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Two golden times in two-step contagion models: A nonlinear map approach
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The two-step contagion model is a simple toy model for understanding pandemic outbreaks that occur in the
real world. The model takes into account that a susceptible person either gets immediately infected or weakened
when getting into contact with an infectious one. As the number of weakened people increases, they eventually
can become infected in a short time period and a pandemic outbreak occurs. The time required to reach such a
pandemic outbreak allows for intervention and is often called golden time. Understanding the size-dependence
of the golden time is useful for controlling pandemic outbreak. Using an approach based on a nonlinear mapping,
here we find that there exist two types of golden times in the two-step contagion model, which scale as O(N1/3)
and O(Nζ ) with the system size N on Erdős-Rényi networks, where the measured ζ is slightly larger than 1/4.
They are distinguished by the initial number of infected nodes, o(N ) and O(N ), respectively. While the exponent
1/3 of the N -dependence of the golden time is universal even in other models showing discontinuous transitions
induced by cascading dynamics, the measured ζ exponents are all close to 1/4 but show model-dependence. It
remains open whether or not ζ reduces to 1/4 in the asymptotically large-N limit. Our method can be applied to
several models showing a hybrid percolation transition and gives insight into the origin of the two golden times.
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I. INTRODUCTION

Epidemic spread of diseases and rumors and their control
and containment have become a central issue in recent years as
the real world becomes “smaller.” It is a general observation
that there is a slow phase in the spreading process before
the sudden pandemic outbreak [1]. This slow period is called
golden time as it allows for intervention, which is much
more difficult after the disease becomes global. Modeling of
epidemic spread with essential factors is necessary to control
catastrophic outbreaks within this golden time. To this end,
several epidemic models have been investigated on com-
plex networks, for instance, the susceptible–infected–removed
(SIR) model [2,3] and the susceptible–infected–susceptible
(SIS) model [4]. Analytical and numerical studies of those
models revealed that a continuous phase transition occurs
on Erdős-Rényi (ER) random networks [5]. Thus, abrupt
pandemic outbreaks on a macroscopic scale, which often occur
in the real world, cannot be reproduced using those models.

Considerable effort has been devoted recently to construct
mathematical models that exhibit a discontinuous epidemic
transition at a finite transition point on complex networks.
A natural way is to appropriately extend the conventional
SIR and SIS models. For instance, an extended SIR model
includes more than one infected state of different pathogens
that are cooperatively activated in contagion: A person who
is suffering from the flu can be more easily infected by pneu-
monia. This model is referred to as a cooperative contagion
model [6,7]. Similar instances include a two-step contagion
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process. A patient becomes weakened first and then becomes
sick. This model is referred to as the susceptible–weakened–
infected–removed (SWIR) model [8–15]. In another instance
of modified SIR models, a network evolves by rewiring links at
a certain rate during the spread of contagion [16]. The rewiring
takes into account the mobility of humans. Then, epidemic
spread can be accelerated as the rewiring rate is increased,
which can lead to a discontinuous transition representing the
pandemic outbreak.

When diseases spread, we need to keep susceptible people
separate from infected patients or vaccinate the susceptible
people before the diseases spread on a macroscopic level. A
recent study [17] showed that for the SWIR model on ER
networks, a system exhibits a long latent period (called a
golden time) within which measures can be taken, beyond
which the disease spreads explosively over the system at a
macroscopic level. Estimating the golden time is important
for the prevention of pandemic outbreaks. Moreover, it is
necessary to get early-warning signals if a critical threshold
is approached [18].

It was revealed [14,17] that when a disease starts spreading
from a single node, the golden time nc scales as nc(N ) ∼ Nζ

with ζ = 1/3 at the epidemic threshold. Here we reconsider
this problem and represent the pattern of disease transmission
using a nonlinear mapping. We show that the linear and
nonlinear terms of the nonlinear mapping separately behave
well. The linear term is responsible for one-step contagion
without weakened states and the nonlinear term describes the
two step contagion, which includes weakened state. Thus,
the previous result of N1/3 for the golden time is consistent
with the characteristic size of the giant cluster generated in
the SIR model [19,20], thus it is verified within this new
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framework. Next, we consider another case, which is the main
concern of this paper, in which an epidemic starts to spread
from endemic multiple seeds of O(N ) on ER networks also
at the epidemic threshold. In this case, long latent period
appears not immediately but after some characteristic time.
Thus fluctuations induced by the stochastic process of disease
transmission in the early time heavily affect the behavior during
the latent period, which changes the measured exponent ζ to a
value slightly larger than 1/4. We estimate this scaling behavior
using the saddle-node bifurcation theory [21] and discuss the
underlying mechanism.

Similar size dependencies of mean cascading time at a
transition point were studied for other cascade dynamics
models such as k-core percolation [22–27] and cascading
failure model on interdependent network (CFoIN) [28–32].
It was found [28,29] that in the CFoIN, the mean cascading
time is proportional to N1/3 or N1/4 depending on the way of
choosing the transition points. References [26,27] showed that
the exponent 1/3 is also obtained in k-core percolation. Thus,
the scaling behavior of N1/3 is robust. However, for the ζ <

1/3 case, a different scaling behavior with ζ ≈ 0.280 [33] was
numerically obtained for a surface growth model effectively
equivalent to the CFoIN.

Here we extend our formalism of nonlinear mapping used
in the SWIR model to other models such as k-core percolation
and the threshold model [34,35]. We show that when the
cascade starts from a fixed number of multiple seeds O(N ),
the golden times for both models also become proportional
to Nζ , where ζ are estimated to be slightly larger than 1/4
within our simulation range and those values are different to
each other, suggesting non-universal behavior. However, we
cannot exclude the possibility ζ = 1/4 in large-N limit. We
shall discuss this point in Sec. IV.

This paper is organized as follows: We first introduce the
SWIR model and set up the evolution equation of the epidemic
dynamics in Sec. II. Next, we derive a nonlinear mapping
for the epidemic spread from a single seed in Sec. III A. We
show that the roles of the linear and nonlinear terms are well
separated. In Sec. III B, we derive a similar nonlinear mapping
for the multiple-seed case, and show how the multiplicative
feature of the fluctuations of epidemic spreading affects scaling
of the golden time. In Sec. IV, we obtain the golden times of
the multiple-seed case for k-core percolation and the threshold
model and show that the numerical values of ζ are slightly
larger than 1/4. We also discuss the possibility of ζ = 1/4 in
the thermodynamic limit. In Sec. V, we discuss the origin of
the puzzle in view of nonlinear dynamics theory. A summary
is presented in Sec. VI.

II. THE SWIR MODEL

The SWIR model is a generalization of the SIR model by
including two states, a weakened state (denoted as W ) and
an infected state (I ), between the susceptible state (S) and
removed state (R), instead of a single infected state I alone,
as in the SIR model. Nodes in state W are involved in the
reactions S + I → W + I and W + I → 2I , which occur in
addition to the reactions S + I → 2I and I → R in the SIR
model. At each discrete time step n, the following processes
are performed. (i) All the nodes in state I are listed in random

order. (ii) The states of the neighbors of each node in the list
are updated sequentially as follows: If a neighbor is in state
S, it changes its state in one of two ways: either to I with
probability κ or to W with probability μ. If a neighbor is in the
state W , it changes to I with probability η, where κ, μ, and
η are the contagion probabilities for the respective reactions.
(iii) All nodes in the list change their states to R. This completes
a single time step, and we repeat the above processes until the
system reaches an absorbing state in which no infectious node
is left in the system. The reactions are summarized as follows:

S + I
κ−→ I + I, (1)

S + I
μ−→ W + I, (2)

W + I
η−→ I + I, (3)

I
1−→ R. (4)

In an absorbing state, each node is in one of three states, the
susceptible, weakened, or removed state. We define PS (�) as
the conditional probability that a node remains in state S in the
absorbing state, provided that it has � neighbors in state R and
was originally in state S. This means that the node remains in
state S even though it has been in contact � times with these �

neighbors in state I before they change their states to R. Thus,
we obtain

PS (�) = (1 − κ − μ)�. (5)

Next, PW (�) is similarly defined as the conditional probability
that a randomly selected susceptible node is in state W after it
contacts � neighbors in state I before they change their states
to R. The probability PW (�) is given as

PW (�) =
�−1∑
n=0

(1 − κ − μ)nμ(1 − η)�−n−1. (6)

Finally, PIR (�) is the conditional probability that a node has
been infected in any state, either I or R, provided that it was
originally in state S and its � neighbors are in state R in the
absorbing state. Using the relationPS (�) + PW (�) + PIR (�) =
1, one can determine PIR (�) in terms of PS and PW .

On a network with a degree distribution Pd , we consider the
case in which the initial densities of susceptible, weakened,
and infectious nodes are given as s0, w0, and i0, provided that
s0 + w0 + i0 = 1. The order parameter m, the density of nodes
in state R after the system falls into an absorbing state, is given
using the local tree approximation as

m = i0 +
∞∑

q=1

Pd (q )[s0fq (u) + w0gq (u)], (7)

where

fq (u) =
q∑

�=1

(
q

�

)
u�(1 − u)q−�PIR (�) (8)

gq (u) =
q∑

�=1

(
q

�

)
u�(1 − u)q−�[1 − (1 − η)�]

= 1 − (1 − ηu)q, (9)
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FIG. 1. Schematic plots of the order parameter m(κ ) versus κ

for (a) i0 = 0 (the single-seed case) and (b) i0 > 0 (the multiple-
seed case). For appropriate values of parameters μ, η, and z, hybird
percolation transitions occur. (a) Even though κ is increased, the order
parameter remains zero up to a transition point κc. However, at κc, it
remains at m = 0 or jumps to m0. For (b), as κ is increased, m(κ )
gradually increases from i0 to a finite value md at κc. At κc, m(κ )
remains at md or jumps to mu.

and u is the probability that an arbitrarily chosen edge leads
to a node in state R or I in the absorbing state; however, the
infection of that node was not made through the chosen edge.
We define un similarly to u but at time step n. The probability
un+1 can be derived from un as follows:

un+1 = i0 +
∞∑

q=1

qPd (q )

z
[s0fq−1(un) + w0gq−1(un)], (10)

where z ≡ ∑
q qPd (q ) is the mean degree of the network and

the factor qPd (q )/z is the probability that a node connected to a
randomly chosen edge has degree q. As n → ∞, un converges
to u.

III. GOLDEN TIMES IN THE SWIR MODEL

A. The single-seed case

First, we consider the case in which the initial number of
infectious nodes is o(N ); that is, i0 = w0 = 0 and s0 = 1 in the
thermodynamic limit. In this case, the SWIR model exhibits
a mixed-order transition [14] at a transition point κc when the
mean degree is larger than a critical value. The order parameter
displays a discontinuous transition from m(κc ) = 0 to m0,
whereas other physical quantities such as the outbreak size
distribution exhibit a critical behavior. The behavior of the
order parameter m(κ ) as a function of κ is schematically shown
in Fig. 1(a).

We are interested in how infected nodes spread as a function
of the cascade step n when the order parameter jumps. As a
particular case, when the network is an ER network having
a degree distribution that follows the Poisson distribution,
i.e., Pd (q ) = (q + 1)Pd (q + 1)/z = zqe−z/q!, where z is the
mean degree, Eq. (10) is reduced as follows:

un+1 = 1 −
(

1 − μ

κ + μ − η

)
e−(κ+μ)zun − μ

κ + μ − η
e−ηzun

≡ F (un). (11)

We remark that on ER networks, un in the limit n → ∞
becomes equivalent to m obtained from Eq. (7).

We pick up the contribution of the reaction S + I → 2I

from Eq. (11) but neglect the contribution of the reaction
W + I → 2I . Then, the probability that a node becomes
directly infected by � infectious neighbors, which is denoted
by P

(S→I )
IR (�), is given as

P
(S→I )
IR (�)=

�−1∑
m=0

(1 − κ − μ)mκ = κ

κ+μ
[1−(1 − κ − μ)�].

(12)

Applying the formula for the Poisson degree distribution to
Eq. (10), we obtain that

F (S→I )(un) = κ

κ + μ
[1 − e−(κ+μ)zun ]. (13)

Because the order parameter increases from m = 0, we assume
that un is small in the early time regime. Thus,

u
(S→I )
n+1 = zκun − au2

n + O
(
u3

n

)
, (14)

where a ≡ κ (κ + μ)z2/2. Actually, the coefficient zκ of the
first-order term is the mean branching ratio in the early time
regime. The critical branching (CB) process occurs at the tran-
sition point κc = 1/z. However, the discrete mapping Eq. (14)
at κc may be rewritten in the form of a saddle-node bifurcation,
u̇(S→I ) = −au2, where u is a function of the continuous time
variable n and the overdot denotes differentiation with respect
to it. Because a > 0, u∗ = 0 is a stable fixed point for u � 0,
and this point represents the fixed point of the SIR model,
indicating a second-order transition.

Next, we consider the two successive reactions S + I →
W + I and W + I → 2I , in which a susceptible node becomes
infected in two steps and is eventually removed. Because a node
can be infected either by the reaction S + I → 2I or by the
reactions S + I → W + I and W + I → 2I , the probability
f (S→W→I )(un) can be obtained using the relation

F (S→W→I )(un) = F (un) − F (S→I )(un) (15)

as

F (S→W→I )(un) = μ

κ + μ

[
1 + η

κ + μ − η
e−(κ+μ)zun

]

− μ

κ + μ − η
e−ηzun . (16)

Again, using un � 1, we obtain that

u
(S→W→I )
n+1 = bu2

n + O
(
u3

n

)
, (17)

where b ≡ μηz2/2. Here we note that the first-order term
O(un) is absent. Combining Eqs. (14) and (17) at criticality,
we obtain that

un+1 = un + (b − a)u2
n + O

(
u3

n

)
. (18)

Thus, u̇ = (b − a)u2. When b − a < 0, i.e., μη < κ2
c + κcμ,

the fixed point u∗ = 0 is stable, and thus a continuous transition
occurs. Otherwise, the fixed point u∗ = 0 is unstable, and a
discontinuous transition occurs. The condition μη > κ2

c + κcμ

for a discontinuous transition is consistent with previously
obtained results [8,14].

When contagion starts from a single infectious node, its
spread in the early time regime is governed by the linear term

012311-3



WONJUN CHOI, DEOKJAE LEE, J. KERTÉSZ, AND B. KAHNG PHYSICAL REVIEW E 98, 012311 (2018)

of Eq. (18). It proceeds in the form of a CB tree [17], i.e., the
mean branching ratio (un+1 − un)/(un − un−1) is almost unity,
and the main contribution is that of the reaction S + I → 2I .
Thus, in the thermodynamic limit, un always stays zero so that
nonlinear terms in Eq. (18) do not appear. However, in finite
systems, un grows gradually and the nonlinear term (b − a)u2

n

becomes significant after a characteristic time nc(N ). It was
argued in Ref. [19] that for the SIR model at the epidemic
threshold, the maximum size of outbreaks is proportional to
N2/3 in the mean field limit. When un grows up to O(N2/3),
the nonlinear terms in Eq. (14) suppresses further growth of
the cluster, leading to a subcritical branching process. This
means that the CB process driven by Eq. (14) persists up to
O(N1/3), because the fractal dimension of the CB tree is two.
However, for the SWIR model, the coefficient of the nonlinear
term Eq. (18) is positive, and the nonlinear term enhances
further increase of removed nodes. The CB process turns
into a supercritical process, leading to a pandemic outbreak.
Accordingly, the golden time, the duration of the CB process,
scales similarly as ∼N1/3 to that of the SIR model, which is
what we observed in a previous work [14,17].

B. The multiple-seed case

Next, when the number of infectious nodes is O(N ), i.e.,
i0 > 0, s0 = 1 − i0, and w0 = 0 in the thermodynamic limit,
it was shown [7,10–12,15] that there exists a critical value
i

(c)
0 such that when i0 < i

(c)
0 , a hybrid phase transition occurs

at a transition point κc, whereas when i0 = i
(c)
0 , a continuous

transition occurs. Here we focus on the former case.
In the multiple-seed case, Eq. (10) becomes

un+1 = i0 + (1 − i0)F (un), (19)

when the network is an ER network with mean degree z. Fixed
points of Eq. (19) satisfy the equation,

G(u) ≡ i0 + (1 − i0)F (u) − u = 0, (20)

and the smallest solution among them is the order parameter
m(κ ). We note that G(u) contains the parameters κ, μ, ν, z,
and i0. As already shown in the single-seed case, for appro-
priately given values of μ and η, G(0) = i0, G′(0) = (1 −
i0)(zκ − 1) and G′′(0) = (1 − i0)(b − a) > 0. Thus when i0 is
sufficiently small, i.e., i0 < i

(c)
0 , m(κ ) satisfies G′[m(κ )] < 0

for values of κ near zero. Then m(κ ) increases continuously
as κ is increased untill κ reaches a critical value κc such that
G[m(κc )] = G′[m(κc )] = 0 and G′′[m(κc )] > 0 are satisfied.
We note that κc depends on i0 and z. When i0 = 0, κc is reduced
to 1/z, the transition point of the single-seed case. m(κ )
exhibits a critical behavior as κ approachesκc and subsequently
jumps from m(κc ) = md to another value mu as represented in
Fig. 1(b). Thus, the transition is hybrid.

We notice that at a transition point for the multiple-seed
case, an infected node can be in contact with a node that was
weakened by a different infectious root [15]. Accordingly, the
reaction W + I → 2I can occur even in the early time regime,
as shown in Fig. 2(c) with red zigzag (lowest) curve. Moreover,
the CB process appears not from the beginning but slightly
after that indicated by an arrow at n∗ in Fig 2(c), at which
the density of removed nodes rn∗ is close to md indicated in

Fig. 1(b). From this step n∗, rn remains almost constant for a
long time as shown in Fig. 2(d).

However, in finite systems, due to the fluctuations arising
in the stochastic process of epidemic spread, the densities of
each species of nodes at n∗ can be different for each realizaton.
Those fluctuations lead to different nc for each realization,
where nc is the golden time at which rn begins to increase
drastically as shown in Fig 2.

We denote the densities of each species of nodes at time �

as s�, w�, i�, and r�, respectively. Then, on ER networks, for
n > �, hn,� ≡ un − r� satisfies

hn+1,� = i� +
∞∑

q=0

zqe−z

q!
[s�fq (hn,�) + w�gq (hn,�)], (21)

where

s� = s0e
−(κ+μ)zu�−1 (22)

and

w� = 1 − u� − s�. (23)

Moreover, using Eq. (10), the relation in = un+1 − un, and
un = in + rn, we determine i� and r�.

We focus on the density fluctuations of each species at n∗.
We split the densities of each species of nodes into two parts:
xn∗ + δxn∗ (x = s, w, i or r), where the first term represents
densities of x-species nodes obtained from Eqs. (19), (22),
and (23) at n∗. The second one is the deviation. Then for n >

n∗, Eq. (21) becomes

hn+1,n∗ = in∗ + δin∗ + (sn∗ + δsn∗ )f (hn,n∗ − δrn∗ )

+ (wn∗ + δwn∗ )g(hn,n∗ − δrn∗ ) + δrn∗ . (24)

We did not take into account the density fluctuations induced
after n∗, because they are negligible compared to those at n∗. At
κ = κc, Eq. (24) has a nontrivial fixed point hd,n∗ = md − rn∗

in the thermodynamic limit. Then Eq. (24) is rewritten with
εn = un − md as

εn+1 = d0 + (1 + δd1)εn + (d2 + δd2)ε2
n + O

(
ε3
n

)
, (25)

where

d0 ≈ δin∗ + δsn∗f (hd,n∗ ) + δwn∗g(hd,n∗ ), (26)

δd1 ≈ δsn∗f ′(hd,n∗ ) + δwn∗g′(hd,n∗ )

− [sn∗f ′′(hd,n∗ ) + wn∗g′′(hd,n∗ )]δrn∗ , (27)

d2 = 1
2 [sn∗f ′′(hd,n∗ ) + wn∗g′′(hd,n∗ )], (28)

δd2 = 1
2 [δsn∗f ′′(hd,n∗ ) + δwn∗g′′(hd,n∗ )]

− 1
2 [sn∗f ′′′(hd,n∗ ) + wn∗g′′′(hd,n∗ )]δrn∗ . (29)

Here, f (x) ≡ ∑∞
q=0 Pd (q )fq (x). g(x) is similarly defined.

Neglecting higher order terms of ε, Eq. (25) is rewritten in
an alternative form,

ε̇ = d0 + (d2 + δd2)

[
ε + δd1

2(d2 + δd2)

]2

− (δd1)2

4(d2 + δd2)
.

(30)
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FIG. 2. (a) For the single-seed case, plot of the branching ratios as a function of time step n for each type of reaction at κc = 1/8.
(b) Evolution of the densities of removed nodes (red curve, top) and weakened nodes (blue curve, bottom) as a function of n for the single-seed
case. Data are obtained from a single realization of infinite outbreak in the SWIR model starting from a single seed (i0 = 0) with reaction
probabilities μ = 1/16 and η = 0.9 for both (a) and (b). (c) Similar to (a) but for the multiple-seed case at κc ≈ 0.1149487. (d) Similar to (b)
but for the multiple-seed case. For both (c) and (d), data are obtained using the parameters i0 = 0.002, μ = κ , and η = 0.5. The ER networks
on which the simulations were performed have a size N = 5.12 × 106 and mean degree z = 8. Legends “transferring X to Y ” in (a) and (c)
indicate the mean number of neighbors of an infected node that change their state from X to Y at step n. In (d), the characteristic time steps n∗

and nc, from and at which the CB process starts and ends, respectively, are marked.

Because δin∗ ∼ δsn∗ ∼ δwn∗ ∼ δrn∗ � 1 for large N , the last
term can be neglected compared to d0 and Eq.(30) is rewritten
simply as

˙̃ε = d0 + d̃2ε̃
2, (31)

where d̃2 ≡ d2 + δd2 and ε̃ ≡ ε + δd1/2d̃2. We note that d0 is
a real number, while d̃2 is a positive number.

The nonlinear mapping Eq. (31) includes several features:
When d0 < 0, ε̃ reaches a fixed point ε̃∗ = −

√
|d0|/d̃2; when

d0 = 0, ε̃ remains at zero; when d0 > 0, there arises the so-
called bottleneck effect at ε̃ = 0 [21,25,28]. The time to pass
through the bottleneck is calculated as

T =
∫ ∞

−∞

dε̃

d0 + d̃2ε̃2
∼ π√

d0
, (32)

which is approximately the time interval of the plateau region,
i.e., nc − n∗. Because n∗ is much smaller than nc, nc ≈ T ,
which is the golden time for a single realization of the process.
d0 can have different values for different realizations, yielding
a different nc. Thus, we need to take average of nc over different
realizations to obtain 〈nc〉.

We performed extensive numerical simulations at the tran-
sition point κc ≈ 0.11494875096512 of the SWIR model
starting from multiple seeds i0 = 0.002, and obtained that

〈nc〉 ∼ N0.252±0.001 (33)

and
〈
d

−1/2
0

〉
+ ∼ N0.254±0.002 (34)

as shown in Fig. 3. 〈· · · 〉+ represents the ensemble average over
only positive values of d0. For negative values of d0, Eq. (31)
has a fixed point and ε̃ does not diverge by repeating iterations.
We remark that the exponent value is larger than 1/4. The
numerical exponent values in Eqs. (33) and (34) are obtained
with the data only within the range N < 108. The data beyond
that range deviate from the tendency, which may be caused by
too long passing time through too narrow bottle necks as the
system size becomes large. The noise term d0 was obtained at
n∗ ≈ 80, at which a critical branching process starts as shown
in Fig. 2(c).

Now we consider the distribution of d0 obtained from
different realizations but at the same n∗ for the system size
N , denoted as QN (d0). We define the standard deviation σN of
d0 as

σ 2
N = 〈

d2
0

〉 − 〈d0〉2,

where 〈· · · 〉 represents the average over all range of d0 and
〈d0〉 > 0. σN behaves as ∼N−1/2 as shown in Fig. 4(d). If
we assume that any moment of the distribution QN (d0) is
determined by a single scale, so that

〈
d

−1/2
0

〉
+ ∼ 〈

d2
0

〉−0.25
+ ∼ σ

−1/2
N ,

then 〈d−1/2
0 〉+ would scale as N1/4. However, this result is not

consistent with the numerical result Eq. (34).
We check the N -dependent behavior of

√
〈d2

0 〉+. Figure 4(e)
shows that

√
〈d2

0 〉+ behaves as N−1/2 asymptotically but the data
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FIG. 3. For the multiple-seed case, (a) plot of the average cascade
time step 〈nc〉 (©) and 3.15〈d0

−1/2〉+ ( ) versus system size N at
κc ≈ 0.11494875096512. The notation + in 〈d0

−1/2〉+ indicates that
only positive values of d0 are considered in taking the average. d0

is measured at n∗ = 80. The guideline has a slope of 0.252. (b) Plot
of 〈nc〉/N 0.25 ( ), 1.023〈nc〉/N 0.252 (©), and 3.3〈d−1/2

0 〉+/N 0.254 ( )
versus N . Data were obtained from ER networks of different sizes but
with the same mean degree, z = 8. i0 = 0.002, μ = κ , and η = 0.5
were used. Average is taken over more than 105 realizations for each
data point for N < 108.

points deviate in small N region. This discrepancy mainly
originates from the asymmetry of QN (d0), which is caused
by the multiplicative noise induced by the stochastic process.
QN (d0) has a longer tail in its positive side than in the oppposite
side as shown in Figs. 4(a)–4(c). As the system size becomes
larger, it becomes not only narrower but also more symmetric.
To quantify this asymmetric feature of the distribution, we

measure the skewness of QN (d0) defined as

S3 ≡
〈(

d0 − 〈d0〉
σN

)3〉
∼ N−0.55, (35)

in Fig. 4(f). The above result suggests that the distribution
remains asymmetric in any finite systems but becomes sym-
metric only in the limit N → ∞. QN (d0) becomes a Gaussian
distribution in that limit. The asymmetry of QN (d0) decreases
because the ratio of the noise to the mean number of infected
nodes becomes smaller for larger systems.

Due to those features, 〈d−1/2
0 〉+ behaves differently from

σ
−1/2
N within our numerical range; however, it is not certain

yet how it would be in the thermodynamic limit because our
simulation data (Fig. 3) of 〈d−1/2

0 〉+ contain heavy fluctuations,
particularly in the large-system-size region. For much larger
system sizes, QN (d0) are so close to the Gaussian distribution
that one may think that 〈d−1/2

0 〉+ behaves as σ
−1/2
N , i.e.,

∼N1/4 in the thermodynamic limit N → ∞. However, it is
a challenging task to verify that numerically.

When κ > κc, d0 is naturally obtained as d0 = (1 −
i0)(∂f (un, κ )/∂κ )|md,κc

(κ − κc ). Then, we do not need to
take average over ensembles for sufficiently large κ − κc

because sample to sample fluctuations of d0 become negligible
compared to it. Then,

〈nc〉 =
∫ ∞

−∞

dε

d0 + d2ε2
∼ π√

κ − κc

. (36)

Numerical result in Fig. 5 supports this prediction.

IV. K -CORE PERCOLATION AND
THE THRESHOLD MODEL

In our previous work [17], we showed that there exists uni-
versal mechanism of avalanche dynamics in the SWIR model,
k-core percolation, the threshold model and the CFoIN, when
an avalanche starts from a single seed. Due to the universal
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10- 3
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SkewnessStandard deviation

(a) (b) (c)

(d) (e) (f)

N N N
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0 0 0

0

FIG. 4. Plot of the probability distribution QN (d0) versus d0 for different system sizes, N = 2.56 × 106(a), 1.024 × 107 (b), and 4.096 × 107

(c). The distribution is obtained from more than 105 realizations for each N . Plot of the standard deviation (d),
√

〈d0
2〉+ (e), and the skewness

(f) of QN (d0) as a function of the system size N . Average is taken over more than 105 realizations for each data point.
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FIG. 5. For the multiple-seed case, scaling plot of the average
cascade time step 〈nc〉N−0.252 versus (κ − κc )N 1.984 for different
system sizes N . Data for different system sizes collapse well onto
a single curve, indicating that 〈nc〉 ∼ N 1/4 for κ > κc. Numerical
simulations were performed on ER networks with mean degree z = 8
and initial density of seeds i0 = 0.002. Average is taken over more
than 5 × 104 realizations for each data point.

mechanism, the golden time scales as N1/3 in a universal way
for those models. During that study, we found that numerical
simulations for the CFoIN with large system sizes require long
computational times and memory space, so that numerical
results with limited ensemble average were not neat. Based
on such experience, here we limit our interest on to the golden
time problem with multiple seeds to k-core percolation [22]
and the threshold model [34] besides the SWIR to check the
universal behavior. We find that for both models, the exponent
values of the golden time are also measured to be slightly larger
than 1/4. We note that the SWIR model and the two models
above can be regarded as special cases of generalized epidemic
process [8,35] with heterogeneous transmission probabilities.
Thus, similar behaviors of golden time are expected. Let us
begin with k-core percolation.

A. k-core percolation

In k-core percolation, the dynamics starts with the removal
of all nodes that have degree less than k. These removals may
decrease the degrees of the remaining nodes to less than k.
If such nodes exist, they are removed as well. This pruning
process is repeated until no more such nodes remain. When the
mean degree z of the original network is larger than a threshold
zc, a k-core subgraph of size O(N ) can exist.

Here we consider the avalanche dynamics of k-core per-
colation [27] induced by failures of multiple nodes. We first
construct a k-core subgraph from an ER random graph with
mean degree z > zc. After that, we perform an avalanche
process by removing randomly selected ρ0N nodes from
the k-core subgraph simultaneously. This removal may cause
additional successive deletion of nodes. The avalanche size is
defined as the total number of removed nodes in the avalanche
process, and the duration time of the avalanche is the number
of pruning steps. The avalanche size is classified as finite or
infinite according to the criterion: If it is finite, the k-core would
still remains; if it is infinite, the k-core would collapse to zero.
The avalanche size depends on z and ρ0. For sufficiently large z,
there exists a critical density ρc such that an infinite avalanche
can occur when ρ0 > ρc in the thermodynamic limit.

FIG. 6. For k-core percolation with k = 3, (a) plot of the golden
time 〈nc〉 (©) and 4.05〈d0(n∗)−1/2〉+ ( ), and 2.4〈d1(0)−1/2〉+ ( )
versus N for k-core percolation with k = 3 starting from multiples
nodes of O(N ). d0 is measured at n∗ = 60 and d0(0) denotes the
value of d0 measured at n = 0. A solid (dashed) guideline has slope
of 0.2655 (0.25). (b) Plot of 1.23〈nc〉/N 0.2655 ( ), 〈nc〉/N 0.25 (©),
4〈d0(n∗)−1/2〉+/N 0.25 ( ), and 4.65〈d0(n∗)−1/2〉+/N 0.262 ( ) versus N .
Data were obtained from ER networks of different sizes N but with
the same mean degree, z = 3.723243, and i0 = 0.0567377. Average
is taken over more than 105 realizations for each data point.

In Fig. 6, we measure the mean cascade time step (golden
time) 〈nc〉 of infinite avalanches at the transition point for
different system sizes N . We also measure 〈d0(n∗)−1/2〉+,
where d0(n∗) is the noise measured at n∗ = 60, at which
a critical branching process starts. The definition of d0 is
presented in the Appendix. It was found that 〈nc〉 scales as
N0.2655±0.003 and 〈d0(n∗)−1/2〉+ scales as N0.262±0.007. The
distribution function of

√
Nd0(n∗) is shown in Fig. 7(a)

for two different system sizes. Similar to the case of the
SWIR model, d0(n∗) is distributed asymmetrically and the
distribution becomes more symmetric for larger system sizes.
The skewness S3 of QN (d0(n∗)) is plotted as a function of the
system size N in Fig. 7(b). It shows a power-law decaying
behavior. Those obtained facts lead to the measured exponent
ζ being larger than 1/4, supporting the numerical result.

For comparison, 〈d0(0)−1/2〉+ is proportional to N0.25 where
d0(0) is the noise measured at n = 0, which represents struc-
tural fluctuation at n = 0 [Fig. 6(a)]. Since the multiplicative
fluctuations of cascade dynamics are absent at n = 0, the distri-
bution of d0(0) do not change in shape for different system sizes
[Fig. 7(c)]. Thus, it satisfies QN [d0(0)] = √

NQ[
√

Nd0(0)],
which makes 〈d0(0)−1/2〉+ scale as ∼N1/4.

B. The threshold model

Next we consider the threshold model [34], which was
introduced to study the spread of cultural fads on social
networks. Each node i is assigned its threshold value φi and
has one of two states, active or inactive. An inactive node
i surrounded by mi active neighbors and ki − mi inactive
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N=8  106 N=6.4  107

Slope = -0.57

(a)

(b)

(c)

FIG. 7. (a) Plot of the probability density function of
√

Nd0(n∗)
for two different system sizes N = 8 × 106 and 6.4 × 107. (b) Plot
of skewness S3 of QN [d0(n∗)] as a function of the system size N .
(c) Plot of the probability density function of

√
Nd0(0) for two

different system sizes N = 8 × 106 and 6.4 × 107. Average is taken
over more than 106 realizations for each data point.

neighbors changes its state to active when the fraction of
active neighbors mi/ki > φi . For a given set of {φi}, the order
parameter, the density of active nodes in an absorbing state,
jumps and exhibits a hybrid phase transition at a critical value
zc of the mean degree. Here, we initially introduce i0N active
nodes in a system. At each generation, every inactive node
i whose number of active neighbors mi > kiφi is identified
and changes its state to active. For convenience, we choose a
single threshold value φ for all nodes on ER networks. Then the
critical mean degree zc is determined as a function of φ and
i0. We performed simulations with φ = 0.18 and i0 = 0.01.
Then the critical point is determined as zc = 9.191 . . . in the
thermodynamic limit. The mean cascade time step of infinite
outbreaks, 〈nc〉, is obtained numerically as ∼N0.263 in Fig. 8.
Thus, the measured exponent is also larger than 1/4.

V. PUZZLE IN CFOIN

A similar size dependency of the golden time was addressed
in the CFoIN. Zhou et al. [29] revealed that the choices of
different types of transition points lead to different scaling
behaviors of golden time in the CFoIN. They showed that
when the golden time is measured at the transition point pc of
each realization, the mean golden time scales as 〈nc〉 ∼ N1/3.
However, when a single mean-field transition point pMF

c is
taken for all realizations, the golden time scales as 〈nMF

c 〉 ∼
N1/4. The authors presented the hand-waving argument that

FIG. 8. (a) Plot of the average cascade time step 〈nc〉 for the
threshold model starting from initial multiple active nodes. Guideline
has a slope of 0.263. (b) Plot of 〈nc〉/N 0.25 (�) and 〈nc〉/N 0.263 (©)
versus N . Data were obtained from ER networks of different sizes N

but with the same (z, ρ0, φ) = (9.191, 0.01, 0.18). Average is taken
over more than 4 × 104 realizations for each data point.

in finite systems of size N , individual pc follows a standard
Gaussian distribution having the mean value pMF

c and the
standard deviation proportional to N−1/2 [28,29]. Using a
formula similar to Eq. (31) with d0 following a Gaussian dis-
tribution having the standard deviation ∼N−1/2, they obtained
〈nMF

c 〉 ∼ N1/4. However, the author of Ref. [33] investigated
the scaling relation of the golden time numerically using
a different algorithm, and obtained the exponent ζ ≈ 0.28
different from 1/4. Thus, the two results are not consistent
with each other and this discrepancy has remained as a puzzle
in the cascade-induced discontinuous percolation.

We recall that for the SWIR model, i0N seeds are selected
at random. Thus, the dynamics started from those nodes can be
different for each sample. Because these choices are random,
the distribution of d0 at n = 0 will follow a Gaussian distribu-
tion in a similar way to the k-core percolation case. However,
because the dynamics proceeds from n = 0 stochastically,
noises are accumulated during the avalanche dynamic process.
In this case, for a given network at n = 0, noises of d0 obtained
at n∗ do not form a regular Gaussian distribution but do an
asymmetric distribution, and the observed scaling of 〈nc〉 is
not N1/4. We think that the result obtained in Ref. [33] shares
the common origin with the one we have in the SWIR model.
Therefore, we think that the puzzle arising between the results
of Refs. [29] and [33] originates from the times at which the
distribution of the fluctuation is measured.

VI. SUMMARY

The SWIR model is a simple two-step contagion model, en-
abling us to understand the machanism underlying a pandemic
outbreak. Using this model, we obtained the scaling behavior of
the golden time with respect to the system size. Using the local
tree approximation, we set up a nonlinear dynamic equation in
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the form of saddle-node bifurcation that represents the cascade
dynamics of two-step contagion. When the epidemic dynamics
starts from a single infected node, we showed that the linear and
the nonlinear terms of the nonlinear mapping play distinct their
roles. In the early time regime, the linear term governs a critical
branching (CB) process. The CB tree can be regarded as a criti-
cal cluster in percolation. However, in the late time regime, the
nonlinear term causes an explosive spread of epidemic disease.
The golden time is determined by the finite-size effect on the
linear term, which scales as ∼Nζ with ζ = 1/3. This scaling
behavior is universal for cascade-induced dynamic models
such as the threshold model, k-core percolation and the CFoIN.

When the dynamics starts from multiple seeds of O(N ),
we measured a change in the value of ζ to 0.252 in the SWIR
model. In this case, a long CB process does not appear from
n = 0, but it does at some characteristic time n∗. During the
time until n∗, clusters of ever infected nodes merge and form a
cluster of size O(N ). The size fluctuates for different realiza-
tions. The fluctuations are induced by the stochastic process of
disease transmission. We found that these fluctuations change
the value of ζ from 1/3 to about 0.252 for the multiple-seed
case. Due to the multiplicative noise of disease spread, the
size distribution of those clusters over different realizations
becomes asymmetric with a long tail in its positive region.
It seems that due to such non-Gaussianity the golden time
scales as ∼Nζ with ζ slightly larger than 1/4. However, this
asymmetry decreases gradually in a power-law manner of
the skewness function as the system size is increased. This
leaves the possibility open that asymptotically the value of ζ

approaches 1/4. This problem could not be ultimately solved
by our study. A very precise analysis of corrections to scaling
would be needed for it, which was not possible in spite of our
massive numerical efforts.

We also obtained the similar behavior, ζ > 1/4 for the two
other cascade dynamics models, k-core percolation and the
threshold model. On the basis of the numerical results of the
SWIR model, the threshold model and k-core percolation, the
exponent ζ seems to be non-universal for the multiple-seed
case. However, as the ζ exponents for those models deviate
only slightly from 1/4 and the simulation sizes are limited, the
asymptotic universal behavior cannot be entirely excluded.
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APPENDIX: DERIVATION OF d0 IN k-CORE
PERCOLATION

We consider k-core subgraph of a given ER network of size
N and mean degree z. If z is larger than a critical value zc, a

k-core subgraph of size M (z)N can exist. M (z) was obtained
analytically in Ref. [24]. We define Pd (q ) as the probability
that a node in the k-core subgraph has degree q. We consider the
evolution of the avalanche process after removing ρ0N nodes
from the k-core subgraph. We define un as the probability that
a node attached to the end of an randomly chosen edge of a
network will have degree less than k at time step n. Then the
evolution of un satisfies the following equation:

un+1 = i0 + (1 − i0)
∞∑

q=k

qPd (q )

〈q〉 fq (un), (A1)

where i0 = ρ0/M (z) and

fq (un) =
q−1∑

i=q−k+1

(
q − 1

i

)
un

i (1 − un)q−1−i . (A2)

Taking similar steps as for the SWIR model, we now consider
the avalanche process after a certain time step m, which is

hn+1,m = im +
∞∑

�=k

Qm(�)f�(hn,m), (A3)

where

hn,m = un − um−1

1 − um−1
, (A4)

Qm+1(�)= 1 − i0

1 − um

∞∑
q=�

qPd (q )

〈q〉
(

q − 1

q − �

)
um

q−�(1 − um)�−1,

(A5)

im ≡
k−1∑
�=1

Qm(�) = um − um−1

1 − um−1
. (A6)

Here Qm denotes the probability that a node attached to the
end of randomly chosen edge in the remaining graph at time
step m has degree �.

We now consider sample to sample fluctuations at the
characteristic time n∗. At a transition point ρ0 = ρc, Eq. (A3)
has a nontrivial fixed point ud < 1. Defining hd,n∗ ≡ (ud −
un∗−1)/(1 − un∗−1) and εn = hn,n∗ − hd,n∗ , Eq. (A3) with fluc-
tuations becomes

hd,n∗ + εn+1

= im + δim +
∞∑

�=k

[Qm(�) + δQm(�)]f�(hd,n∗ + εn),

(A7)

which can take the form of Eq. (25) with

d0 = δin∗ +
∞∑

�=k

δQn∗ (�)f�(hd,n∗ ). (A8)
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