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Criticality of the nonconservative earthquake model on random spatial networks
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We study the nonconservative earthquake model on random spatial networks. The spatial networks are
composed of sites on a two-dimensional (2D) plane which are connected locally. Differently from a regular
lattice, the locations of sites are modeled in the way that sites are randomly placed on the plane. Using the same
connectivity degree as a 2D lattice, however, the spatial network cannot exhibit critical earthquake behavior.
Mimicking long range energy transfer, the connection radius is increased and the connectivity degree of the
spatial network is increased. Then we show that the model exhibits self-organized criticality. The mechanism of
the structural effect is presented. The spatial network includes many modules when connectivity degree is very
small. The effect of modular structure on the avalanche dynamics is to limit the spreading of avalanches in the
whole network. When the connectivity degree is larger, the long range energy transfer can overcome the effect
of local modularity and criticality can be reached.
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I. INTRODUCTION

The concept of self-organized criticality (SOC) was intro-
duced as a possible explanation for the widespread occurrence
in nature of long range correlations in space and time [1–5].
Earthquakes are probably the most striking paradigm of SOC
that can be observed by humans on earth. According to the
empirical Gutenberg-Richter (GR) law [6] the distribution of
earthquake events is scale free over many orders of magnitude
in energy. The relevance of SOC to earthquakes was first
pointed out by Bak and Tang [1] and Sornette and Sornette [7].
According to this theory, plate tectonics provides energy input
at a slow timescale into a spatially extended, dissipative system
that can exhibit breakdown events via a chain reaction process
of propagating instabilities in space and time. The system of
driven plates builds up to a critical state with avalanches of all
sizes.

Then Olami, Feder, and Christensen (OFC) introduced a
nonconservative model on a lattice that displayed SOC [8]. The
distribution of avalanche sizes follows a power-law function,
and the power-law exponent depends on the dissipation pa-
rameter in the OFC model [9]. The OFC model of earthquakes
has played an important role in the context of SOC. However,
the presence of criticality in the nonconservative version of the
OFC model has been controversial since its introduction [9,10]
and it is still debated [11–13]. For the presence of criticality, the
topology of connections between dynamical units also plays
an important role. In the literature, OFC models on different
topologies have been investigated.

Lise and Paczuski showed that the critical state is robust
over a range of values of the dissipation parameter α [14]. As a
structural factor, the boundary condition was considered. They
showed that, with both “free” and “open” boundary conditions,
the model has the same result of earthquake size distribution
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that follows a power-law function with the exponent τ � 1.8,
completely consistent with the GR law.

To compare with mean-field theory, a random-neighbor
(RN) version of the OFC model was proposed. The RN
model [15–18] differs from the OFC model only in the choice
of neighbors: an unstable site distributes the energy to four
randomly chosen sites from the network instead of its nearest
neighbors on the lattice. As a result of the change of neighbors,
there is criticality only in the conservative case, where it
becomes equivalent to a critical branching process.

The OFC model on a quenched random (QR) graph [19]
also has been studied. The model represents the correct
mean-field limit of OFC model, and can exhibit SOC in the
nonconservative regime. The details of the structure properties
of the QR graph still have an impact on the appearance of
criticality. If all the sites have exactly the same number of
nearest neighbors q (both for q = 4 and q = 6), the dynamics
organizes into a subcritical state. In order to observe a power-
law distribution of earthquakes, one has to introduce some
inhomogeneity. It was shown that it suffices to consider two
sites with q − 1 neighbors. On the other hand, if sites have
different connectivity qi , there is no criticality.

The effect of small-world and scale-free topologies on the
criticality of the nonconservative OFC model has been studied
[20–25]. It has been shown that the OFC model on small-
world topology exhibited self-organized criticality with a small
rewiring probability and undirected connections. In the OFC
model on scale-free networks, instead, the strength of disorder
does not allow reaching a critical state.

Most works concerning the structural effect have focused on
the topological properties of networks [26–37]. However, real
systems are often organized in the form of networks where sites
and edges are embedded in space. The geometrical properties
may provide limits on the organization of networks and have
impacts on the dynamics of these networks. In some studies
of network dynamics the spatial network has been considered,
such as for road networks, power grids, telephone services,
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and neural networks [38–41]. In these kinds of networks,
sites locate over a space with randomness and are connected
depending on the distance between each other. All these
examples show that topological properties and dynamics of
such networks alter with changing space structure. Here it
is interesting to study the effect of spatial networks on the
OFC model, because randomness is an ineluctable factor in the
connection structure between the elements in an earthquake,
and the structure is random spatial networks rather than regular
lattices.

In this present work, we investigate the critical behavior
in a random spatial network in which sites are randomly
placed on a plane and are connected locally. By analyzing the
distribution of earthquake sizes, we show that the randomness
does not allow the network to reach a critical state on sparse
networks. However, criticality occurs on a denser network.
The mechanism of the disappearance of criticality is presented.
We show that sites form modules when networks are sparse,
and the avalanche cannot spread as in homogeneous networks.
But long range energy transfer overcomes the effect of local
modularity, and criticality appears when the network is denser.

II. MODEL

The OFC model is based on the physical earthquake model
[42] which consists of blocks coupled by springs and driven by
the moving plate. The model is a discrete version of the surface
of a moving plate at a homogeneous fault. The OFC model is
defined on a two-dimensional square lattice of L × L sites and
each site is associated a real continuous energy Ei . To model
the homogeneous scheme, each site is driven continuously and
uniformly by the driving block, that is, the value of Ei increases
at the same rate. In simulations, one finds the largest value
of energy Emax in the system and increases the energy of all
sites by the same amount Eth − Emax. Therefore the sites with
the largest energy reach the threshold value (Ei � Eth ) and
becomes unstable. As soon as a site becomes unstable, i.e.,
Ei � Eth, the global driving is stopped and the system evolves
according to the following local relaxation rule:

Enn → Enn + αEi,

Ei → 0,
(1)

where nn stands for the collection of nearest neighbors to
node i. The toppling of one site triggers an avalanche, that
is, neighbors of this site may become unstable and toppling
propagates in the network. The avalanche is over when all of the
sites are below Eth. Then the driving to all sites recovers. The
parameter α ∈ [0, 1/4] controls the level of conservation of
the dynamics, where α = 1/4 corresponds to the conservative
case, while α < 1/4 implies the model is nonconservative. An
open boundary condition is used in OFC model.

Here we modify the OFC model by replacing the lattice with
a random spatial network. Following the method proposed in
Refs. [43–45], the network is built by simple rules:

(a) Randomly pick N sites on a square, whose width is
L, such that each site i will have coordinates 0 � xi, yi � L,
respectively, and ∀i = 1, 2, ..., N ;

(b) Two sites are connected if the distance between each
other is less than the connection radius rc.

The number of the ith site’s neighbors is called the degree
of the site and is denoted by ki . The average degree is defined
as 〈k〉 = 1/N

∑
i ki . For the given values of L and N , the

average degree can be changed by tuning the connection radius
rc. Because the degree of sites can be different, the relaxation
rule is changed slightly:

Enn → Enn + β

ki

Ei,

Ei → 0.
(2)

The parameter β controls the level of conservation of the
dynamics and takes values between 0 and 1. It is clear that if
ki = 4 and on a two-dimensional lattice the system will become
the original OFC model (α = β/4).

In usual modeling studies, the driving block is rigid and does
not change in the process of earthquakes. However, considering
the interaction between the site of the driving block, the elastic
deformation of the driving block can transfer energy between
next nearest neighbors. Therefore, here we consider networks
with degrees larger than 4.

According to the rule (2), the energy of an unstable site
at the boundary is averagely distributed to each of its nearest
neighbors. An alternative boundary condition is that neighbors
of one site at the boundary get β

〈k〉Ei when the site topples.
These two boundary conditions give the same simulation
results.

The number of toppling sites during an earthquake is defined
as the earthquake size S. In a system of SOC, the distribution
of earthquake sizes is a power-law function,

P (S) ∼ S−τ . (3)

In simulations, we will be concerned with the distribution of
avalanche sizes P (S).

III. SIMULATION RESULTS

To compare with the original OFC model, we set the average
degree 〈k〉 = 4 in the spatial networks. The network size is
N = 352. In Fig. 1(a), we show the earthquake size distribution
P (S) for different values of dissipation parameter β. Different
curves result for networks of dissipation parameter β = 0.40,
0.60, 0.80, 0.90, and 0.95 from left to right. For comparison,
the original OFC model with dissipation parameter α = 0.20
is also plotted. In the OFC model, the SOC states exhibit that
the distribution is a power-law function with an exponential
cutoff. The largest avalanche size in the OFC model is about
1000, which is close to the system size N . In the modified OFC
model on spatial networks, the distribution of avalanche size
depends on the dissipation parameter β, but the distributions
obviously diverges from a power-law function. Although the
system size is N = 352, the largest size of avalanche is very
small. The distribution only extends to about 100 in the network
closest to the conservation case (β = 0.95). In Fig. 1(b), we use
log-linear coordinates to plot the earthquakes size distribution
P (S). For different dissipation parameters, the model on spatial
networks exhibits that avalanche sizes have an exponential
distribution. Therefore, the model on spatial networks does
not reach the critical state in a sparse network.

Next, we study the dependence of network states on the
parameters of the spatial network. First of all, the effect

012309-2



CRITICALITY OF THE NONCONSERVATIVE EARTHQUAKE … PHYSICAL REVIEW E 98, 012309 (2018)

FIG. 1. (a) Distribution of earthquake size. The system has
parameters 〈k〉 = 4 and N = 352 (rc = 0.0325). Different curves
correspond to β = 0.40, 0.60, 0.80, 0.90, and 0.95 from left to right.
For comparison, the original OFC model of α = 0.20 is shown and
is marked by the arrow. (b) Distribution of earthquake size is plotted
using log-linear coordinates.

of network size is considered. We plot the distribution of
earthquake size for systems of different size N . Figure 2(a)
shows the simulation results of avalanche size distribution in
systems with dissipation parameter β = 0.8 and network sizes
N = 152, 252, 352, and 502. Although system sizes range from
152 to 502, the change of the largest size of avalanche is very
small.

Besides, the density of sites on the plane is considered. The
density is defined as ρ = N/L2. By changing the width L

of the plane, the density of sites is varied. At the same time,
we adjust the connection radius rc to keep the average degree
fixed. The distribution of avalanche sizes for different densities
is shown in Fig. 2(b). The distribution does not change under
the adjustment of density.

Furthermore, the long-range energy transfer has been stud-
ied in Refs. [46–49]. The spatial network can exhibit this be-
havior as the system average degree 〈k〉 increases. In Fig. 3(a),
we show the simulation results for systems with different
average degree 〈k〉. Other parameters are N = 352, L = 1.0,
and β = 0.90. One can see that the largest avalanche size tends
to N as the average degree increases. The distribution of the
original OFC model with dissipation parameter α = 0.225 is
marked by the arrow in Fig. 3(a). The distribution of systems
on spatial networks tends to the distribution of the OFC model
as the average degree increases. The left-hand sides of the
distribution curves are fitted into power-law functions. For
〈k〉 = 144, the fitted line is shown as the solid line in Fig. 3(a).
The slope of the fitted line is τ = 1.544. The slope of the
original OFC model of α = 0.225 is τ = 1.539. Furthermore,
under the high average degree 〈k〉 = 288, we plot the avalanche
size distribution for different values of β in Fig. 3(b). We can

FIG. 2. (a) Distribution of earthquake size for 〈k〉 = 4, L = 1.0,
and β = 0.80. Different curves correspond to N = 152, 252, 352,
and 502 (rc = 0.079, 0.046, 0.0325, and 0.0228). (b) Distribution
of avalanche sizes for different site density ρ = N/L2. The param-
eters are L = 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, N =
352, β = 0.80, and 〈k〉 = 4.

see that the network exhibits a power-law distribution when
the value of β tends to 1. This is similar to the models of RN
[15] and small-world networks [20,22].

In simulations, in order to increases the average degree, the
connection radius rc is changed. In a system with N = 352

and L = 1.0, the average degree 〈k〉 = 4 is obtained by using
the radius rc = 0.0325, while 〈k〉 = 144 is generated by the
radius rc = 0.215. For 〈k〉 = 288, the radius is rc = 0.321.
Although the degree changes dramatically, the connection
radius is relatively small.

In order to characterize the critical behavior of the model,
a finite size scaling (FSS) ansatz is applied [50–53],

PN (S) ∼ N−γ f

(
S

ND

)
, (4)

where f is a suitable scaling function, and γ and D are critical
exponents describing the scaling of the distribution function. In
Fig. 4, we show the FSS collapse of P (S) for different values of
N . As the network size increases, the average degree increases
and the ratio 〈k〉/N is remained fixed. Different curves cor-
respond to 〈k〉 = 36, N = 900, 〈k〉 = 72, N = 1800, 〈k〉 =
144, N = 3600, and 〈k〉 = 288, N = 7200. The distribution
P (S) satisfies the FSS hypothesis well except at the stage
of crossover, like the results in [14]. The critical exponents
derived from the fit of Fig. 4 are γ = 0.6714 and D = 0.436,
and the slope of the straight line is τ = 1.5. The FSS hypothesis
implies that, for asymptotically large N , PN (S) ∼ S−τ and
the value of the exponent is τ = γ /D � 1.54. Because of the
numerical uncertainty on the estimate, it is difficult to assert
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FIG. 3. (a) Distribution of earthquake size for different average
degree 〈k〉 with N = 352, L = 1.0, β = 0.90. Different curves cor-
respond to 〈k〉 = 4, 9, 18, 36, 72, 144, 288, 576, and 1000 from left
to right. (b) Distribution of earthquake size for different values of β

with N = 352, L = 1.0, 〈k〉 = 288. Different curves correspond to
β = 0.40, 0.60, 0.80, 0.90, and 0.95 from left to right. The original
OFC model of α = 0.225 is shown and is marked by the arrow. The
fitted curve is shown as red solid line.

with certainty that τ is a novel exponent different from the one
for the conservative RN model (τ � 1.5).

We give an interpretation of the effect of connectivity
degree of networks on the network states. When networks are
sparse, the networks may divide into small clusters. In Fig. 5,
we plot the number of clusters in a network with N = 352

FIG. 4. Finite-size scaling plots of P (S ) in systems for different
values of the system size N . The parameters are β = 0.90, L = 1.0.
Different curves correspond to 〈k〉 = 36, N = 900, 〈k〉 = 72, N =
1800, 〈k〉 = 144, N = 3600, and 〈k〉 = 288, N = 7200.

FIG. 5. The number of clusters in a spatial network with N = 352

versus the average degree 〈k〉. Data points are averaged over 100
realizations. Inset: probability that the network has a giant cluster
which includes most of the sites.

FIG. 6. Density of sites, which is computed in a circle with radius
rc. Parameters are N = 352, (a) 〈k〉 = 4 (rc = 0.0325), (b) 〈k〉 = 36
(rc = 0.10), and (c) 〈k〉 = 288 (rc = 0.32).
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FIG. 7. Probability of a site participating in an avalanche. (a) The original OFC model with N = 352 and α = 0.20. (b) Spatial network with
〈k〉 = 4. (c) Spatial network with 〈k〉 = 36. (d) Spatial network with 〈k〉 = 288. Other parameters are N = 352 and β = 0.80. The probability
is computed using 10000 earthquakes.

sites and different average degree 〈k〉. The result is averaged
over 100 realizations. When the average degree 〈k〉 = 4, there
are 78 isolated clusters in the network. Clusters appear at the
place where the density of sites is higher. The connection is
too sparse in the spatial network, and sites in the 2D plane are
not connected. Therefore, the avalanche cannot spread to the
whole system.

As the average degree increases, the small clusters are
connected together to form larger clusters. At 〈k〉 = 6 a giant
cluster is formed. Although the giant cluster includes almost
all sites in the system, SOC cannot be reached. Similarly, at
〈k〉 = 13 all sites are connected, but SOC cannot be reached.
A connected network does not suffice to reach criticality in
the OFC model on spatial networks. In fact, the criticality is
hindered by the modular structure which has dense intramodule
connections and sparse intermodule connections. It is shown
that the effect of modular structure on the avalanche dynamics
is to limit the spreading of avalanches between modules and
prevent the model from becoming critical [48,54,55].

To illustrate the modular structure feature, we compute
the local density of sites. For a position on the plane, we
consider the neighborhood as a circle with radius rc, which is
the connection radius used in generating the spatial network.
The local density is the ratio of the site number in a circle over
the area of the circle, � = ni/(π ∗ r2

c ). Figure 6 shows the local
density of sites for different values of 〈k〉 (or rc), in a network
with size N = 352. It can be seen that the model with larger
〈k〉 possesses more homogeneous local density.

In order to confirm the effect of modular structure on the
avalanche dynamics, we calculate the probability of a site
participating in each avalanche. For the original OFC model
with the parameters N = 352 and α = 0.20, the probability is
shown in Fig. 7(a). The number of avalanche used in estimating
the probability is 10000. It can be seen that the probability
of a site participating in an avalanche in the original OFC
model is homogeneous, as shown in Fig. 7(a). This means
that avalanches propagate randomly without preference in the
OFC model. In the spatial network model, we divide the plane
into 202 regions. For each region, the probability of sites
participating in an avalanche is computed. For a network with
average degree 〈k〉 = 4, the probability is shown in Fig. 7(b).
The probability exhibits the feature of the local density of sites.
The probabilities for larger values of 〈k〉 are shown in Figs. 7(c)
and 7(d). It can be seen that as the average degree 〈k〉 becomes
larger, the probability becomes more homogeneous and similar
to the results of the original OFC model.

These numerical results about structural features reveal that
the effect of modular structure on the avalanche dynamics is
to hinder the avalanche spreading over the whole network and
to prevent the model from reaching a critical state. But long
range energy transfer overcomes the effect of local modularity.
Criticality is reached when the network is denser.

IV. CONCLUSION

We have studied the nonconservative earthquake model on
spatial networks. The spatial network is similar to as lattice

012309-5



BIN-QUAN LI AND SHENG-JUN WANG PHYSICAL REVIEW E 98, 012309 (2018)

as sites are distributed in space and are connected locally.
However, spatial networks include randomness in the way that
sites are randomly placed on a 2D plane. We are concerned
with the effect of the randomness on criticality in earthquakes.

We made an extensive numerical study of the earthquake
model on random spatial networks. We showed that there is
not SOC on sparse spatial networks; for example, on networks
which have the same connectivity degree as a regular square
lattice. However, this model on spatial networks exhibits SOC
when the average degree is large and the system tends to
conservation.

We presented the mechanism of the structural effect on
SOC by numerical investigation. When the average degree
is very small, spatial networks include many modules which
are formed due to the fluctuation of spatial density of sites

on the plane. The modular structure hinders the spreading
of avalanches in the whole network. Connection degree is
increased as connection radius increases. Larger connection
radius enables energy transfer over a long range. The long range
energy transfer overcomes the effect of local modularity and
SOC can be reached. These results may provide new insight
into the self-organized criticality in earthquakes.
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