) (1)

based on underlying ensemble probabilities, p. Following
on from this quantification of predictive capacity, the cen-
tral approach and framework of information dynamics is to
decompose such a quantity into two specific terms with this
decomposition termed the computational signature, viz.,

CX = H (Xn+1) − H (Xn+1|X{0:n})

+ H (Xn+1|X{0:n}) − H (Xn+1|X{0:n},Y{0:n})

= I (Xn+1; X{0:n}) + I (Xn+1; Y{0:n}|X{0:n})

= AX + TY→X, (2)

where AX is known as the active information storage [4] and
is explicitly written

AX ≡ H (Xn+1) − H (Xn+1|X{0:n})

= E

[
ln

p(xn+1|x{0:n})
p(xn+1)

]
, (3)

and where TY→X is well known in many distinct areas of
science as the transfer entropy [5,25–27] and is explicitly
written

TY→X ≡ H (Xn+1|X{0:n}) − H (Xn+1|X{0:n},Y{0:n})

= E

[
ln

p(xn+1|x{0:n},y{0:n})
p(xn+1|x{0:n})

]
. (4)

Here we note the shorthand p(xn+1|x{0:n},y{0:n}) = p(Xn+1 =
xn+1|X{0:n} = x{0:n},Y{0:n} = y{0:n}), etc., which we use to indi-
cate, where appropriate, that the arguments of the probabilities
are simply specific realizations of the variables to which
the probabilities correspond, and the notation E[. . .] which
denotes an ensemble average with respect to p(x{0:n+1},y{0:n}).
Since both contributions can be written as (conditional) mutual
informations both are rigorously non-negative.

The computational signature effects a model of intrinsic
computation based on this partition into AX and TY→X, such
that there exists an identifiable storage component attributed
to the past of X through AX, plus an information transfer
component attributed to the past of Y in the context of X through
TY→X [6].

More recent developments have emphasized that
information-theoretic quantities should be constructed from
suitable local or pointwise quantities, of which the ensemble
quantities, AX, TY→X, etc., are suitable expectations.
Consequently we recognize the structure of the local active
information storage, aX, given by AX = E[ax(xn+1,x{0:n})]
[4] and local transfer entropy, tY→X, given by TY→X =
E[tY→X(xn+1,x{0:n},y{0:n})] [1]. Explicitly, we have

aX(xn+1,x{0:n}) ≡ ln
p(xn+1|x{0:n})

p(xn+1)
,

tY→X(xn+1,x{0:n},y{0:n}) ≡ ln
p(xn+1|x{0:n},y{0:n})

p(xn+1|x{0:n})
. (5)

We then also define the total computational signature, on a
local scale, cX = aX + tY→X. It is important to note that such
local values have no bound on their sign and thus may be
negative. Such an approach allows significance to placed on
single realizations of a process, allowing fine characterization
of spatial temporal features, such as the identification of
dynamics that are informative, but especially those which are
misinformative, characterized by negative local values (which
have been shown to identify interesting aspects of dynamics in
cellular automata [1,4] and stimulus changes in the cat visual
cortex [28]).

III. FORMULATING QUANTITIES IN CONTINUOUS TIME

A. Background and established quantities

As originally formulated, information dynamics treats only
systems in discrete time. However, many systems of great
interest, not only to complexity research but to many areas
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of science, are naturally formulated in continuous time. In
such systems time series are not indexed by the integers,
but by connected subsets of the real line such that instead
of collections of random variables, one deals with random
functions for which we use notation XA = {X(t ′) : t ′ ∈ A}
with individual realizations xA. In previous work [22] we
established how to treat the transfer entropy in continuous time.
Important consequences of this work were the recognition that
one must consider a transfer entropy rate, and that this is
formulated from an expectation of a functional that assigns
a number to individual realizations of the process called the
pathwise transfer entropy,T [t0,t]

Y→X[x[τ,t],y[τ,t)], which represents
the total accumulated predictive capacity transferred from
Y in the context of the history of X, on the interval [t0,t]
as a function of the path realizations x[τ,t] and y[τ,t), with
τ � t0 < t . Importantly, these are constructed from probability
measures on complete paths, emphasizing that quantifications
of evolving sequences should make sense quantitatively and
conceptually in the wider context of them being understood,
rigorously, as outcomes of fully realized stochastic processes.
We may summarize this through the expressions for the transfer
entropy rate and its relation to the pathwise transfer entropy,
for a process with a defined time origin at τ ,

T
[t0,t]
Y→X ≡ E

[
T [t0,t]

Y→X[x[τ,t],y[τ,t)]
]

=
∫ t

t0

ṪY→X(t ′)dt ′

ṪY→X(t) ≡ d

dt
E

[
T [t0,t]

Y→X[x[τ,t],y[τ,t)]
]

T [t0,t]
Y→X[x[τ,t],y[τ,t)] ≡ ln

dPX|{Y }
[
x(t0,t]

∣∣x[τ,t0],{y[τ,t)}
]

dPX

[
x(t0,t]

∣∣x[τ,t0]
] , (6)

where T
[t0,t]
Y→X is the expected, cumulative, “transferred” infor-

mation on the interval [t0,t] equal to the expected pathwise
transfer entropy or the integral of the transfer entropy rate,
ṪY→X(t), over the interval. Again, E indicates an ensemble
expectation. This property arises from the pathwise transfer
entropy explicitly being the logarithm of a Radon-Nikodym
(RN) derivative between probability measures, P, on x(t0,t].
The central quantity, the pathwise transfer entropy, exists when
such an RN derivative exists and the measures are absolutely
continuous with respect to each other. One may, nonrigorously
but safely in most instances, consider such a quantity to be the
ratio of path “probabilities” defined through

dPX|{Y }[x(t0,t]|x[τ,t0],{y[τ,t)}]
dPX[x(t0,t]|x[τ,t0]]

∼ lim
n→∞

n∏
i=0

p(xi+1|x{−k:i},y{−k:i})
p(xi+1|x{−k:i})

, (7)

where t0 = 0, xi ≡ xi�t , and �t = t/(n + 1) = −τ/k.
We note the construction of PX|{Y }[x(t0,t]|x[τ,t0],{y[τ,t)}] ∼∏n

i=0 p(xi+1|x{−k:i},y{−k:i}), emphasizing that this
asymptotic product form in general is not equal to the
analogously constructed usual conditional probability
p(x{1:n+1}|x{−k:0},y{−k:n}).

When dealing with integrated quantities such as the path-
wise transfer entropy, which represents the accumulated trans-

fer of information on the interval, one may construct a rate in
an alternative sense, viz.,

T̊Y→X ≡ lim
t→∞

1

t − t0
E

[
ln

dPX|{Y }
[
x(t0,t]

∣∣x[τ,t0],{y[τ,t]}
]

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

]
.

(8)

When the process is stationary we have T̊Y→X = ṪY→X.
Moreover, in addition, when the process is ergodic it may be
expressed

T̊Y→X = lim
t→∞

1

t − t0
ln

dPX|{Y }
[
x(t0,t]

∣∣x[τ,t0],{yτ,t)}
]

dPX

[
x(t0,t]

∣∣x[τ,t0]
] , (9)

forming the basis for any empirical estimation methods.

B. Extension to active information storage and issues

The primary motivation of this paper is to extend the full
description of information processing in intrinsic computation,
outlined in the previous section, to the case of continuous
time. To do so in keeping with the above definitions of the
transfer entropy rate is straightforward: the predictive capacity
and subsequent computational signature is defined over some
time interval �t , with mean rates emerging when dividing by
�t as the limit �t → 0 is taken. First, the local predictive
capacity, before the notion of a rate introduced, is therefore
captured by

cX ≡ lim
�t→0

ln
p(xt+�t |x[τ,t],y[τ,t])

p(xt+dt )

= lim
�t→0

ln
p(xt+�t |x[τ,t])

p(xt+�t )

+ ln
p(xt+�t |x[τ,t],y[τ,t])

p(xt+�t |x[τ,t])

= aX + tY→X. (10)

A rate of (average) predictive capacity would be then con-
structed as follows:

ĊX ≡ lim
�t→0

1

�t
E

[
ln

p(xt+�t |x[τ,t],y[τ,t])

p(xt+�t )

]

= lim
�t→0

1

�t
E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t )

]

+ 1

�t
E

[
ln

p(xt+�t |x[τ,t],y[τ,t])

p(xt+�t |x[τ,t])

]

= ȦX + ṪY→X, (11)

comprising the previously defined transfer entropy rate ṪY→X

and an analogously defined “active information storage rate”
ȦX. However, there are significant issues associated with this
quantity, ĊX, stemming from the proposed contribution, ȦX.

To understand the problem with such a quantity it is helpful
to reconstruct it in the manner of the definition of the transfer
entropy rate in Eq. (6) through the definition of a hypothetical
“pathwise active information storage,” A[t0,t]

X [x[τ,t]], viz.,

A[t0,t]
X [x[τ,t]] ≡ ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP∅
X

[
x(t0,t]

] (12)
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with

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP∅
X

[
x(t0,t]

] ∼ lim
n→∞

n∏
i=0

p(xi+1|x{−k:i})
p(xi+1)

. (13)

Here the following issue emerges: this quantity does not
converge since the limit of the denominator does not lead to a
measure on x(t0,t]; i.e., P∅

X does not exist. It then follows that a
finite active information storage rate, ȦX, does not exist either.
It is instructive to demonstrate this, and the general problem,
with a brief example.

To demonstrate the issue with identifying predictive ca-
pacities and active information storage as currently defined
in continuous time we consider a simple Ornstein-Uhlenbeck
process in stochastic differential equation form,

dxt = −κxtdt + σdWt, (14)

where Wt is a Wiener process. Since there is no extrinsic
process (i.e., Y ) to consider, the total predictive capacity of
the intrinsic computation is identical to the active information
storage. When formulating such a prediction we may leave
the time horizon over which such a prediction is made to be a
free parameter, �t . Doing so leads to a parametric predictive
capacity or active information storage, C(�t)

X = A
(�t)
X , given by

A
(�t)
X ≡ lim

(t−τ )→∞
E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t )

]

= E

[
ln

p(xt+�t |xt )

p(xt+�t )

]

= 1

2
ln

[
eκ�t

eκ�t − e−κ�t

]
, (15)

which is easily calculated using the well known transition
probability density of the Ornstein-Uhlenbeck process [29],
detailed in Appendix A 1, where it has been assumed that the
process is in the stationary state. If we attempt to construct a rate
in the limit �t → 0, it diverges. Moreover, even an attempt to
find a convergent O(1) quantity in the limit �t → 0 fails. This
has a simple interpretation: with knowledge of the process’s
history, the sampling paths of the process allow for arbitrary
precision in the prediction at smaller and smaller time horizons.
This is reflected in the numerator of aX which tends to a
delta function. However, this contribution is simply unmatched
by the uncertainty without conditioning on the process’s
history appearing in the denominator, which, as a Shannon
(differential) entropy, remains bounded independently of the
prediction horizon.

In this sense we see that the active information storage is
actually performing precisely as it should: one can be infinitely
more precise over an infinitesimal time horizon with knowl-
edge of the process’s history than with an isolated prediction
for such processes. This motivates many additional questions:
is such a measure of stored predictive information appropriate?
Can it be decomposed into divergent and nondivergent terms
in the �t → 0 limit and do these quantities possess sensible
interpretations that can be meaningfully explored? We take
the position that the active information storage decomposes
into two distinct quantities related to active memory utilization
and instantaneous predictive capacity. These are detailed in the
subsequent sections.

IV. DECOMPOSITION OF STORED INFORMATION INTO
ACTIVE MEMORY UTILIZATION AND INSTANTANEOUS

PREDICTIVE CAPACITY

Here we posit that in general the active information storage
AX describes a generalized sense of memory utilization and
is, in fact, composed of two quantities. The first is related to
memory, understood in an intuitive manner, while the second
does not characterize memory, but the predictive capacity that
is obtained solely from the current state of the system we term
“instantaneous prediction.” We will demonstrate that these, in
general, describe two distinct features of stochastic processes.
The quantity that describes memory is a dynamical quantity
that possesses a rate which we call the active memory utiliza-
tion rate, ṀX. The instantaneous prediction is a nondynamical
quantity not amenable to description as a rate which we call
the instantaneous predictive capacity, IX, where

AX = IX + ṀX�t + O(�t2), (16)

with IX � 0 and ṀX � 0. We point out that Ṁdt need not,
however, comprise all O(dt) contributions in AX, since IX

may have O(dt) components also. We arrive at such a division
through the introduction of the following postulates designed
to construct a quantity ṀX which is complementary to ṪY→X:

(1) Measures of memory utilization should assign finite,
unitless values to complete path realizations of a time series or
stochastic process.

(2) Measures of memory utilization should be formed from
RN derivatives between equivalent probability measures1 on
path realizations.

(3) The active information storage contains memory uti-
lization such that any decomposition yields positive quantities
in expectation.

(4) The memory utilization is found by maximizing such a
component of active information storage such that the first two
postulates are met.
Informally, this is to be interpreted as the requirement that,
regardless of time basis, we should (i) be able to discuss
the memory that has been cumulatively utilized over finite
intervals, (ii) measure memory by comparing the relative
weight assigned to the paths over these intervals by two models
of the behavior which agree on which paths are possible, and
(iii) find the largest mean contribution that achieves this with
the currently existing measure of information storage which
is derived from the (axiomatically fundamental) predictive
capacity.

In order to meet the second and third postulates, we must
decompose AX through the introduction of a new transition
probability, P , that converges to a measure which is equivalent
to p[x[t0,t]], but also describes the statistics of the process such
that it is an ensemble probability, p, itself. This ensures that
it is a component of AX, ensuring both IX � 0 and ṀX � 0.
To achieve the first two postulates we must retain the path
regularity of the process and thus include xt in the condition of

1Equivalent probability measures are those which are absolutely
continuous with respect to each other such that they agree on which
sets of events have zero probability. Informally, this is to be understood
as them agreeing on which realizations are “possible.”
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the transition probability, along with an unspecified additional
componentA ⊆ x[τ,t) required for positivity related to the third
postulate. To achieve this we write

AX = lim
�t→0

E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t )

]

= lim
�t→0

E

[
ln

P(xt+�t |x[τ,t])

p(xt+�t )

]
+ E

[
ln

p(xt+�t |x[τ,t])

P(xt+�t |x[τ,t])

]

= lim
�t→0

E

[
ln

p(xt+�t |xt ∪ {A ⊆ x[τ,t)})
p(xt+�t )

]

+ E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t |xt ∪ {A ⊆ x[τ,t)})
]

= IX + ṀX�t + O(�t2). (17)

The portion explainable as a dynamic memory source, ṀX, is
then separated from the remainder IX by maximizing ṀX with
respect to A such that we have

ṀX ≡ max
A

lim
�t→0

1

�t
E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t |xt ∪ {A ⊆ x[τ,t)})
]

= lim
�t→0

1

�t
E

[
ln

p(xt+�t |x[τ,t])

p(xt+�t |xt )

]
(18)

corresponding toA = ∅ andP(xt+�t |x[τ,t]) = p(xt+�t |xt ) due
to the properties of conditioning in mutual informations.

This then defines the active memory utilization rate, leaving
the instantaneous predictive capacity to be given by

IX ≡ lim
�t→0

E

[
ln

p(xt+�t |xt )

p(xt+�t )

]
. (19)

Explicitly, the active memory utilization vanishes for Markov,
i.e., memoryless, processes. Meanwhile, the instantaneous
predictive capacity, while not permitting a rate since the
numerator encodes path regularity while the denominator does
not, will lie in [0,∞] due to its form as a mutual information.

A. Active memory utilization in continuous time

Here we describe in more detail the behavior and form of
the active memory utilization in continuous time which very
closely follows the form of the transfer entropy [22]. As with
the transfer entropy, while Eq. (18) describes the mean rate of
active memory utilization, a local, or pointwise, rate,

ṁX[t,x[τ,t]] ≡ lim
�t→0

1

�t
ln

p(xt+�t |x[τ,t])

p(xt+�t |xt )
, (20)

is not guaranteed to exist, even if ṀX does exist, arising if
x is anywhere nondifferentiable. Instead, as with the trans-
fer entropy, we must discuss pathwise quantities, associated
with complete path realizations, in order to associate active
memory with individual behavior. As such, we consider the
accumulated active memory utilization on the interval [t0,t] to
be M

[t0,t]
X which may be written

M
[t0,t]
X ≡

∫ t

t0

dt ′ṀX(t ′) = E
[
M[t0,t]

X [x[τ,t]]
]
, (21)

where M[t0,t]
X [x[τ,t]] is the pathwise active memory utilization

on [t0,t], defined over complete paths as a logarithmic RN

derivative between path measures,

M[t0,t]
X [x[τ,t]] ≡ ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP0
X

[
x(t0,t]

∣∣xt0

]
∼ lim

�t→0
ln

n∏
i=0

p(xi+1|x{−k:i})
p(xi+1|xi)

, (22)

where t0 = 0, xi = xi�t , n = (t/�t) − 1, and k = −τ/�t .
As with the transfer entropy, the pathwise active memory
utilization exists when the relevant RN derivative exists such
that PX and P0

X are absolutely continuous with respect to each
other. We denote the dynamics that emerge from the measure
P0

X the Markov marginal dynamics. This in turn leads to the
dual definition of the active memory utilization rate

ṀX(t) ≡ d

dt
E

[
M[t0,t]

X [x[τ,t]]
]

= d

dt
E

[
ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP0
X

[
x(t0,t]

∣∣xt0

]
]
. (23)

Again, the alternative rate formulation

M̊X ≡ lim
t−t0→∞

1

t − t0
E

[
ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP0
X

[
x(t0,t]

∣∣xt0

]
]

(24)

behaves as M̊X = ṀX when the process is stationary. If the
process is both stationary and ergodic then this can be described
through the expression

M̊X = lim
t−t0→∞

1

t − t0
ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP0
X

[
x(t0,t]

∣∣xt0

] , (25)

which is of use in empirical scenarios where an ensemble
of realizations may not be available, but the process can be
assumed to be stationary and ergodic.

B. Instantaneous predictive capacity in continuous time

Here we describe the behavior of the instantaneous pre-
dictive capacity asymptotically, illustrating this behavior for
distinct processes and relating it to the nature of the processes
and their sampling paths. If the active information storage
characterizes the predictive capacity related to the prediction
of some symbol xt+dt that is stored in the history of X, the
instantaneous predictive capacity characterizes the residual
part of this quantity once all predictive capacity related to the
prediction of the transition eventxt → xt+dt has been identified
(by ṀX). This instantaneous predictive capacity thus accounts
for the predictive capacity of the symbol xt+dt “stored” in
the current state xt and as such accounts for the reduction in
uncertainty of the state xt+dt given instantaneous properties
of the process such as its path regularity. Such a quantity has
been defined in such a manner that it does not yield a rate
and is thus not a dynamical quantity in the sense of ṀX or
ṪY→X. A corollary of this is that there exists no such analogous
pathwise quantity I [t0,t]

X [x[τ,t]], like in the formulation of the
active memory utilization and transfer entropy, stemming from
the nonexistence of the proposed measure P∅

X.
Since Markov processes in continuous time possess no ac-

tive memory utilization, such processes have an instantaneous
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predictive capacity equal to their active information storage
and thus are ideal for study here. Consequently, an example
of instantaneous predictive capacity is the active information
storage of the Ornstein-Uhlenbeck process in Eq. (15). We have
seen that the active information storage, and thus instantaneous
predictive capacity, diverges for such a process, but it is finite
when considered as a prediction over some finite time �t .
As such we explore the idea that such a quantity can be
characterized by the shape of the function with respect to �t

in the vicinity of �t → 0.
We do so by considering an asymptotic expansion of the

instantaneous predictive capacity in the region �t → 0 of the
prediction horizon and identify terms in different orders of �t ,
similarly to the identification of distinct contributions in [30]
(wherein the majority of contributions described behave much
like IX since they cannot be formulated as RN derivatives and
thus rates). As such we axiomatically identify these expected
components of the instantaneous predictive capacity based on
the following relationships,

I I
X ≡ lim

�t→0
I

(�t)
X = IX,

İ R
X ≡ lim

�t→0

I
(�t)
X − I I

X

�t
, (26)

where analogously to A
(�t)
X in Eq. (15), we define

I
(�t)
X ≡ E

[
ln

p(xt+�t |xt )

p(xt+�t )

]
. (27)

We denote İ R
X the underlying instantaneous predictive capacity

rate and I I
X the nondynamic instantaneous predictive capacity.

Assuming a common general asymptotic form [31] about
�t = 0,

I
(�t)
X ∼ exp[−k�t−ν]

∞∑
i=0

M(i)∑
j=0

cij (ln �t)j (�t)ri , t → 0+,

(28)

with k � 0, ν > 0, ri ↑ ∞, we can then identify contributing
components from the asymptotic expansion, which we observe
to contribute for k = 0, such that we have

I I
X = lim

�t→0

∑
i∀ri�0

M(i)∑
j=0

cij (ln �t)j (�t)ri ,

İ R
X = lim

�t→0

1

�t

∑
i∀ri>0

M(i)∑
j=0

cij (ln �t)j (�t)ri . (29)

I I
X has the same leading order behavior as IX and characterizes

the contribution to the instantaneous predictive capacity not
amenable to description as a rate, hence the characterization
as an instantaneous, i.e., noninfinitesimal, predictive quantity
which has no dynamic analog. İ R

X is thus the remaining leading
order behavior and characterizes the continuous predictive
influence of the process’s history in the determination of future
states as it dynamically evolves.

These quantities, however, are not guaranteed to be well
defined. For instance I I

X converges iff cij = 0 ∀ ri < 0,j >

0 and İ R
X converges iff minri>0 ri = 1 and cij = 0 ∀ ri >

0,j > 0. When such conditions are not met, the notion of an
instantaneously held contribution and rate become undefined.

It is instructive to examine such contributions for some
simple processes. For the Ornstein-Uhlenbeck process detailed
above we have ri = i and the following nonvanishing contri-
butions for i < 2,

c00 = (1/2) ln[1/(2κ)], c01 = −1

2
, c10 = κ

2
, (30)

given by an expansion of Eq. (15), revealing a divergent
instantaneous contribution, but a well defined underlying rate
since there are no j > 0 c1j contributions.

Considering, on the other hand, a process with different
path regularity properties, for instance a master equation inter-

pretation of the two species conversion process A
k−�
k+

B [with

stationary solution PA = k+/(k−+k+), PB = k−/(k−+k+)],
shown in Appendix A 2, yields

c00 = −PA ln PA − PB ln PB,

c10 = (k−+k+)−1k−k+[ln(k−k+) − 2],

c11 = 2(k−+k+)−1k−k+. (31)

Here we find a finite instantaneous contribution (equal to the
Shannon information), yet an undefined rate.

We can use these contributions to either assign a limiting
instantaneous predictive capacity to each process, in these
cases infinity for the Ornstein-Uhlenbeck process and the
Shannon entropy for the master equation process, or consider
the instantaneous predictive capacity asymptotically and com-
pare the contributions. For instance an Ornstein-Uhlenbeck
process with a smaller spring constant κ has an asymptotically
faster instantaneous contribution I I

X, but a smaller underlying
rate IR

X .
It is important to point out that these asymptotic terms

demonstrate how IX is not due to memory in any traditional
sense, thus lending weight to the nomenclature that we have
utilized. If, for example, we take the master equation process
associated with Eqs. (31), the rates k+ and k− might in reality
be the Markov marginal rates of the true rates which may
have some deep structure dependent on the past sequence of
transitions such that one can predict a transition with higher
certainty based on this knowledge of the past. IX cannot detect
this dependence and comprises the leading order contribution
in AX. Moreover, it thus follows IX or AX would therefore
always assign larger values to a Markov process without such
deep structure merely on the basis of a larger instantaneous
Shannon entropy, since the Shannon entropy is O(1) and the
part of AX which can detect long range dependence, ṀXdt , is
O(dt).

We point out that the convergence of these instantaneous
predictive capacity contributions can be seen to be directly
arising from the path regularity of each process. Processes
that possess uncertainty in transitions along absolutely con-
tinuous sampling paths naturally permit a rate of informa-
tion “flow” from the history of the process. However, such
processes are, by definition, defined in continuous space and
possess vanishing uncertainty in the �t → 0 limit due to the
absence of discontinuous transitions leading to an unmatched
contribution in the form of a differential entropy of a delta
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function which diverges. On the other hand, processes with
discrete states and sampling paths with a countable number of
discontinuities, while similarly attaining vanishing uncertainty
along their paths, possess a vanishing conditional Shannon
entropy associated with transitions, leading to a well defined
instantaneously held contribution. However, the path regularity
which affords such a well defined instantaneous contribution
directly leads to ln(�t) contributions arising exactly from the
discontinuities, which render the notion of an underlying rate
undefined. In both cases the nature of the path regularity leads
to logarithmic terms in �t in either the instantaneous (I I

X) or
rate (İ R

X ) contributions.

V. RELATION TO OTHER INFORMATION-THEORETIC
CONCEPTS

A. Discrete time formalisms

It is instructive to construct the quantities analogous to IX

and ṀX in discrete time and space in order to further illustrate
the differences between them and what they quantify. In this
case, at time n with time origin 0, we write

AX = IX + MX, MX = E

[
ln

p(xn+1|x{0:n})
p(xn+1|xn)

]
,

IX = E

[
ln

p(xn+1|xn)

p(xn+1)

]
, (32)

where MX relates to ṀX in the same way as the transfer
entropy, TY→X relates to the transfer entropy rate ṪY→X. In
this case MX is not a rate, but an O(1) quantity which may
be thought of as the active memory utilization associated with
the time step n → n + 1. If we posit a process X = xi taking
values xi ∈ X = {0,1,2, . . . ,N}, but at each time step only
allow xi to transition to xi+1 ∈ {{xi + 1,xi,xi − 1} ∩ X },
this constructs a process with a rudimentary path regularity
property, dramatically restricting the space of complete paths
x{0:n} that are realizable by the process. In this case, because
time has been discretized, AX and IX are finite because the
denominator,p(xn+1), does produce a probability measure,P∅

X,
over paths x{0:n}; one where each time step is i.i.d. However,
while PX is absolutely continuous with respect to P∅

X, the two
are not equivalent as P∅

X assigns probability to many paths
that PX does not, corresponding to paths that the process does
not generate. Explicitly, P∅

X does not account for the property
xi+1 ∈ {{xi + 1,xi,xi − 1} ∩ X }; i.e., it will generate paths
that can transition from any part of the phase space to any
other in one time step. Consequently, in some steady state such
that p(xi) > 0 ∀ xi ∈ X , AX and IX get larger as N gets larger
without bound, since, as a rough approximation, it is measuring
the relative size of X and {{xi + 1,xi,xi − 1} ∩ X }. On the
other hand, MX is constructed from measures that agree on
which paths are possible and so does not have the unbounded
dependence on the size of the state space. As such, one may
loosely considerMX a property of storage associated with paths
x{0:n}, independently of the nature of the ensemble in the wider
phase space and its relation to any path regularity, while IX

is a property of storage characterizing precisely this property
which we may consider to be the relationship between the
ensemble of paths x{0:n} and the ensemble of states xn. In con-

tinuous time some path regularity is required for the process to
exist and thus the latter component is not expressible as a rate.

B. Information in continuous space and differential entropy

Here we provide an analogy between the issues that we
have observed to arise markedly in continuous time and the
well known issues surrounding the generalization of Shannon
entropy in continuous spaces and attempts to discuss it with
differential entropy [32]. Given a continuous space, we may
consider the information that can be stored as we increase
our ability to resolve the space by partitioning into smaller
and smaller regions. As we do this it becomes obvious that
the information content of such a variable is, strictly, infinite,
following directly from the arbitrary precision with which the
variable in question can be specified. This is generally not
a useful statement and as such, originally due to Shannon,
the notion of differential entropy entered the field without
any formal derivation, despite certain (grave) problems as-
sociated with it. Indeed it is not clear that such an object
has any specific meaning in and of itself. On the other hand,
relative statements sidestep such issues, are well formed,
finite, and are constructed with relative entropies frequently
as Kullback-Leibler (KL) divergences. However, it is the
exception and not the rule that events in a probability space
of some variable are countable and have nonzero probability
such that the variable possesses a simple Shannon entropy.
As such it is not a particularly demanding claim that if one
wants to construct robust, generalizable quantifications of
random behavior using information theory (for which we argue
computational primitives of stochastic processes should be an
example), one should always be concerned with how different
probability measures relate to each other naturally through KL
divergences, which are mathematically underpinned by RN
derivatives. For random processes, which are characterized
by interrelated collections of random variables or random
functions, if one wants to produce dynamic, finite quantities,
the appropriate measures must concern the complete paths
which the processes generate. An intuitive understanding for
this might arise from an appreciation that if one does not
compare the full probabilistic behavior of paths over an inter-
val, one will not be meaningfully creating a relative measure
that accounts for the additional, and often infinite, precision
(and thus information) that is available in the specification of
complete random functions, or in the most simple case, in the
timing of events in continuous time.

It is worth emphasizing this point. Consider, for instance,
a special case, where the random process, X, consists of a
single impulse (with value xIt

= 1, where It is the time of the
impulse) in a window of length �t (where xt = 0 ∀ t �= It ).
The phase space here is discrete, {0,1}: we cannot distinguish
and therefore cannot encode more than ln 2 nats of information
into the value of the symbol, but there is further variation that
can be exploited due to its timing. The timing can occur at
arbitrary precision and so we see that the entire process is
functionally identical to a single, continuous, random variable
It ∈ [0,�t] with a distribution of behavior entirely captured
by a one variable probability density, p(It = t). It thus follows
that, again, an infinite amount of information could be stored
in such a process, indeed for any duration �t . This is an
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unavoidable property of the process and, analogously, while
one could construct a differential entropy to characterize this
distribution, it would, necessarily, inherit all the problems
associated with such a quantity in continuous space.

If we examine the form of IX we can then understand
why it is not equipped to balance this differential entropy in
the sense of a KL divergence and thus return a convergent
relative quantity. The numerator p(xt+dt |xt ) can be iteratively
built up into a path probability density functionally identical
to p(It = t), which can be used to quantify the information
content in both the variable xt and its timing. However,
information-theoretic quantities based on the denominator,
p(xt ), are designed to quantify the information content in the
single variable xt ∈ {0,1}, i.e., the nature of the impulse. This
form has no ability to relate such an event to the behavior of
the system at different times and so is agnostic to the timing
of the impulse. This fundamental asymmetry is what causes
I [t0,t]

X [x[τ,t]] and a rate of instantaneous predictive capacity to be
ill defined and divergent, respectively, a result that can loosely
be interpreted as a quantification of the additional (infinite)
information content the impulse process can leverage from its
timing.

This does not mean that quantities that return infinities, such
as lim�t→0 AX/�t and lim�t→0 IX/�t ,2 are “incorrect” (we
emphasize one, in theory, can store infinite information in a
continuous time process). Rather, in the context of complete
paths in continuous time, they are probing answers to relatively
unhelpful questions akin to asking the information content
of a continuous variable. However, if we change the p(xt )
terms that arise in the construction of these quantities to some
other transition probability p∗(xt+�t |xt ), we are creating a
relative measure that accounts for, or balances, this infinite
precision in the timing, just as KL divergences on continuous
spaces account for the infinite precision to which the symbols
can be specified. This could correspond to questions such as
“how much more information can I store using one probability
measure, or coding, over another.” This has a finite answer
and is intimately related to our measure of memory utilization.
Again, each individual strategy confers infinite information
that can be encoded, but there is a finite relative measure.

C. Excess entropy

A well known measure of information storage is the so-
called excess entropy [33] which, for stationary processes, is
a quantification of the shared or predictive information [34]
between the semi-infinite past and future with expression as a
mutual information

EX ≡ lim
k→∞

I [x{n−k;n}; x{n+1:n+k+1}] (33)

in discrete time and

EX ≡ lim
r→∞ I [x[t−r,t]; x(t,t+r]] (34)

in continuous time, where we naturally consider a time origin
τ → −∞. It should not be underemphasized that the excess

2We note the quantities AX and IX may be finite, and indeed
meaningful, even if AX/�t or IX/�t are not.

entropy possesses analogous properties in continuous time to
the active information storage: in general (but not always) it
cannot be expressed as an RN derivative between equivalent
measures over paths. This can be seen by understanding that
the excess entropy contains the active information storage.
For instance, it is known that, for a stationary process, in
discrete time, the active information storage relates to the
excess entropy as per [4,6]

EX =
∞∑

k=0

(
AX − A

(k)
X

) = AX +
∞∑

k=1

(
AX − A

(k)
X

)
, (35)

where

A
(k)
X ≡ E

[
ln

p(xn+1|x{n−k+1:n})
p(xn+1)

]
, (36)

with A
(k)
X � A

(k+1)
X and A

(0)
X = 0. In continuous time an analo-

gous relation holds,

EX ≡ AX +
∫ ∞

0
ds �Ȧ

(s)
X , (37)

where

�Ȧ
(s)
X ≡ lim

�t→0

1

�t

(
AX − A

(s)
X

)
� 0,

A
(s)
X ≡ E

[
ln

p(xt+�t |x[t−s,t])

p(xt+�t )

]
. (38)

Consequently, where AX is divergent, it follows that EX is too.
Note, �Ȧ

(s)
X is O(1), despite neither AX or A

(s)
X individually

leading to a well defined rate. This can be seen by noting that
this expression is identical to

EX = AX +
∫ ∞

0
ds �Ṁ

(s)
X , (39)

where �Ṁ
(s)
X = �Ȧ

(s)
X , i.e.,

�Ṁ
(s)
X ≡ ṀX − Ṁ

(s)
X ,

Ṁ
(s)
X ≡ lim

�t→0

1

dt
E

[
ln

p(xt+�t |x[t−s,t])

p(xt+�t |xt )

]
, (40)

with both ṀX and Ṁ
(s)
X expected to be convergent rates since

they lead to integrated RN derivatives and where, typically,
lims→∞ Ṁ

(s)
X = ṀX such that

∫ ∞
0 ds �Ṁ

(s)
X ∈ [0,∞]. Con-

sequently, while it may be common to observe EX = ∞
and AX = ∞ (e.g., for continuous processes such as the
Ornstein-Uhlenbeck process and generalizations), their dif-
ference, EX − AX, may yet be a convergent O(1) quantity.
And importantly, if it does not converge, it relates to the
consideration of an infinite interval and behavior in Ṁ

(s)
X which

causes the appropriate integral on [0,∞] to be divergent, not
the nonequivalence or nonexistence of the measures under
consideration.

Somewhat reminiscent of the discussion in Sec. V B, again,
we see a situation in which two information-theoretic measures
may be infinite, but possess a relative difference that is conver-
gent. Explicitly, both EX and AX can be infinite, but possess
a finite difference in the limit. Indeed, since AX = IX + Ṁ�t
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this may, again in the limit, be written

lim
�t→0

EX − AX = lim
�t→0

EX − IX =
∫ ∞

0
ds �Ṁ

(s)
X , (41)

implying that, more specifically, whenever IX diverges, EX

does also such that a finite EX implies a finite (or van-
ishing) IX. Further, the quantity in Eq. (41) exists in the
literature as the so-called “elusive” information [35], σX ≡
lims→∞ I [x(t,t+s]; x[t−s,t)|xt ], since∫ ∞

0
ds �Ṁ

(s)
X

= lim
r→∞ lim

�t→0

1

�t

∫ r

0
ds E

[
ln

p(xt+�t |x[t−r,t])

p(xt+�t |x[t−s,t])

]

� lim
r→∞ lim

�t→0

n=r/�t∑
i=0

E

[
ln

p(xt+�t |x[t−r,t])

p(xt+�t |x[t−i�t,t])

]

� lim
r→∞ lim

�t→0

n=r/�t∑
i=0

E

[
ln

p(xt+(i+1)�t |x[t−r,t+i�t])

p(xt+(i+1)�t |x[t,t+i�t])

]

= lim
r→∞E

[
ln

dPX[x(t,t+r]|x[t−r,t]]

dPX[x(t,t+r]|xt ]

]
. (42)

Here we have first represented the integral as a sum on line 2
which converges simultaneously with the vanishing prediction
horizon. Then, by assuming stationarity and time homogeneity,
we have moved to line three by relabeling the time indexes in
the probabilities forward in time by i�t . By taking the sum
inside the logarithm as a product, the sequence then converges
to an RN derivative between the constructed paths in the limit
in �t , taken on the last line. This quantity, being a logarithm
of an RN derivative between equivalent measures, is O(1).
This, in turn, clarifies and emphasizes a different approach to
information-theoretic quantities in continuous time as opposed
to that offered in, for example, Ref. [30]. In our approach
one does not simply scale all quantities one might consider
by a time discretization parameter, but instead identifies rates
and integrated quantities, treating such quantities differently.
The elusive information, like the expectation of the pathwise
active memory utilization and pathwise transfer entropy, is an
integrated quantity associated with complete paths and as such
is not meaningfully expressed as a rate with respect to a small
time discretization since it concerns behavior that persists far
beyond any such timescale. On the other hand, if the integral
that characterizes the elusive information does not converge,
such that limdt→0 EX − IX = ∞, one can construct a rate, in
the alternative sense, with respect to the entire process by
defining, and considering in the limit t → ∞,

σ̊X(t) = lim
r→∞

1

t
I
[
x(t0,t0+t]; x[t0−r,t0)

∣∣xt0

]
, (43)

or perhaps, when considering the explicit growth of the
expected pathwise quantity that underlies σX,

σ̇X(t) = lim
r→∞

d

dt
I
[
x(t0,t0+t]; x[t0−r,t0)

∣∣xt0

]
= ṀX − Ṁ

(t)
X , (44)

noting that these quantities are not equivalent. Nowhere,
however, is the quantity lim�t→0 σX/�t implicated in the con-

struction of such rates or expected to converge—for precisely
the same reason it is not expected to for the quantitiesT

[t0,t]
Y→X/�t

or M
[t0,t]
X /�t . Analogously, it follows that EX, AX, and IX are

natural O(1) quantities (though they may be infinite) and as
such neither should we consider lim�t→0 EX/�t , etc.

VI. COMPONENTS OF INFORMATION STORAGE
IN JUMP AND NEURAL SPIKING PROCESSES

With the preceding measures of instantaneous predictive
capacity and active memory utilization set out, we can de-
scribe such quantities in specific systems such that, when
complemented by previous work on transfer entropy, a com-
plete picture of information processing, as understood by the
complementary description of memory and signaling, can be
described. We acknowledge the parallel description of such
processes, in the absence of extrinsic processes, in [36–39],
which ultimately can be viewed as complementary in the sense
of the connection between excess entropy and the quantities
we consider as per Sec. V C.

A. Jump processes

In previous work we described how to construct the relevant
pathwise transfer entropy functional for jump processes for
which neural spiking processes are a specific example [22].
Much of the resulting structure for active memory utilization
is analogous, but we reiterate the key points. We imagine,
for simplicity, a discrete state space x ∈ X . These are then
stochastic processes characterized by intermittent transitions
between the states in X and where the states are constant
in between these transitions. As such a path on the interval
[t0,t], x[t0,t], is characterized by the start and end times t0
and t , its starting state x0, and the times ti it transitions
into the states xi such that we write x[t0,t] ≡ {t,{ti ,xi}Nx

0 }
where {ti ,xi}Nx

0 ≡ {t0,x0,t1,x1, . . . ,tNx
,xNx

} and where Nx is
the number of transitions in x on the interval.

Any given path realization then possesses a probability
density [40], constructed with the entire knowledge of the
history of x, given some time origin τ , at each point in time

pX

[
x(t0,t]

∣∣x[τ,t0]
]=

(
Nx∏
i=1

WX

[
xti

∣∣x[τ,ti )
])

exp

[
−

∫ t

t0

λX[x[τ,t)]

]

(45)

and a probability density constructed with knowledge only of
the current value of x at each point in time

p0
X

[
x(t0,t]

∣∣xt0

]=
(

Nx∏
i=1

W 0
X

[
xti

∣∣x−
ti

])
exp

[
−

∫ t

t0

λ0
X[x−

t ]

]
, (46)

where W are transition rates, λ are escape rates, and x−
t =

limt ′↗t xt ′ such that

WX

[
xti

∣∣x[τ,ti )
] = lim

�t→0

1

dt
p
(
x−

ti
→ xti ∈ [ti ,ti + �t]|x[τ,ti )

)
,

W 0
X

[
xti

∣∣x−
ti

] = lim
�t→0

1

dt
p
(
x−

ti
→ xti ∈ [ti ,ti + �t]|x−

ti

)
,
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λX[x[τ,t)] =
∑

x ′ �=x−
t ∈X

WX[x ′|x[τ,t)],

λ0
X[x−

t ] =
∑

x ′ �=x−
t ∈X

W 0
X[x ′|x−

t ]. (47)

We note that such quantities may depend on the time ti
or t respectively should the process be nonstationary. The
RN derivative that constitutes the pathwise active memory
utilization is then the ratio of these two quantities such that

M[t0,t]
X [x[τ,t]] = ln

dPX

[
x(t0,t]

∣∣x[τ,t0]
]

dP0
X

[
x(t0,t]

∣∣xt0

]
= ln

pX

[
x(t0,t]

∣∣x[τ,t0]
]
dt1 . . . dtNx

p0
X

[
x(t0,t]

∣∣xt0

]
dt1 . . . dtNx

=
Nx∑
i=1

ln
WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

]
−

∫ t

t0

(
λX[x[τ,t ′)] − λ0

X[xt ′ ]
)
dt ′. (48)

As with the transfer entropy, there is a continuous integral
component related to the waiting times between transitions
and Nx instantaneous contributions due to transitions between
states. These instantaneous jumps are, in this instance, what
stop a local rate [in the form of Eq. (20)] from being well
defined. Consequently we may decompose the total change of
M[t0,t]

X [x[τ,t]] with time into these two components related to
transitions �Mt

X and waiting times Ṁnt
X , the latter of which

does permit a rate, such that

M[t0,t]
X [x[τ,t]] =

Nx∑
i=1

�Mt
X(ti) +

∫ t

t0

dt ′ Ṁnt
X (t ′),

�Mt
X(ti) = ln

WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

] ,

Ṁnt
X (t) = λ0

X[x−
t ′ ] − λX[x[τ,t ′)]. (49)

Importantly, since λ0
X[x−

t ] is just a marginalized average of
λX[x[τ,t ′)], when the expectation is taken we find

E
[
Ṁnt

X (t)
] = E

[
λX[x[τ,t)] − λ0

X[x−
t ]

]
= 0. (50)

Consequently we may write

E
[
M[t0,t]

X [x[τ,t]]
] = E

[
Nx∑
i=1

ln
WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

]
]
, (51)

and thus

ṀX(t) = d

dt
E

[
Nx∑
i=1

ln
WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

]
]

= E

[(
1 − δxt ,x

−
t

)
ln

WX[xt |x[τ,t)]

W 0
X[xt |x−

t ]

]
, (52)

where δxt ,x
−
t

is the Kronecker delta. The alternative rate is given
by

M̊X = lim
t−t0→∞

1

t − t0
E

[
Nx∑
i=1

ln
WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

]
]

(53)

equal to ṀX when the process is stationary and we may write

M̊X = lim
t−t0→∞

1

t − t0

Nx∑
i=1

ln
WX

[
xti

∣∣x[τ,ti )
]

W 0
X

[
xti

∣∣x−
ti

] (54)

when the process is ergodic.
On the other hand, when considering the instantaneous

predictive capacity, we emphasize, no analogous pathwise
quantity I [t0,t]

X [x[τ,t]], and as discussed, no rate, exists for a
direct comparison. However the mean rates ṪY→X and ṀX

that emerge from this description sit alongside the asymp-
totic contributions to IX. These contributions are obtained in
Appendix A 2 and, for X taking values in a set of discrete states
X , are given by

c00 = −
∑
xt∈X

P (xt ) ln P (xt ),

c10 =
∑
x−

t ∈X

∑
xt �=x−

t ∈X
P (x−

t )W 0
X[xt |x−

t ]

×
[

ln
W 0

X[xt |x−
t ]P (x−

t )

P (xt )
− 1

]
,

c11 =
∑
x−

t ∈X

∑
xt �=x−

t ∈X
P (x−

t )W 0
X[xt |x−

t ], (55)

which is merely a generalization of Eq. (31). As such we
acknowledge the limiting value IX(t) is given by the Shannon
entropy of the system at the time t .

B. Neural spiking processes

We consider an idealization of neural processes whereby a
realization of the process consists entirely of indistinguishable,
nonoverlapping, events (spikes) of duration 0 seconds, such
that any given path is characterized entirely by the timings
of such events, ti+1 > ti , etc., i.e., a point process. This can
be constructed, in the sense of a stochastic process detailed
above, in a number of ways, but here, rather than follow
[22] where X concerned the number of spikes that occurred
since a time origin, we instead consider the limit of a two
state system with the states, 0 and 1, corresponding to “not
spiked” and “spiked” respectively in the manner of burst noise
or a telegraph process. Since there are only two states we
have WX[xti |x[τ,ti )] = λX[x[τ,ti )] and W 0

X[xti |x−
ti

] = λ0
X[x−

ti
].

Finally, to achieve the reduction to a point process, we let
λX[x[τ,ti )]x−

ti
=1 = λ0

X[x−
ti

= 1] such that there is no non-Markov
dependence in the transition that characterizes return to the
unspiked state and then we consider the limit λ0

X[x−
ti

= 1] →
∞ such that the transition from the spiked state to the unspiked
state is immediate. These two conditions ensure that there is
no contribution to the active memory utilization due to return
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to the unspiked state following spikes since

ln
λX

[
x[τ,ti )

]
x−

ti
=1

λ0
X

[
x−

ti = 1
] = 0 (56)

and that there is no contribution to the integral component
from being in the spiked state since as λ0

X[x−
ti

= 1] → ∞, x is
in state 0 with probability 1, such that∫ t

t0

(λX[x[τ,t ′)] − λ0
X[x−

t ′ ])dt ′

=
∫ t

t0

(λX[x[τ,t ′)]x−
t ′ =0 − λ0

X[x−
t ′ = 0])dt ′. (57)

In this limit we may then characterize the process with a single
transition or escape rate λX[x[τ,t)], with expectation value
λ0

X[x−
t ] = λ0

X(t) which is understood to be the conditional
spike rate with knowledge of the history of x and the mean
spike rate, respectively. In addition, since the return transitions
happen instantaneously we may now simply characterize the
paths with the times of the spike events x[t0,t] ≡ {t,{ti}Nx

0 }.
Consequently, for neural spike processes we find

M[t0,t]
X [x[τ,t]] =

Nx∑
i=1

ln
λX

[
x[τ,ti )

]
λ0

X(ti)

−
∫ t

t0

(λX[x(τ,t ′)] − λ0
x(t ′))dt ′, (58)

which in turn possesses mean rates

M̊X = lim
t−t0→∞

1

t − t0
E

[
Nx∑
i=1

ln
λX

[
x[τ,ti )

]
λ0

X(t)

]
,

ṀX(t) = E

[(
1 − δxt ,x

−
t

)
ln

λX[x[τ,t)]

λ0
X(t)

]
, (59)

both equal for stationary processes and equal to

M̊X = lim
t−t0→∞

1

t − t0

Nx∑
i=1

ln
λX

[
x[τ,ti )

]
λ0

X

(60)

when the process is also ergodic.
The instantaneous predictive capacity for spike processes,

like with the active memory utilization, is simply a special
case of that for jump processes. Indeed, as formulated here,
it is a special case of the two species conversion process in
Sec. IV B with A corresponding to the unspiked state and B

corresponding to the spiked state with rates k+ = λ0
X and k− =

μ in the limit of μ being taken to infinity such that we have

c00 = lim
p→1

−p ln p − (1 − p) ln(1 − p) = 0,

c10 = lim
μ→∞

[
λ0

X(t)+μ
]−1

λ0
X(t)μ

{
ln

[
λ0

X(t)μ
] − 2

} = ∞,

c11 = lim
μ→∞ 2

[
λ0

X(t)+μ
]−1

λ0
X(t)μ = 2λ0

X(t). (61)

As such we acknowledge the limiting value IX(t) = 0, noting
that this can only emerge here as a consequence of assigning 0
measure to the spiking phenomena on such timescales despite
the fact that they occur almost surely in a sufficiently long time
interval, and a divergent underlying rate, dominated by terms

linear in the mean Markov intensity of the process. Indeed
this limiting value, IX = 0, in conjunction with the corollary
of Eq. (41) that finite excess entropy, EX, implies finite (or
vanishing) instantaneous predictive capacity, contextualizes
other results reporting convergent excess entropy in the case
of point processes [37,39].

A note of caution with respect to empirical estimation techniques

As with the estimation of the transfer entropy in such a
setting [22], we anticipate that the most efficient estimation of
ṀX in this context will emerge when utilizing an estimator
designed specifically to utilize interspike time intervals as
relevant continuous variables. However, as with the transfer en-
tropy a time binned approximation, while perhaps inefficient,
will, in theory, be able to capture, in the limit, the behavior
of the above formalism. It is here, however, that spike train
data can appear to be uniquely ambiguous when discretized
in this fashion and for which we anticipate possible confusion
if not performed carefully. For instance, if one attempts to
discretize such that given a time interval [0,t] with Nx spikes
based on a time resolution of �t , such that one creates Nx

“spiked” bins and (t/�t) − Nx “not spiked” bins, one might
appear to observe a convergent AX “rate” and vanishing IX

“rate” by utilizingp(spike) = Nx�t/t , calculating the relevant
quantities, and then taking the limit. But this is incorrect
as it is conflating p(xt+dt ) and p(xt+dt |xt ). Intuition as to
the origin of the error in this hypothetical scheme can be
gained by realizing that there is no discretization resolution,
�t , where a spike event takes up any more than one bin.
Consequently all finite probability associated with the spiked
state is entirely an artifact of the discretization procedure
reflecting the correct probability p(spike) = 0. That is, such
a discretization procedure would be conflating the “state” of
being spiked with associated vanishing probability, with the
more appropriate characterization of a spike as a transition
with associated probability density, with respect to a vanishing
time interval; i.e., it would be interpreting p(xt ) as a probability
density, when it is not. As such, the quantity Nx�t/t reflects
the probability of a spike any time within an interval �t , based
on the history free statistics of the entire interval [0,t], i.e.,
λ0

X�t as per the definition of the transition (spike) rates in
Eqs. (47), which reflects the behavior of p(xt+dt |xt ). Replacing
p(xt+dt ) with p(xt+dt |xt ) in AX returns ṀXdt and thus the
hypothetical naive calculations of a rate of AX would rather
have been approximations of ṀX.

C. Simple analytical examples

1. Stationary Poisson process with refractory period

Perhaps the most simple, nontrivial, process X for which
active memory utilization is present in such a setting is a simple
Poisson model of spiking with the introduction of a refractory
period following any spike, of duration �x seconds, during
which the process cannot subsequently spike again. Defining tx
to be the time of the most recent spike in X, and thus tx = t − tx
as the time since the last spike inX, we may specify this through
the conditional spike rate

λX[x[τ,t)] = λX(tx) =
{
μ, tx � �x,

0, tx < �x.
(62)
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Calculation of the relevant quantities can be achieved by
exploiting the fact that the process is piecewise Markovian
between refractory periods and must appear Markovian and
stationary when constructing the measure P0

X. Consequently,
when we calculate λ0

X we can simply recognize that the
characteristic time frame required to achieve a single spike
following any previous spike is simply �x + μ−1 such that we
have

λ0
X = μ

1 + μ�x

. (63)

Next we can then use these expressions to calculate the active
memory utilization rate contribution per spike, due to that spike
varying only in its timing since the previous spike, given by

lim
t→∞

∫ t

0
exp

[
−

∫ t ′

tx

λX(t ′′)dt ′′
]
λX(t ′) ln

λX(t ′)
λ0

X

dt ′

=
∫ ∞

�x

exp [−μ(t − �x)]μ ln(1 + μ�x)dt

= ln(1 + μ�x). (64)

There are then λ0
X of these spike events per unit time, each with

the average contribution above. Further, since the contribution
for nonspiking behavior must vanish on average due to Eq. (50),
it then follows that the active memory utilization rate is

ṀX = μ ln(1 + μ�x)

1 + μ�x

. (65)

We see that μ serves, primarily, to control the number of spikes
per unit time, thus scaling the number of prediction events
and therefore the total scale of the active memory utilization
rate as a simple prefactor in addition to terms in 1 + μ�x .
Interestingly, however, this rate exhibits a maximum with
respect to �x for any given μ corresponding to �x = �max

x =
(e − 1)/μ such that the largest active memory utilization rate is
given by Ṁmax

X = μ/e. Note that the form of these expressions,
dependent on e, is not due to the choice of base of the
logarithm used here. The existence of this maximum arises
through the balance of two factors: increasing �x increases
the contribution per spike through the logarithmic term as
per Eq. (64), but also reduces the total number of expected
spikes per unit time and thus total rate through the inverse
1 + μ�x term. We may also understand this phenomena
through the distinguishability of the processes that correspond
to PX and P0

X. For values �x � �max
x , the refractory period

is not meaningfully impacting the dynamics such that both
appear Poissonian. On the other hand, values �x � �max

x also
make the two processes, on aggregate, appear similar since,
for the increasingly representative majority of the process
(the refractory period), they behave as two processes with
an arbitrarily low spike rate, despite the increase in mean
contribution per spike.

Finally, as a spiking process, with a two value state space
with vanishing Shannon entropy, the behavior of IX is given
by Eq. (61).

2. Nonstationary event driven spiking process

To illustrate the form of the active memory utilization in
a marginally more complicated setting we use an elaborated

simple toy model consisting of two spiking processes, X and
Y . We specify Y to be a deterministic spike train which
spikes regularly with period �y . Noting that we have set
the time origin τ = t0 for convenience, this means that the
process always realizes the specific path y[t0,t) = y∗

[t0,t) =
{. . . , − �y,0,�y,2�y, . . .}, designed in this way to induce
nonstationary behavior in X. In this way, Y could be considered
to be some external stimuli occurring at regular time intervals,
triggering separate trials in the sense of an event driven neural
experiment. Next we specify that X has a probability, c, of
spiking within �x seconds of the spike in Y and that the spike
occurs with uniform distribution on the interval [ty,ty + �x]
where ty � t is the time of the most recent spike in Y . Outside
of this window X cannot spike. We also insist on a refractory
period of �x seconds in the X neuron during which it cannot
spike immediately after spiking. Finally, we also specify that
2�x < �y such that there can be no ambiguity in which spike
in Y is responsible for the possible spike in X and only one
spike in X can result from any given spike in Y . A conditional
spike rate that achieves this is given by

λX|Y
[
x[t0,t),y[t0,t)

]
= λX|Y (tx,ty,t)

=
{ c

�x−c(t−ty ) , t < ty + �x and t � tx + �x,

0, t � ty + �x or t < tx + �x,
(66)

where tx � t is the time of the last spike in x. This is easily
observed since the probability of an absence of spikes on [ty,t],
t < ty + �x , is given by

exp

[
−

∫ t

ty

dt ′
c

�x − c(t ′ − ty)

]
= 1 − c(t − ty)

�x

, (67)

such that the probability density of spiking at time t is given
by

p(t) = d

dt

c(t − ty)

�x

= c

�x

, (68)

i.e., a uniform distribution. Note that λX|Y can be rewritten
entirely in terms of the variables tx = t − tx and ty = t − ty ,
the times since the most recent spike in X and Y , i.e., from
variables encoded into the sequences of the path histories of X

and Y , respectively, independently of the time, indicating that
the behavior encoded by λX|Y is time homogeneous. Since Y

is deterministic, the form of the conditional spike rate in terms
of X is trivial. Noting the shorthand∫

dy[t0,t)p
[
x[t0,t),y[t0,t)

]
≡ pNx,0

(
t,{tx}Nx

0

) +
∫ t

t0

dt
y

1 pNx,1
(
t,{tx}Nx

0 ,t
y

0

)

+
∫ t

t0

dt
y

1

∫ t

t
y

1

dt
y

2 pNx,2
(
t,{tx}Nx

0 ,{ty}2
0

)

+
∞∑
i=3

∫ t

t0

dt
y

1 . . .

∫ t

t
y

i−1

dt
y

i pNx,i

(
t,{tx}Nx

0 ,{ty}i0
)
, (69)

where x[t0,t) ≡ {t,{tx}Nx

0 }, a path consisting of Nx spikes, pNx,i

is the probability density of a joint spike sequence on [t0,t)
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with such Nx spikes in X and i spikes in Y , where t ix and t iy
are the times of the ith spikes in X and Y , respectively, and
tx0 = t

y

0 = t0, we may write

λX

[
x[t0,t)

]
= 1

p
[
x[t0,t)

] ∫
dy[t0,t)λX|Y

[
x[t0,t),y[t0,t)

]
p
[
x[t0,t),y[t0,t)

]

=
∫

dy[t0,t)λX|Y
[
x[t0,t),y[t0,t)

]p
[
x[t0,t)

∣∣y[t0,t)
]
p
[
y[t0,t)

]
p
[
x[t0,t)

]
=

∫
dy[t0,t)λX|Y

[
x[t0,t),y[t0,t)

]

× p
[
x[t0,t)|y[t0,t)

]
p
[
x[t0,t)

] δ
(
y[t0,t) − y∗

[t0,t)

)

= λX|Y
[
x[t0,t),y

∗
[t0,t)

]p
[
x[t0,t)|y∗

[t0,t)

]
p
[
x[t0,t)

]
= λX|Y

[
x[t0,t),y

∗
[t0,t)

]
, (70)

since p[x[t0,t)] = ∫
dy[t0,t)p[x[t0,t)|y[t0,t)]δ(y[t0,t) − y∗

[t0,t)) =
p[x[t0,t)|y∗

[t0,t)]. That is, the joint process with a stationary
dependence in X on a deterministic Y appears as a
nonstationary process in X alone, such that

λX

[
x[t0,t)

] = λX(tx,t)

=

⎧⎪⎪⎨
⎪⎪⎩

c
�x−c(t−n�y ) , t ∈ [n�y,n�y + �x]

and t � tx + �x,

0, t /∈ [n�y,n�y + �x]
or t < tx + �x,

(71)

with n ∈ Z. Note, in contrast to λX|Y , which can be written in
terms of tx and ty , λX cannot be written solely in terms of tx

and thus retains dependence on the time t , reflecting induced
time inhomogeneity, leading to the observed nonstationary
behavior. This nonstationary behavior is carried into λ0

X(t)
which is given by considering the probability of a single
spike in [n�y,(n + 1)�y], such that we need only consider
tx � t − �x , viz.,

λ0
X(t) = �x − c(t − n�y)

�x

λX(tx,t ∈ [n�y,n�y + �x])

+ cλX(tx,t /∈ [n�y,n�y + �x])

=
{

c
�x

, t ∈ [n�y,n�y + �x],
0, t /∈ [n�y,n�y + �x],

(72)

such that the Markov marginal process cannot determine
whether the process is in its refractory period or not. Since the
process is nonstationary, it follows that ṀX is not a constant
here. Recognizing, by construction, that we have a periodic
process Y , an at most one to one mapping between spikes
in Y and X, and the property that outside of the refractory
period, X is piecewise Markov, we may, without loss of
generality, consider times n�y � t < (n + 1)�y , treating n�y

as an effective time origin. Then, due to the refractory period,
there is only a nonzero contribution for spike histories that
have 0 previous spikes in [n�y,t], thus, again by construction,

satisfying tx � t − �x . Consequently, we may write

ṀX(t) = E

[(
1 − δxt ,x

−
t

)
ln

λX

[
x[t0,t)

]
λ0

X(t)

]

= exp

[
−

∫ t

n�y

dt ′ λX(tx � t − �x,t
′)

]

× λX(tx � t − �x,t) ln
λX(tx � t − �x,t)

λ0
X(t)

=
{

c
�x

ln �x

�x−c(t−n�y ) , t ∈ [n�y,n�y + �x],
0, t /∈ [n�y,n�y + �x],

(73)

recovering the general case by once again letting n ∈ Z.
Further, we may consider M̊X, which in this instance is simply

M̊X = lim
t→∞

1

t

∫ t

0
ṀX(t ′)dt ′ = 1

�y

∫ (n+1)�y

n�y

ṀX(t)dt

= �−1
y [c + (1 − c) ln(1 − c)]. (74)

�y serves simply to control the flow of predictable events and
thus scale the total active memory utilization rate, while c con-
trols how predictable each event is from the past of X, with the
time dependence statistically identifiable in the conditioning
in both the dynamics PX and P0

X. In this case as c increases,
the more likely the refractory period is required to prevent a
subsequent spike such that the processes characterized by PX

and P0
X become more distinguishable leading to higher active

memory utilization. Again, as a spiking process, the behavior
of IX is given by Eq. (61).

We note that an intrinsic feature of this example, after
Y has been integrated out, has been its time inhomogeneity
and subsequent nonstationary active memory utilization. This
has crucially been dependent on the notions that (i) the
stochastic behavior of the process can be time inhomogeneous
(implemented here through a deterministic external process Y )
and (ii) this time inhomogeneity can be statistically detected.
This amounts to an ability to determine conditional dependence
upon the time of evaluation such that, loosely, one can imagine
that when conditioning on the sequence xA, one is always
conditioning on both the history of X and the time, i.e., {xA,A},
and that one can, in theory, draw multiple realizations of the
process starting from the same time origin. This notion is
explored and formalized in Appendix B along with a discussion
of what one should expect if such time dependence existed,
but the ability to either condition on the time or, equivalently,
draw multiple realizations starting at the same time origin
was unavailable. In short we find that if this is the case, one
always overestimates both the active memory utilization and
transfer entropy rates. This is demonstrated for the specific
model considered here in Appendix B 1 where we find that
such an approach overestimates the active memory utilization
rate by (c/�y) ln(�y/�x).

D. Full information dynamics description
of a neural spiking model

Here we utilize a numerical model previously implemented
in [22], but also calculate the active memory utilization along-
side the transfer entropy, demonstrating their complementary
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FIG. 1. Coupled spike trains generated using transition rates in Eq. (75) using λY = 1,λbase
X = 0.5,m = 5,σ = 0.1,tcut = 1 along with

generated and computed values of λX|Y , λX , and λ0
X , resulting pathwise transfer entropy (T [0,t]

Y→X[x[−1,t],y[−1,t]]), pathwise active memory
utilization (M[0,t]

X [x[−1,t]]), and local contributions (�T t
Y→X, Ṫ nt

Y→X, �Mt
X , and Ṁnt

X ). We set τ = −1, matching the maximum historical
dependence in λX and λX|Y , and a prior history of an absence of spikes in Y and X is assumed on the time interval [−1,0). The lowermost and
two uppermost panels reprinted and the third and fourth uppermost panels adapted from Ref. [22] with permission.

nature, illustrating the behavior of the pathwise quantities as
a given pair of spike trains unfolds. In this model a spiking
process, Y , follows a simple Poisson process characterized
by a spike rate λY (note therefore that Y possesses an active
memory utilization rate of 0). Then the spiking process under
consideration, X, spikes with a rate λX|Y which depends upon
the history of Y uniquely through the time since the last spike
in Y , ty :

λX|Y [x[τ,t),y[τ,t)]

= λX|Y (ty)

=

⎧⎪⎪⎨
⎪⎪⎩

λbase
X , ty /∈ (0,tcut],

λbase
X + m exp

[− 1
2σ 2

(
ty − tcut

2

)2]
, ty /∈ (0,tcut],

−m exp
[− 1

2σ 2

(
tcut
2

)2]
.

(75)

The detailed dependence is illustrated in Fig. 1, where the
behavior of the pathwise active memory utilization and transfer
entropy are contrasted on the interval [0,t], t ∈ [0,10], as-

suming a time origin τ = −1 with no spikes in the history
of X or Y in [−1,0] (not shown) and that the system is in
its stationary state. Explicitly, given the spike rate detailed in
Eq. (75), we can identify (here in nats) the precise amount of in-
formation associated with memory utilization, M[0,t]

X [x[−1,t]],
and signaling, T [0,t]

Y→X[x[−1,t],y[−1,t)], on an arbitrary interval
[0,t] for the specific spiking behavior given in the first
two subplots. The calculation of M[0,t]

X [x[−1,t]] relies on the
ability to compute λX[x[−1,t)] and λ0

X at all times whereas
the calculation of T [0,t]

Y→X[x[−1,t],y[−1,t)] relies on the ability
to compute λX|Y [x[−1,t),y[−1,t)] and λX[x[−1,t)] at all times.
λX|Y [x[−1,t),y[−1,t)] is specified by Eq. (75), while λ0

X, being a
constant, since the process is stationary, is trivially determined
by considering the mean number of spikes per unit time which
is simply obtained by simulating the process and considering
λ0

X = limt→∞ Nx/t , where Nx is the number of spikes in
[0,t], since the process is ergodic. Computation of λX[x[0,t)],
however, is nontrivial, requiring a marginalization integration
over λX|Y [x[−1,t),y[−1,t)] given the joint probabilistic behavior
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of {x[−1,t),y[−1,t)}. An algorithm to compute this was reported
in [22] and utilized here.

Information associated with other intervals [t ′,t], 0 <

t ′ < t , can be found by considering M[0,t]
X [x[−1,t]] − M[0,t ′]

X

[x[−1,t ′]] and T [0,t]
Y→X[x[−1,t],y[−1,t)] − T [0,t ′]

Y→X[x[−1,t ′],y[−1,t ′)].
Looking at how these quantities evolve in time, we see dis-

continuous contributions to both the pathwise transfer entropy
and active memory utilization when X spikes with continuous
contributions in between them. The contributions to transfer
entropy and active memory utilization are controlled by the
relative sizes of λX|Y and λX, and λX and λ0

X, respectively.
Positive discontinuous contributions in transfer entropy occur
when λX|Y > λX immediately preceding a spike in X while
positive continuous contributions occur when λX|Y < λX. Sim-
ilarly, positive discontinuous contributions to active memory
utilization occur when λX > λ0

X immediately preceding a spike
in X, while positive continuous contributions occur when
λX < λ0

X.
One distinct difference in behavior between M[0,t]

X [x[−1,t]]
and T [0,t]

Y→X[x[−1,t],y[−1,t)] can be observed in the evolution of
the continuous contributions Ṁnt

X and Ṫ nt
Y→X. Ṁnt

X can only
respond to changes in the history of X, while Ṫ nt

Y→X can change
in response to the history of both X and Y . Consequently, for
this particular system, we only see discontinuities inṀnt

X when
X spikes; however we observe discontinuities in Ṫ nt

Y→X when
either X or Y spikes since a spike in X updates λX while a
spike in Y updates λX|Y .

In the realization specified above the majority of the pre-
dictive capacity which can be associated with the full paths is
being derived from the additional reduction in uncertainty Y

provides through the transfer entropy, with a smaller residual
predictive capacity being derived through the history of X

through the active memory utilization.
Finally, we briefly mention the behavior of IX, again given

by Eq. (61) with limiting value IX = 0. We can, however, for
the particular numerical example in Fig. 1, state the numerical
coefficient c11 = 2λ0

X by reporting the mean Markov spike rate
λ0

X � 1.2697.

VII. INFORMATION DYNAMICS IN GENERALIZED
ORNSTEIN-UHLENBECK PROCESSES

One of the more striking corollaries of the preceding
formalism is that purely Markov processes like the Ornstein-
Uhlenbeck process in Eq. (14), while having nonzero, and
indeed divergent, active information storage rates, have a
vanishing memory utilization rate since, by definition in their
construction, they only have dependence on their most recent
state. In many respects this is appealing as the memory
utilization rate then aligns very closely with the intuitive
definition of a Markov process as being “memoryless.”

However, if we couple multiple such Markov processes
together, any individual process will no longer retain the
Markov property due to the feedbacks between the processes.
A simple example of such a model is that introduced in
[41] consisting of two linearly coupled Ornstein-Uhlenbeck
processes with correlated noise, viz.,

dxt = Axtdt + Bytdt + VxdWx
t ,

dyt = Cxtdt + Dytdt + VydW
y
t , (76)

where E[dWx
t dW

y

t ′ ] = ρδ(t − t ′) with ρ ∈ [−1,1]. The trans-
fer entropy rate in the steady state of such a system is calculated
in [41] and given by

ṪY→X

= |D|
2

[√
1 + BVy

DVx

(
BVy

DVx

− 2ρ

)
−

(
1 + ρ

BVy

|D|Vx

)]
.

(77)

With the transfer entropy and all subsequent quantities, the
symmetry of the process allows us to identify all analogous
quantities associated with Y (ṪX→Y , ṀY , IY ) by making the
substitutions A ↔ D, B ↔ C, and Vx ↔ Vy . To assess the full
character of information processing in this system we wish to
also consider Ṁx or, equivalently, Ṁx + ṪY→X. The sum of
these quantities is given by

ṀX + ṪY→X = lim
dt→0

1

dt
E

[
ln

p(xt+dt |xt ,yt )

p(xt+dt |xt )

]
, (78)

i.e., a Markov approximation to the transfer entropy given only
the current values of the processes.

This reflects the property dPX|{Y }
dP0

X

= dPX|{Y }
dPX

dPX

dP0
X

, since all the
measures are equivalent, allowing us to write, in terms of
pathwise quantities,

M[t0,t]
X [x[τ,t]] + T [t0,t]

Y→X[x[τ,t],y[τ,t)]

= M[t0,t]
X

[
x[t0,t]

] + T [t0,t]
Y→X

[
x[t0,t],y[t0,t)

]
= ln

dPX|{Y }
[
x(t0,t]

∣∣xt0 ,{y[t0,t)}
]

dP0
X

[
x(t0,t]

∣∣xt0

] . (79)

Since both measures are Markovian and generate dynamics
with the same sampling paths, with the same quadratic varia-
tion, etc., we may thus leverage the Cameron-Martin-Girsanov
theorem in recognizing

dPX|{Y }
[
x(t0,t]

∣∣xt0 ,{y[t0,t)}
]

dP0
X

[
x(t0,t]

∣∣xt0

]
= exp

[
1

2

∫ t

t0

f 2(xt ′ ,yt ′ )dt ′ +
∫ t

t0

f (xt ′ ,yt ′ )dWx
t ′

]
, (80)

such that

dM[t0,t]
X

[
x[t0,t]

] + dT [t0,t]
Y→X

[
x[t0,t],y[t0,t)

]
= 1

2f 2(xt ,yt )dt + f (yt ,yt )dWx
t , (81)

where

f (x,y) = V −1
x [Ax + By − φ(x)], (82)

and where φ(x) corresponds to the drift term in an effective
dynamics which P0

X describes, of the form

dxt = φ(xt )dt + VxdWx
t . (83)

Note, if we write Zt = exp{−M[t0,t]
X [x[t0,t]] − T [t0,t]

Y→X

[x[t0,t],y[t0,t)]}, it immediately follows that Zt is a Martingale,
i.e.,

Zt = 1 −
∫ t

t0

Zt ′f (xt ′ ,yt ′ )dWx
t ′ , (84)
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FIG. 2. Transfer entropy and active memory utilization rates for the correlated coupled Ornstein-Uhlenbeck process given by Eqs. (77) and
(86) for varying noise correlation ρ and noise strength in the Y process Vy . We set A = −5, B = 5, C = 1, D = −2, Vx = 1. Panels (a), (b),
and (c) show transfer entropy rates for noise correlation ρ = 0.9, ρ = 0.95, and ρ = 1, respectively. Panels (d), (e), and (f) show active memory
utilization rates for noise correlation ρ = 0.9, ρ = 0.95, and ρ = 1, respectively.

implying E[Zt ] = 1, not coincidentally mirroring the precise
form of the so-called fluctuation theorems [42], due to their
analogous construction based on RN derivatives.

The linear nature of the system dictates that the Markov
marginal dynamics are also linear such that we have

φ(x) = −κeff
X x,

κeff
X = (A + D)(BC − AD)V 2

x

D(A + D)V 2
x + B2V 2

y − BVx(CVx + 2ρDVy)
,

(85)

which can simply be read off the marginalized stationary
distribution of the Fokker-Planck equation associated with
the dynamics in Eq. (76) [41] or found by marginalizing the
relevant short time transition probabilities or Green’s functions
and making appropriate manipulations using the stochastic
calculus. From Eq. (80) it thus follows that

ṀX + ṪY→X

= 1
2E[f 2(x,y)] = [

4(A + D)V 2
x

]−1

× [
B2V 2

y + D(A + D)V 2
x − BVx(2DρVy + CVx)

]−1

× B2
{−B2V 4

y + 2B(D − A)ρV 3
y Vx

− [(A + D)2 − 2BC − 4ADρ2]V 2
x V 2

y

− 2C(D − A)ρVyV
3
x − C2V 4

x

}
, (86)

with the active memory utilization rate being the difference
between Eqs. (86) and (77). The comparison of such terms
yields rich structure even in such a simple system. Some
of this structure is shown in Fig. 2 where the approach to
complete correlation in the noise terms is shown for different
noise strengths in Y . We note that both the transfer entropy
and active memory utilization rate, ṪX→Y and ṀY , diverge
whenever Vy → 0 since in this limit Y becomes a deterministic
process such that the conditions required on RN derivatives
for their existence are not met. In particular we point out
the behavior when ρ = 1 where we observe different regimes
in the character of information processing, marked in the
top right panel. In regime I ṪY→X > 0 while ṪX→Y = 0 and
in regime III the opposite behavior is observed, ṪX→Y > 0
while ṪY→X = 0. In the remaining regimes IIa and IIb all the
transfer entropy rates are zero. The transitions between these
regimes are marked with fine dashed lines. Interestingly, at
the transitions separating regimes I and IIa and IIa and III
we see a sharp, discontinuous, but not divergent, peak in the
accompanying active memory utilization rates. The critical
value of the noise strength in Y that separates regimes I and
IIa is given by V crit

y = DVx/B, while the critical value of the
noise strength in Y that separates regimes IIa and III is given
by V crit

y = CVx/A.
Since the Markov marginal process is characterized by

Eq. (83), specified with Eq. (85), i.e., a simple Ornstein-
Uhlenbeck process as in Eq. (14), the contributions to the
instantaneous predictive capacity, IX, and components I I

X and
İ R
X , are equal to those in Eq. (30), but with κ = κeff

X from
Eq. (85).
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VIII. DISCUSSION AND CONCLUSIONS

In this paper we have extended the approach elaborated
in [22] for treating transfer entropy in continuous time to
the broader framework of information dynamics. In doing
so we have decomposed the active information storage into
two distinct, positive, quantities called the active memory
utilization and instantaneous predictive capacity. The former
is complementary to the transfer entropy and inherits much of
the behavior of transfer entropy in continuous time: there is a
central cumulative quantity, the pathwise active memory uti-
lization, associated with finite time intervals which possesses
a mean rate at single instances in time. Individual behaviors,
or events, are characterized by the pathwise active memory
utilization, rather than a local rate, since the pathwise active
memory utilization may be discontinuous. The latter quantity,
the instantaneous predictive capacity, retains the predictive ca-
pacity of the process which does not assign finite contributions
to individual path realizations, accounting for fundamental
properties of the process such as the continuity properties of
its sampling paths. Further, we have offered an asymptotic
formalism for discussing this contribution, highlighting key
differences in its structure for different processes. Since it
accounts for intrinsic properties such as path continuity, which
may lead to infinite predictive capacities, but has been derived
in the context of separately maximizing all finite, pathwise,
positive contributions, it is the minimal measure capable of
offsetting similar effects in other measures of information
processing, such as the excess entropy. Doing so reveals the
maximum constituent component constructed from a cumula-
tive pathwise quantity in the excess entropy is the so-called
elusive information, which we have clarified should not be
treated as a rate, but as an O(1) quantity independently of the
time basis.

We have then constructed such a formalism in the context
of jump and neural spiking processes, complementing our
previous work [22]. Using this we have demonstrated how to
assess the complete information processing occurring in such a
context comprising both memory and signaling. This has been
illustrated in synthetic models of neural spiking demonstrating
the qualitative behavior one should expect. Further, we have
shown that the concepts offered here are well defined in other
processes including coupled Ornstein-Uhlenbeck processes
where we report interesting fine structure in the interplay
between memory and signaling.

As with the transfer entropy, this work offers great promise
particularly within the field of computational neuroscience
where such a formalism lends itself to efficiently quantifying
information processing in such settings. We finish by highlight-
ing two particular consequences of our work in a neuroscience
setting. First, as per estimation of the transfer entropy for neural
spike trains [22], we anticipate that the most efficient estima-
tion of ṀX for such processes will emerge when utilizing an
estimator utilizing interspike time intervals (which completely
describe the process) as relevant continuous variables. Second,
where active information storage is measured on discrete time
samples of underlying continuous time processes (as is the
case in neural imaging measurements), the active memory
utilization is the only component that will approach a limiting
value as the discrete time step approaches zero, and so may

be the most appropriate quantity for investigation in such
experiments.
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APPENDIX A: SELECTED DERIVATIONS OF RESULTS

1. Active information storage of the Ornstein-Uhlenbeck process

The process described by Eq. (14) permits a well known
solution to its transition probability by consideration of the
Green’s function of the corresponding Fokker-Planck equation,
due to the method of characteristics [29], given by

p
(�t)
OU (xt+�t |xt ) =

√
κ

πσ 2(1 − e−2κ�t )

× exp

[
−κ(xt+�t − xte

−κ�t )2

σ 2(1 − e−2κ�t )

]
, (A1)

consistent with the stationary solution

pOU (xt ) =
√

κ

πσ 2
exp

[
−κx2

t

σ 2

]
∀ t. (A2)

The active information storage is then simply given by the
integral

A
(�t)
X =

∫ ∞

−∞
dy

∫ ∞

−∞
dx p

(�t)
OU (y|x)pOU (x) ln

p
(�t)
OU (y|x)

pOU (y)
,

(A3)

leading to the result in Eq. (15).

2. Instantaneous predictive capacity of discrete
state master equations

Given the master equation on the discrete state space X ,

Ṗ (xi) =
∑

xj �=xi∈X
W [xi |xj ]P (xj ) − W [xj |xi]P (xi), (A4)

we can calculate the instantaneous predictive capacity over a
short time �t by considering up to 1 transition such that

I
(�t)
X =

∑
xi∈X

∑
xj �=xi∈X

P (xi)

[
W [xj |xi]�t ln

W [xj |xi]�t

P (xj )

+ (1 − λ[xi]�t) ln
(1 − λ[xi]�t)

P (xi)

]
+ O(�t2), (A5)

revealing the contributions

c00 = −
∑
xi∈X

P (xi) ln P (xi),

c10 =
∑
xi∈X

P (xi)

[
λ[xi][ln P (xi) − 1]
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+
∑

xj �=xi∈X
W [xj |xi] ln

W [xj |xi]

P (xj )

]

=
∑
xi∈X

∑
xj �=xi∈X

P (xi)W [xj |xi]

[
ln

W [xj |xi]P (xi)

P (xj )
− 1

]
,

c11 =
∑
xi∈X

∑
xj �=xi∈X

P (xi)W [xj |xi]. (A6)

The instantaneous predictive capacity for the two species

conversion process, A
k−�
k+

B, utilized in Sec. IV B, can be

derived from the dynamics underlying the master equation,

ṖA = k−PB − k+PA, ṖB = k+PA − k−PB, (A7)

i.e., X = {A,B}, W [A|B] = λ[B] = k−, W [B|A] = λ[A] =
k+ and with stationary solution PA = k−/(k− + k+), PB =
1 − PA = k+/(k− + k+) yielding the coefficients in Eq. (31).

APPENDIX B: CONDITIONAL AND NONSTATIONARY VARIANTS

Based on the formulation presented in the main text it is trivial to generalize, both the transfer entropy and active memory
utilization, to the conditional case. In discrete time the conditional forms, conditioned upon some third variable Z, are given by

TY→X|Z ≡ E

[
ln

p(xn+1|x{0:n},y{0:n},z{0:n})
p(xn+1|x{0:n},z{0:n})

]
, MX|Z ≡ E

[
ln

p(xn+1|x{0:n},z{0:n})
p(xn+1|xn,z{0:n})

]
, (B1)

which is straightforward to generalize to the continuous time case based on the generalization of the pathwise transfer entropy
and pathwise active memory utilization to the conditional pathwise transfer entropy and conditional pathwise active memory
utilization:

T [t0,t]
Y→X|Z[x[τ,t],y[τ,t),z[τ,t)] ≡ ln

dPX|{Y,Z}
[
x(t0,t]

∣∣x[τ,t0],{y[τ,t),z[τ,t)}
]

dPX|{Z}
[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}
] ,

M[t0,t]
X|Z [x[τ,t],z[τ,t)] ≡ ln

dPX|{Z}
[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}]
dP0

X|{Z}
[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}
] , (B2)

where, analogously to the above, we may consider

dPX|{Y,Z}
[
x(t0,t]

∣∣x[τ,t0],{y[τ,t),z[τ,t)}
]

dPX|{Z}
[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}
] ∼ lim

n→∞

n∏
i=0

p(xi+1|x{−k:i},y{−k:i},z{−k:i})
p(xi+1|x{−k:i},z{−k:i})

,

dPX|{Z}
[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}
]

dP0
X|{Z}

[
x(t0,t]

∣∣x[τ,t0],{z[τ,t)}
] ∼ lim

n→∞

n∏
i=0

p(xi+1|x{−k:i},z{−k:i})
p(xi+1|xi,z{−k:i})

, (B3)

where, again, t0 = 0, xi ≡ xi�t and �t = t/(n + 1) = −τ/k. Again we note the general construction of path probabilities with
the {} notation to mean PX|{A}[x(t0,t]|x[τ,t0],{A[τ,t)}] ∼ ∏n

i=0 p(xi+1|x{−k:i},A{−k:i}) where A is some arbitrary extrinsic variable or
variables in the form of a coincident time series.

This is, perhaps, not so illuminating in general; however it allows us to be precise when we discuss nonstationary transfer
entropy and active memory utilization rates. To this end we make it clear that whenever such quantities are calculated, the time at
which any transition probability is evaluated is also known such that one can construct them as conditional variants, conditioned
on a third, deterministic, “variable,” Tt , taking values t ′t equal to the time it is indexed by, i.e., t ′t = t . Thus, by conditioning on
T each relevant probability measure identifies any time dependence. As such, we explicitly take the following statements to be
synonymous,

T [t0,t]
Y→X[x[τ,t],y[τ,t)] ≡ T [t0,t]

Y→X|T[x[τ,t],y[τ,t),t
′
[τ,t)],

M[t0,t]
X [x[τ,t]] ≡ M[t0,t]

X|T [x[τ,t],t
′
[τ,t)], (B4)

such that it is only for brevity that T is omitted in their formulation. We note that since T merely represents the time index
this alters some of the properties associated with the conditional probabilities used to construct the RN derivatives, namely that
t ′A = A and conditioning on [τ,t] is identical to conditioning on t . Accordingly we may write the RN derivatives underlying the
quantities as

exp
[
T [t0,t]

Y→X|T[x[τ,t],y[τ,t),t
′
[τ,t)]

] = dPX|{Y,T}
[
x(t0,t]

∣∣x[τ,t0],{y[τ,t),[τ,t)}
]

dPX|T
[
x(t0,t]

∣∣x[τ,t0],{[τ,t)}
] ∼ lim

n→∞

n∏
i=0

p(xi+1|x{−k:i},y{−k:i},i�t)

p(xi+1|x{−k:i},i�t)
,

exp
[
M[t0,t]

X|T [x[τ,t],t
′
[τ,t)]

] = dPX|{T}
[
x(t0,t]

∣∣x[τ,t0],{[τ,t)}
]

dP0
X|{T}

[
x(t0,t]

∣∣x[τ,t0],{[τ,t)}
] ∼ lim

n→∞

n∏
i=0

p(xi+1|x{−k:i},i�t)

p(xi+1|xi,i�t)
. (B5)

It is common, however, to assume stationarity in a process when these quantities are computed empirically. This amounts to using
the alternative measures Pst

X|{Y }, P
st
X, and P0,st

X , constructed by averaging the probabilistic behavior experienced at all observed
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times, assuming equal a priori probabilities with respect to any instance in time. This means that the estimated quantities converge
to different “stationary” quantities denoted T st,[t0,t]

Y→X [x[τ,t],y[τ,t]] and Mst,[t0,t]
X [x[τ,t]], and, Ṫ st

Y→X and Ṁst
X defined through

T st,[t0,t]
Y→X [x[τ,t],y[τ,t]] ≡ ln

dPst
X|{Y }

[
x(t0,t]

∣∣x[τ,t0],{y[τ,t)}
]

dPst
X

[
x(t0,t]

∣∣x[τ,t0]
] ∼ lim

n→∞ ln

[
n∏

i=0

pst(xi+1|x{−k:i},y{−k:i})
pst(xi+1|x{−k:i})

]

= lim
n→∞ ln

[
n∏

i=0

lim
n→∞

∑n
j=−k p(xi+1|x{−k:i},y{−k:i},j�t)∑n

j=−k p(xi+1|x{−k:i},j�t)

]
(B6)

and

Mst,[t0,t]
X [x[τ,t]] ≡ ln

dPst
X

[
x(t0,t]

∣∣x[τ,t0]
]

dP0,st
X

[
x(t0,t]

∣∣x[τ,t0]
] ∼ lim

n→∞ ln

[
n∏

i=0

pst(xi+1|x{−k:i})
pst(xi+1|xi)

]

= lim
n→∞ ln

[
n∏

i=0

lim
n→∞

∑n
j=−k p(xi+1|x{−k:i},j�t)∑n

j=−k p(xi+1|xi,j�t)

]
. (B7)

That is, we understand that the empirically computed probabilities, assuming stationarity, will approximate

pst(xi+1|x{−k:i}) = lim
n→∞

1

n + k + 1

n∑
j=−k

p(xi+1|x{−k:i},t = j�t). (B8)

Clearly, however, if only one or a limited number of samples are available, this approximation cannot be expected to be accurate,
in the general case, however long the samples, unless, for example, the underlying time variation in p is periodic or, if controlled
by some hidden variable, that variable evolves ergodically. As such, only when a process is stationary do we explicitly have
T st,[t0,t]

Y→X = T [t0,t]
Y→X and Ṫ st

Y→X = ṪY→X, and, Mst,[t0,t]
X = M[t0,t]

X and Ṁst
X = ṀX. Moreover, we have formulated the difference

between these quantities in terms of a marginalization over an implied process, T. Consequently, treating this process like any
other, we can identify the difference between the “stationary” and nonstationary quantities as

Ṫ st
Y→X − T̊Y→X = ṪT→X − ṪT→X|Y (B9)

and

Ṁst
X − M̊X = Ṫ

(0)
T→X − ṪT→X (B10)

where, analogously,

ṪT→X = lim
t→∞

1

t − t0

∫ t

t0

lim
�t→0

1

�t
E

[
ln

p(xt ′+�t |x[τ,t ′),t
′)

pst(xt ′+�t |x[τ,t ′))

]
dt ′

= lim
t→∞

1

t − t0

∫ t

t0

lim
�t→0

1

�t
E

[
ln

p(xt ′+�t |x[τ,t ′),t
′)

limt→∞(t − t0)−1
∫ t

t0
p(xt ′+�t |x[τ,t ′),t ′′)dt ′′

]
dt ′,

Ṫ
(0)
T→X = lim

t→∞
1

t − t0

∫ t

t0

lim
�t→0

1

�t
E

[
ln

p(xt ′+�t |xt ′ ,t
′)

pst(xt ′+�t |xt ′)

]
dt ′

= lim
t→∞

1

t − t0

∫ t

t0

lim
�t→0

1

�t
E

[
ln

p(xt ′+�t |xt ′ ,t
′)

limt→∞(t − t0)−1
∫ t

t0
p(xt ′+�t |xt ′ ,t ′′)dt ′′

]
dt ′. (B11)

In particular, if ṪT→X = 0, such that an infinite history length in X allows us predict equally well with or without a time index,
we risk overestimation of the active memory utilization since Ṁst

X − M̊X = Ṫ
(0)
T→X � 0.

It is important to note that it may be challenging, at least empirically, to identify such a distinction between stationary and
nonstationary formulations, as it requires us to be able to probe the statistics of the process at a given time t . The ability to achieve
this requires the ability (i) to hypothetically draw multiple samples or realizations from the generating process starting at the
same time origin and (ii) to implicitly allow access to the time of evaluation when considering any transition probability. Indeed
this may be deemed completely impossible in practice leaving such a question fundamentally ambiguous.

1. Stationary active memory utilization calculation for the model utilized in Sec. VI C 2

We can illustrate the above distinctions and possible ambiguity by calculating Ṁst
X for the process described in Sec. VI C 2 and

discuss when and how the distinction between the two calculations would be the same, different, or unknowable. In this system,
nonstationary behavior is introduced by means of a deterministic variable Y upon which the behavior in X depends. The system
can be identified as nonstationary by appealing to an ensemble of realizations at any given time t . We can, however, imagine
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that the time indexing of such an ensemble is either not known or not knowable, equivalent to the assumption that the system is
stationary if the spike rates were to be constructed empirically from data.

To calculate Ṁst
X , therefore, requires calculation of two analogous spike rates λst

X and λ
st,0
X where only the sequences of the

relevant path histories are known, and not the time at which they are being evaluated. Calculation of λ
st,0
X is straightforward and

amounts to the aggregated mean spike rate in X, which can either just be asserted by recognizing that there are, on average,
c × (T/�y) spikes in an interval T in the T → ∞ limit or by writing

λ
st,0
X = lim

t−t0→∞
1

t − t0

∫ t

t0

λ0
X(t ′)dt = 1

�y

∫ (n+1)�y

n�y

λ0
X(t ′)dt ′ = c

�y

. (B12)

On the other hand, λst
X depends on how much path history is available to condition upon. We will take the limit of a time origin

τ = t0 → −∞, both for simplicity and because such a condition will dominate in the case t → ∞ when considering long time,
steady state behavior. We find such behavior in several steps. First, noting again the shorthand of Eq. (69), we construct

λst
X

[
x[t0,t)

] = 1

pst
[
x[t0,t)

] ∫
dy[t0,t)λ

st
X|Y

[
x[t0,t)

]
,y[t0,t)]p

st
[
x[t0,t),y[t0,t)

] =
∫

dy[t0,t)λX|Y
[
x[t0,t),y[t0,t)

]pst
[
x[t0,t)

∣∣y[t0,t)
]
pst

[
y[t0,t)

]
pst

[
x[t0,t)

] ,

(B13)

where we have recognized λst
X|Y [x[t0,t),y[t0,t)] = λX|Y [x[t0,t),y[t0,t)] due to the ability to write λX|Y [x[t0,t),y[t0,t)] independently of t

as per Sec. VI C 2. Next we consider the form of pst[y[t0,t)]. Recall Y always realizes y∗
[t0,t) = {. . . , − �y,0,�y,2�y, . . .} such

that p[y[t0,t)] = δ(y[t0,t) − y∗
[t0,t)). p

st[y[t0,t)] is then the probability of the sequence of y∗
[t0,t) disassociated with its timing such that

we do not know if we are considering the probability of the sequence y∗
[t0,t) at time t or any other time. Consequently, pst[y[t0,t)]

assigns probability to every path y[t0,t) that consists of spikes at precise intervals of �y , but is shifted by an arbitrary phase factor
φ ∈ [0,�y), i.e., y[t0,t) = y∗

[t0+φ,t+φ), according to the distribution p�(φ) (which is necessarily flat given equal a priori probability
at all times, though left general for completeness and later discussion). That is, all variation in y[t0,t) is through the single parameter
φ. Consequently we have pst[x[t0,t),y[t0,t)] = pst[x[t0,t)|φ]p�(φ) and thus

λst
X

[
x[t0,t)

] =
∫ �y

0
dφ λX|Y

[
x[t0,t),φ

]pst
[
x[t0,t)

∣∣φ]
p�(φ)

pst
[
x[t0,t)

] . (B14)

At this point we make the critical claim

lim
t0→−∞ pst

[
x[t0,t)

∣∣φ]
p�(φ) = lim

t0→−∞ pst
[
x[t0,t)

]
δ(φ), (B15)

which is to say, given a long enough past sequence x[t0,t) there is only a single compatible value of φ. Since the process is actually
generating y∗

[t0,t) then this value must be φ = 0. This can be seen by posing the (inverse) question: given an arbitrarily long
sequence x[t0,t) (along with knowledge of its time indexing) does there exist a way of uniquely determining φ? The answer is yes
with it being obtained by searching the past sequence of X for the minimum interspike interval. In the infinite limit this is the
smallest possible interspike interval. This occurs when the first of such spikes coincides with the very end of a possible spiking
window following a spike in Y , with timing t = n�y + �x + φ, and the subsequent spike occurring at the very beginning of the
next possible spiking window following a spike in Y , with timing t = (n + 1)�y + φ (with n ∈ Z). Consequently,

lim
t0→−∞ λst

X

[
x[t0,t)

] = lim
t0→−∞

∫ �y

0
dφ λX|Y

[
x[t0,t],φ

]pst
[
x[t0,t]

]
pst

[
x[t0,t]

]δ(φ) = lim
t0→−∞ λX|Y

[
x[t0,t],φ = 0

]
= λX|Y

[
x[t0,t],y

∗
[τ,t)

] = λX|Y (tx,ty) = λX(tx,t); (B16)

i.e., all the predictive capability of λX|Y (and thus λX) can be gleaned from the history of X even without knowledge of the current
time.

We then use these two stationary transition rates to construct the average associated with the calculation of Ṁst
X . However,

since λ
st,0
X is just a constant and limt0→−∞ λst

X[x[t0,t)] = λX(tx,t), this allows us to greatly simplify the implied average over all
infinitely long paths x[t0,t) by replacing λst

X[x[t0,t)] with λX(tx,t) and integrating over a single period [n�y,(n + 1)�y]. As such
we find

Ṁst
X = lim

t0→−∞E

[(
1 − δxt ,x

−
t

)
ln

λst
X

[
x[t0,t)

]
λ

st,0
X

]
= lim

t0→−∞

∫
dx[t0,t)p

st
[
x[t0,t)

]
λst

X

[
x[t0,t)]

]
ln

λst
X

[
x[t0,t)

]
λ

st,0
X

= 1

�y

∫ (n+1)�y

n�y

E

[(
1 − δxt ,x

−
t

)
ln

λX(tx,t)

λ
st,0
X

]
dt = 1

�y

∫ (n+1)�y

n�y

× exp

[
−

∫ t

n�y

λX(tx � t − �x,t
′)dt ′

]
λX(tx � t − �x,t) ln

�yλX(tx � t − �x,t)

c
dt
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= 1

�y

∫ n�y+�x

n�y

�x − c(t − n�y)

�x

λX(tx � t − �x,t) ln
�yλX(tx � t − �x,t)

c
dt

= (�y)−1{(1 − c) ln(1 − c) + c[1 + ln(�y/�x)]}. (B17)

Here we see an additional term as compared to the nonstationary result such that Ṁst
X = M̊X + (c/�y) ln(�y/�x). This extra

contribution over ṀX arises from the ability of the full dynamics in X to distinguish whether the system was in the spiking
window, [n�y,n�y + �x], or not over the time homogeneous Markov marginalization process, characterized by λ

st,0
X , which

cannot detect either the refractory period or the existence of this window. Since limt0→−∞ λX[x[t0,t)] = λ(tx,t), by definition,
ṪT→X = 0, thus illustrating the specific case Ṁst

X � M̊X emerging from Eq. (B10) as claimed earlier in this Appendix.
As we have seen, the process described in Sec. VI C 2 leads to a disparity between Ṁst

X and M̊X due to the time inhomogeneous
spike rate in X, corresponding, in the framework described here, to p�(φ) = δ(φ). However, we can consider simple alterations to
this process which change this property. Importantly, Eq. (B15) holds for any p�(φ) and thus so does the final relation in Eq. (B16)
with the only exception being that φ need not equal 0, but corresponds to whatever value of φ is drawn from p�(φ). As such if
we consider a process identical to that in Sec. VI C 2 but where y[t0,t) is generated such that it equals y∗

[τ+φ,t+φ) with probability
density p�(φ), it will have Ṁst

X equal to that in Eq. (B17) independently of p�(φ). Consequently, if we choose p�(φ) = �−1
y ,

such that Y and thus X are both stationary, we will have M̊X = ṀX = Ṁst
X , again with Ṁst

X given by Eq. (B17).
Indeed we can give an expression for ṀX for arbitrary p�(φ) other than the p�(φ) = �−1

y and p�(φ) = δ(φ) we have already
considered. To do this we first extend the domain of p�(φ) to φ ∈ R such that it is periodic, i.e., p�(φ + n�y) with n ∈ Z, but
retaining normalization on [0,�y) [i.e.,

∫ �y

0 p�(φ′)dφ′ = ∫ φ+�y

φ
p�(φ′)dφ′ = 1]. We can then write an expression for λ0

X(t) as

λ0
X(t) = c

�x

∫ t

t−�x

p�(φ)dφ, (B18)

thus expressing the difference Ṁst
X − M̊X as

Ṁst
X − M̊X =

∫ �y

0

[
1

�y

∫ φ+�y

φ

e
− ∫ t

φ
λX(tx�t−�x,t

′)dt ′
λX(tx � t − �x,t) ln

λ0
X(t)

λ
st,0
X

dt

]
p�(φ)dφ � 0, (B19)

where we have noted a lower bound due to its expression as a KL divergence, or more particularly, its expression as Ṫ
(0)
T→X, due

to the fact ṪT→X = 0 as per Eq. (B10).
Continuing, we have

Ṁst
X − M̊X =

∫ �y

0

[
1

�y

∫ φ+�x

φ

c

�x

ln
λ0

X(t)

λ
st,0
X

dt

]
p�(φ)dφ = 1

�y

∫ �y

0
f (φ)p�(φ)dφ,

f (φ) =
∫ φ+�x

φ

c

�x

ln

[
�y

�x

∫ t

t−�x

p�(φ′)dφ′
]
dt, (B20)

such that

Ṁst
X − M̊X = c

�y

ln
�y

�x

+ ξ, (B21)

with

ξ = c

�y�x

∫ �y

0
p�(φ)

∫ φ+�x

φ

ln

[∫ t

t−�x

p�(φ′)dφ′
]
dtdφ. (B22)

The contents of the logarithm in ξ always lie in [0,1], due to the assertion 2�x < �y in the construction of the model, and so
we have ξ � 0. ξ takes a maximum value 0 when p�(φ) = δ(φ − a), a ∈ [0,�y), with a = 0 corresponding to the usage in
Sec. VI C 2. Due to Eq. (B19) being a KL divergence, it therefore takes a minimum value − c

�y
ln �y

�x
corresponding to p�(φ) =

�−1
y , i.e., when the process is stationary, such that

− c

�y

ln
�y

�x

� ξ � 0, (B23)

and in turn

0 � Ṁst
X − M̊X � c

�y

ln
�y

�x

. (B24)

It is worth pointing out that such a process, despite being stationary when p�(φ) = �−1
y , would not be ergodic for any choice of

p�(φ) since once φ is drawn from the distribution, the process deterministically spikes with period �y indefinitely.
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Finally, if only one sample, {x[τ,t),y[τ,t)}, is drawn, however long, from which empirical estimates are to be formed, then there
is fundamental ambiguity as to the statistical nature of Y and thus how large the overestimation, or underestimation, of the active
memory utilization rate, Ṁst

X − M̊X, is. If it can be asserted that Y is indeed drawn from a distribution p�(φ), only then may we
state that it is an overestimation that lies in [0, c

�y
ln �y

�x
] as per the above.
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