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Model reduction for Kuramoto models with complex topologies
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Synchronization of coupled oscillators is a ubiquitous phenomenon, occurring in topics ranging from biology
and physics to social networks and technology. A fundamental and long-time goal in the study of synchronization
has been to find low-order descriptions of complex oscillator networks and their collective dynamics. However,
for the Kuramoto model, the most widely used model of coupled oscillators, this goal has remained surprisingly
challenging, in particular for finite-size networks. Here, we propose a model reduction framework that effectively
captures synchronization behavior in complex network topologies. This framework generalizes a collective
coordinates approach for all-to-all networks [G. A. Gottwald, Chaos 25, 053111 (2015)] by incorporating the
graph Laplacian matrix in the collective coordinates. We first derive low dimensional evolution equations for both
clustered and nonclustered oscillator networks. We then demonstrate in numerical simulations for Erdős-Rényi
networks that the collective coordinates capture the synchronization behavior in both finite-size networks as well
as in the thermodynamic limit, even in the presence of interacting clusters.
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I. INTRODUCTION

The dynamics of interacting oscillators in complex net-
works is a ubiquitous model in many fields of science and
engineering with examples ranging from the activity of the
brain [1,2] to the functioning of power grids [3]. A hallmark
of the observed dynamics is the emergence of collective
synchronized behavior of these oscillators [4–10]. The ability
of a network to synchronize and the nature of the transition to
synchronization depends strongly on the network topology and
on the distribution of the native frequencies. The existence of
a synchronized state suggests that it is possible to reduce the
complexity of these potentially high-dimensional dynamical
systems to just a few degrees of freedom describing the
collective behavior. Recent years have seen some progress in
this direction for the widely used Kuramoto model [11–17].
Most methods, however, assume the case of a network with
infinitely many oscillators. Recently, a model reduction based
on collective coordinates was introduced which does not rely
on the thermodynamic limit [16]. It has since been used to
derive optimal synchronization design strategies and optimal
synchrony network topologies [18,19]. In a stochastic Ku-
ramoto model it allowed for the quantitative description of
finite-size effects, in particular the collective diffusion of the
mean phase [17]. This collective coordinate approach employs
a judiciously chosen ansatz function which approximates the
phases of the oscillators as a function of their native frequen-
cies. The temporal evolution of these synchronization modes
is given by the collective coordinates. However, this reduction
methodology has only been formulated for the case of all-to-all
coupling networks and to annealed complex networks, where
averages over network configurations were performed.

*georg.gottwald@sydney.edu.au

In this paper, we propose a model reduction framework
that effectively captures synchronization behavior in com-
plex network topologies. To do so, we introduce two main
advances. First, by incorporating the network’s graph Lapla-
cian in the collective coordinate ansatz, we generalize the
original approach to complex network topologies. Using the
novel ansatz, we derive low dimensional evolution equations
for arbitrary network topologies, both for networks with a
single synchronized cluster and for networks consisting of
several interacting partially synchronized clusters. Second, we
present a method to identify those oscillators which do not
participate in the collective behavior, an issue relevant for
intermediate coupling strengths where partial synchronization
occurs. Whereas, identifying those nonparticipating oscillators
was straightforward in the all-to-all coupling network where
they are the nodes associated with native frequencies of largest
absolute value, this simple rule cannot be extended to arbitrary
network topologies. The proposed collective coordinate ansatz
in conjunction with the oscillator identification method con-
stitutes a framework to effectively approximate the collective
behavior of finite complex networks with arbitrary topology. To
demonstrate the ability of the proposed framework to capture
the collective behavior of coupled oscillators, we perform nu-
merical simulations for Erdős-Rényi (ER) networks, including
a case with two interacting clusters.

The paper is organized as follows. Section II briefly in-
troduces the Kuramoto model. Section III presents the col-
lective coordinate framework for general network topologies.
Section IV presents numerical simulations for the particular
case of an Erdős-Rényi network. We conclude in Sec. V with
a discussion of our results and an outlook.

II. MODEL

A widely used model for the description of interacting
oscillators is the Kuramoto model [4–10,20]. The Kuramoto
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model governs the dynamics of the phases ϕi of N interacting
phase oscillators with native frequencies ωi and is given by

ϕ̇i = ωi + K

N

N∑
i=1

aij sin(ϕj − ϕi). (1)

Here, K denotes the coupling strength and A = [aij ] is the
adjacency matrix encoding the topology of the network. We
assume here that the network is not directed with a symmetric
unweighted adjacency matrix A with aij = aji = 1 if there is
an edge between oscillators i and j , and aij = 0 otherwise. The
degree of a node di is then given by di = ∑

j aij . We introduce
for later the graph Laplacian

L = D − A, (2)

with degree matrix D = diag(d1,d2, . . . ,dN ). Note that the
graph Laplacian of a fully connected network has a single
zero eigenvalue with eigenvector 1N . We assume that the native
frequencies are distributed according to some distribution g(ω)
and have, without loss of generality, mean zero, i.e., 1T

Nω =
0 where ω = (ω1, . . . ,ωN )T denotes the vector of natural
frequencies.

Typically, once the coupling strength is sufficiently strong
with K > Kc for some critical coupling strength Kc, synchro-
nization occurs in the sense that the oscillators become locked
to their mutual mean frequency �̄ = 1

N

∑N
i=1 ωi and their

phases become localized about their mean phase [4,5,20]. This
type of synchronous behavior is known as global synchroniza-
tion and is characterized by a globally attracting manifold on
which the dynamics settles [21]. The level of synchronization
is often characterized by the order parameter

r(t) = 1

N

∣∣∣∣
N∑

j=1

eiϕj (t)

∣∣∣∣ (3)

with 0 � r � 1 [4]. In practice, the asymptotic limit of the
order parameter

r̄ = lim
T →∞

1

T

∫ T0+T

T0

r(t) dt (4)

is estimated wherebyT0 is chosen sufficiently large to eliminate
eventual transient dynamics.

In the case of full synchronization with ϕi(t) = ϕj (t) for
all pairs i,j and for all times t we obtain r̄ = r = 1. In the
case where all oscillators behave independently with random
initial conditions, r̄ = O(1/

√
N ) indicates incoherent phase

dynamics; values in-between indicate partial coherence.

III. COLLECTIVE COORDINATES

In this section, we generalize the collective coordinate
methodology introduced in [16]. We first present the collective
coordinate framework for the situation when there is a single
cluster of oscillators which tends to mutual synchronization;
we then set out to present the collective coordinate frame-
work which takes into account the situation when several
individually but not mutually synchronized clusters interact.
In the collective coordinate framework, the phases of the N

oscillators are expressed via an ansatz function

ϕi(t) = �i(α1(t), . . . ,αn(t); ω,A) (5)

for i = 1, . . . ,N and n � N collective coordinates αj . The
temporal evolution of theN phase variables ϕi is then described
by n collective coordinates αj . This reduces an N dimensional
system to an n dimensional one. For all-to-all networks with
aij = 1 for all i,j the ansatz ϕi(t) = �i(t) with

�i(t) = α(t) ωi (6)

was proposed in [16]. In the case of a bimodal frequency
distribution, which allows for interacting partially synchro-
nized clusters, one has to introduce an additional collective
coordinate to capture this interaction. The ansatz (6) was
numerically verified and can be motivated in the limit of
large coupling strength K � 1. The stationary Kuramoto
model (1) can be cast as ωi = −Kr sin(ψ − ϕi) introducing
the mean phase ψ [4]. Expanding ϕi = ψ + arcsin[ωi/(rK)]
in 1/K for large coupling strength yields up to first order
ϕi = ψ + ωi/(rK). Since the Kuramoto model is invariant
under constant phase shifts, we may set ψ = 0 leading to the
collective coordinate ansatz (6).1 The evolution equations for
the collective coordinates are determined by minimizing the
error accrued by restricting the solutions to be of the form (6);
the reader is referred to [16] for details.

A. A single synchronizing cluster with complex topology

To devise an appropriate ansatz for general network topolo-
gies, we again focus on the strongly synchronized state for
large K . In the asymptotic limit K → ∞ the globally synchro-
nized state ϕi = ϕj = const can be approximated (ignoring a
constant mean phase ψ) via linearization as

ϕ̂ = N

K
L+ω, (7)

where L+ denotes the pseudoinverse of the graph Laplacian
(2) (see, for example, [22]). Note that the kernel mode 1N of
the graph Laplacian is associated with the invariance of the
Kuramoto model with respect to addition of a mean phase to
ϕ. Assuming that the mode ϕ̂ dominates the dynamics, this
suggests the following ansatz with collective coordinate α(t):

� = α(t) ϕ̂. (8)

Note that L+1N = 0 and 1T
NL+ω = 0 for any native frequency

vector ω. We remark that for all-to-all networks we have L =
NIn − 1N1T

N and the ansatz (8) reduces to the ansatz (6) with
α being scaled with 1/K .2

We now follow [16] to determine the temporal evolution
equations for the collective coordinate α. Inserting the ansatz
(8) into the Kuramoto model we obtain the error made by the

1For stochastic Kuramoto models, the mean phase experiences
nontrivial diffusive behavior which can also be captured by the
collective coordinate framework (see [17]).

2Note that L has a single zero eigenvalue with corresponding eigen-
vector V1 satisfying V T

1 ω = 0, and N − 1 repeated eigenvalues λ =
N . Using an eigenvalue decomposition, write L+ω = V D+V T ω =
λ−1ω which implies (6).
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FIG. 1. Snapshot of the phases ϕi obtained from simulating the
full Kuramoto model (1) against the collective coordinate ansatz �i

(8) for K = 180, with α = 1.03 obtained as the stationary solution of
(10), for a small-world topology with N = 200 oscillators, each with
two neighbors and a rewiring probability p = 0.3, and native frequen-
cies drawn from a normal distribution N (0,0.1). The corresponding
value of the order parameter is r̄ = 0.92. The continuous line indicates
perfect correspondence between the ansatz and the observed phases.

collective coordinate ansatz (8):

Ei = α̇ϕ̂i − ωi − K

N

∑
j=1
j �=i

aij sin[α(ϕ̂j − ϕ̂i)].

We wish to minimize the error E made by restricting the
solution space to the one-dimensional subspace spanned by ϕ̂,
or equivalently to maximize the degree to which our collective
coordinates are capable of capturing the dynamics of the full
Kuramoto model. This is achieved by ensuring that the error is
orthogonal to ϕ̂. Setting

∑
i Ei ϕ̂i = 0, we obtain an evolution

equation for the collective coordinates

α̇ = K

N

ϕ̂T L ϕ̂

ϕ̂T ϕ̂
+ 1

ϕ̂T ϕ̂

K

N

∑
i,j

ϕ̂iaij sin[α(ϕ̂j − ϕ̂i)]. (9)

Upon rescaling time such that t = Tsτ with

Ts = N

K

ϕ̂T ϕ̂

ϕ̂T L ϕ̂
,

the evolution equation (9) for the collective coordinate α

simplifies to

α̇ = 1 + 1

ϕ̂T Lϕ̂

∑
i,j

ϕ̂iaij sin[α(ϕ̂j − ϕ̂i)]. (10)

Equilibrium solutions α
 with α̇
 = 0 correspond to the syn-
chronized state and the transition to synchronization appears at
K = Kc which is the smallest K such that (10) supports stable
equilibrium solutions (note that ϕ̂ depends on K [cf. (7)]).

Figure 1 provides a numerical illustration of the validity of
the collective coordinate ansatz (8) where we plot the actually
observed phases against the collective coordinate ansatz (8)
for a small-world network [23] and native frequencies drawn
from a normal distribution. The oscillators are clearly well
described by the collective coordinate ansatz. The agreement

of the phases with the collective coordinate ansatz becomes
better for increasing coupling strength. We remark that upon
decreasing the coupling strength, not all oscillators are able to
synchronize and only a subset of the N oscillators will satisfy
the ansatz (8). This is addressed in the following.

Particular choices of frequency distributions or the pres-
ence of topological communities within the network may not
allow for the global synchronization of all N oscillators at
a given coupling strength K . Instead, one observes one or
several partially or locally synchronized clusters, with possible
complex interactions between them. One example, already
discussed in [16], is the Kuramoto model with a unimodal
frequency distribution, where the transition to synchronization
is a second-order phase transition [4,5], and not all oscillators
participate in the collective synchronized state: As the coupling
strength is increased from zero, at some critical strength
K = Kl a few oscillators perform collective behavior and
mutually synchronize. Increasing the coupling strength then
allows increasingly more oscillators to become entrained to
the synchronized state until global synchronization sets in at
K = Kc. Hence, for coupling strength Kl � K < Kc which
allows for local synchronization we cannot expect to find an
equilibrium solution of (10). To capture this local synchro-
nization for a given coupling strength K within the collective
coordinate framework, we assume that those oscillators that
can mutually synchronize will do so. This suggests the ansatz
(8) ϕi = α(t) ϕ̂i for i ∈ Cm where we denote by Cm the largest
set of nodes which can synchronize. The collective coordinate
ansatz is then applied only to nodes in Cm and the condition
on the minimization of the error reads as

∑
i∈Cm

Ei ϕ̂
(m)
i = 0,

leading to

α̇ = 1 + 1

ϕ̂(m)T Lm ϕ̂(m)

∑
i∈Cm

∑
j∈Cm

ϕ̂
(m)
i aij sin

[
α
(
ϕ̂

(m)
j − ϕ̂

(m)
i

)]
(11)

with the asymptotic mode

ϕ̂(m) = N

K
L+

mω(m), (12)

where ω(m) denotes the native frequencies of nodes in the set
Cm and Lm is the graph Laplacian of the network consisting
only of nodes in the set Cm [cf. (8)]. The set Cm is determined
such that its cardinality Nm is the largest possible size such
that (11) admits a stable equilibrium solution α̇
 = 0. In the
case of an all-to-all coupling network, this is readily achieved
by excluding successively those nodes with native frequencies
with the largest absolute frequencies (see [16]). In the case
of arbitrary connected complex networks we are not aware of
any computationally efficient way to test for the largest set
of nodes allowing for stable stationary equilibrium solutions
α
. We propose here a dynamical criterion to identify those
nonentrained nodes by linearizing the Kuramoto model (1)
around an equilibrium solution α
, and consider the linearized
matrix

(Llin)ij =
{

aij cos
[
α


(
ϕ̂

(m)
j − ϕ̂

(m)
i

)]
, i �= j

−∑
k aik cos

[
α


(
ϕ̂

(m)
k − ϕ̂

(m)
i

)]
, i = j.

(13)
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For a stable system, Llin has one zero eigenvalue and N − 1
negative eigenvalues. The dynamics becomes linearly unstable
when an eigenvalue of Llin becomes positive. We remark that
this is not addressing the stability of the collective coordinate
system (10), but rather the stability of the approximation ϕ =
α(t)ϕ̂ within the full Kuramoto model.

A set of nodes Cm needs to satisfy two conditions: first
equilibrium solutions α
 of (11) need to exist and second
they need to be linearly stable. For sufficiently large values of
the coupling strength K linearly stable equilibrium solutions
can be found corresponding to global synchronization with
Nm = N [note that in this case (11) and (10) are identical].
Decreasing the coupling strength K in small increments δK

while keeping the number of oscillators fixed for each step, we
reach a coupling strengthK ′ where either equilibrium solutions
of (11) cease to exist or where the equilibrium solution turns
linearly unstable. In the latter case, we consider the eigenvector
v̂ of Llin corresponding to the positive eigenvalue. The set of
nodes to be excluded from the collective coordinate ansatz is
determined by the components of v̂ with large absolute values.
Algorithmically, this is achieved by ordering the components
of the eigenvector v̂ and determining the largest difference or
gap between neighboring components. The network is then
partitioned between those nodes above and below the largest
gap, where the group with less elements is discarded. We
remark that if this procedure excludes nodes such that the
remaining network is disconnected, we choose the largest
connected network within this set of nodes.

If upon decreasing the coupling strength K in small in-
crements δK while keeping the number of oscillators fixed
for each step, we reach a coupling strength K ′ such that no
equilibrium solution exists, then Llin is evaluated around the
last equilibrium solution α
 at K = K ′ + δK , and the nodes
to be excluded from the synchronized set are again determined
from the eigenvector v̂ associated with the largest nonzero
eigenvalue. This is justified when the eigenvalues depend
continuously on K . A computationally more costly procedure
would be to use bisection to find a value of K for which an
equilibrium solution exists and then determine its unstable
eigenvector.

In the following, we present the collective coordinate
framework when there is more than one locally synchronized
cluster.

B. Interacting locally synchronized clusters
with complex topology

We now set out to formulate the collective coordinate
ansatz allowing for the interaction between several locally
synchronized clusters. Let us consider that there are one or
several sets of nodes Cm with m = 1, . . . ,M , each of size
Nm which exhibit localized collective behavior within their
respective sets. We write the Kuramoto model (1) for the phases
of nodes in themth cluster,ϕ(m) ∈ RNm , with native frequencies
ω

(m)
i as

ϕ̇
(m)
i = ω

(m)
i + K

N

M∑
k=1

∑
j∈Ck

aij sin
(
ϕ

(k)
j − ϕ

(m)
i

)
, (14)

for i ∈ Cm. To capture the collective behavior within each set,
the collective coordinate approach is then restricted to each set
individually. We introduce collective coordinates αm(t) to de-
scribe the collective behavior within a cluster Cm and collective
mean phase coordinates fm(t) to account for the intercluster
dynamics.3 As discussed in Sec. III A, a single cluster in
isolation is described byαm(t) ϕ̂(m) with ϕ̂(m) = (N/K)L+

mω(m)

where Lm = Dm − Am denotes the graph Laplacian for the
mth cluster with the cluster’s adjacency matrix Am = [aij ] re-
stricted to i,j ∈ Cm and associated degree matrix Dm [cf. (12)].
Since ϕ̂(m) is agnostic about the nodes from other clusters Ck

with k �= m, the asymptotic mode ϕ̂(m) does not correspond to
the asymptotic state ϕ̂ when projected onto the set of nodes in
the set Cm. We denote the difference by

�ϕ̂(m) = πm(ϕ̂) − ϕ̂(m), (15)

where πm(ϕ̂) denotes the projection of the global asymptotic
solution ϕ̂ onto the set of nodes in the mth cluster Cm. Recall
that fm(t) 1Nm

represents a mean phase added to the mth cluster
which would not change the solution if the cluster were in
isolation. Mathematically, this is reflected by 1Nm

being in the
null space of Lm. We now represent the collective effect of the
other clusters onto the mth cluster by a change in its overall
phase. We therefore restrict the solution to lie within the affine
subspace spanned by the dominant modes ϕ̂(m) and 1Nm

and
write

�(m) = �ϕ̂(m) + αm(t) ϕ̂(m) + fm(t) 1Nm
, (16)

which for the fully synchronized case K → ∞ recovers
the asymptotic state ϕ̂ for one single globally synchronized
cluster with αm → 1 and fm = fl for all m,l [with abuse of
notation with respect to the general ansatz (5)]. The collective
coordinates αm(t) describe the intracluster dynamics whereas
the collective coordinates fm(t) describe the intercluster dy-
namics. Note that the intercluster collective coordinates satisfy∑M

m=1 Nmfm = 0.
Figure 2 shows a snapshot of the phases for an ER network

consisting of two well-specified topological clusters with
strong intracluster and weak intercluster connectivity (details
are given below in Sec. IV). We show the actual phases obtained
from a numerical simulation of the full Kuramoto model (1)
and the results of the collective coordinate ansatz (16) for the
two clusters. The phases are remarkably well reproduced. We
remark that the colors of the nodes labeling the two clusters
in Fig. 2 represent the two sets of nodes identified by the most
unstable eigenvector v̂ of Llin, which in this case correctly
identifies the two topological clusters.

Inserting the collective coordinate ansatz (16) into the
Kuramoto model (14), we obtain the error for i ∈ Cm:

E (m)
i = α̇mϕ̂

(m)
i + ḟm − ω

(m)
i

− K

N

M∑
k = 1

∑
j∈Ck

aij sin
(
�

(k)
j − �

(m)
i

)
. (17)

3See [16] for an example of two interacting clusters in an all-to-all
coupling network with a bimodal frequency distribution.
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FIG. 2. Snapshot of the phases ϕi obtained from simulating the
full Kuramoto model (1) against the collective coordinate ansatz
�

(1,2)
i (16), with α1 = 1.003, α2 = 1.006, f1 = −0.095, and f2 =

0.11 obtained from (18) and (19). The network is an ER network with
N = 500 which consists of two topological clusters with only a few
intercluster connections. The two clusters are labeled with triangles
(online red) and open circles (online blue), respectively. The native
frequencies are drawn from a normal distribution N (0,0.02). The
snapshot is taken at K = 160 and the corresponding value of the
order parameter is r̄ = 0.83. The continuous line indicates perfect
correspondence between the ansatz and the observed phases.

Again, we seek to minimize the error made by restricting the
solution space to the two-dimensional subspace spanned by
ϕ̂(m) and 1Nm

, i.e., we require the error to be orthogonal to ϕ̂(m)

and 1Nm
. Setting

∑
i∈Cm

E (m)
i ϕ̂

(m)
i = 0 and

∑
i∈Cm

E (m)
i = 0 for

all m = 1, . . . ,M , this yields the evolution equations for the
intracluster collective variable αm with

α̇m = K

N

ϕ̂(m)T Lmϕ̂(m)

ϕ̂(m)T ϕ̂(m)
+ 1

ϕ̂(m)T ϕ̂(m)

K

N

×
M∑

k=1

∑
j∈Ck

∑
i∈Cm

ϕ̂
(m)
i aij sin

(
�

(k)
j − �

(m)
i

)
(18)

and for the intercluster variable fm with

ḟm = �(m)
c + 1

Nm

K

N

M∑
k=1
k �=m

∑
j∈Ck

∑
i∈Cm

aij sin
(
�

(k)
j − �

(m)
i

)
, (19)

where �(m)
c = ∑

i∈Cm
ω

(m)
i /Nm is the mean of the native fre-

quencies in the mth cluster. We remark that for a single cluster
M = 1 the evolution equations (18) and (19) reduce to (11)
with ḟ1 = 0, in accordance with the invariance of the Kuramoto
model with respect to adding a constant mean phase.

IV. NUMERICAL RESULTS

We test the proposed methodology on unweighted Erdős-
Rényi networks. In an Erdős-Rényi network, nodes are con-
nected independently with probability p and with Poisson-
distributed degrees dj with mean degree d = pN . We choose
here p = 0.05 throughout. We present results for randomly
distributed native frequencies, drawn from a distribution
g(ω). In particular, we consider uniformly distributed native

0 1 2 3 4
-0.5

0

0.5

1

1.5

FIG. 3. Right-hand side F(α) of the evolution equation (11) for
several values of K for the N = 500 ER network with uniformly
distributed native frequencies with a subcritical coupling strength
K = 20 < Kc, near critical coupling strength K = 28 ≈ Kc, and
supercritical coupling strength K = 35 > Kc.

frequencies on the interval [−1,1] with distribution

g(ω) = 0.5, (20)

and normally distributed native frequencies with

g(ω) = 1√
2πσ 2

ω

exp

(
− ω2

2σ 2
ω

)
(21)

with σ 2
ω = 0.1.

We first study an ER network with uniformly distributed
native frequencies. The collective coordinate approach iden-
tifies the nature of the bifurcation initiating the onset of
synchronization as a saddle-node bifurcation. This is illustrated
in Fig. 3 where we plot the right-hand side of the evolution
equation (11):

F(α) = 1 + 1

ϕ̂(l)T Ll ϕ̂
(l)

∑
i∈C

∑
j∈C

ϕ̂
(l)
i aij sin

[
α
(
ϕ̂

(l)
j − ϕ̂

(l)
i

)]
(22)

as a function of α for coupling strength K below and above the
critical coupling strength Kc = 27 as well as close to K = Kc.
Equilibrium solutions are given by F(α
) = 0. It is seen that
there are no solutions for K < Kc and at K = Kc a pair of
equilibrium solutions emerge, one being stable (the smaller
one, closer to α = 1) and one being unstable.

We show in Fig. 4 the order parameter r̄ as a function of the
coupling strength K for two networks with sizes N = 2000
and 500, respectively. The figure shows a comparison of
the order parameter as calculated from a long simulation
of the full Kuramoto model (1) and as estimated by the
collective coordinate ansatz (8) where α is determined as the
stationary solution of (10). To solve the collective coordinate
evolution equation (10) for stationary solutions α = α
, we
discarded any nodes corresponding to unstable eigenvectors
of the linearization matrix Llin as described in Sec. III A. Let
us denote by Cl the set of nodes for which an equilibrium
solution α
 can be found which is linearly stable according
to the linearized matrix Llin [see (13)]. Figure 5 shows the
equilibrium solution α
 of (11) found for a network of N = 500
as a function of K . We then calculate the order parameter r̄ of
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FIG. 4. Order parameter r̄ as a function of the coupling strength
K for an ER network with uniformly distributed native frequencies.
Depicted are results from a direct numerical integration of the
Kuramoto model (1) (continuous line, online blue) and from the
collective coordinate approach (8) using (23) (crosses, online red).
(a) ER network with N = 2000 nodes. (b) ER network with N = 500
nodes.

the collective coordinate using

rcc(t) = 1

N

∣∣∣∣ ∑
j∈Cl

eiα
ϕ̂j +
∑
j /∈Cl

eiωj t

∣∣∣∣. (23)

It is seen in Fig. 4 that the collective coordinate approach
works very well for the larger network with N = 2000 and
resolves the explosive transition to synchronization near Kc =
26, corresponding to the saddle-node bifurcation. For the
smaller network with N = 500 nodes, the collective coordinate
approach captures the collective synchronization behavior very
well for large coupling strength K . For smaller coupling
strengths with K < 27 the match of the order parameters is
reasonable; it is seen that the qualitative behavior and the
functional form of the curve r̄(K), including the concave
functional behavior near K = 24, is well captured by the
collective coordinate approximation, but the two curves are
shifted by �K ≈ 2. This delayed synchronization of the actual
Kuramoto model (1), we conjecture, is due to our method
not correctly identifying nodes which do not partake in the
collective synchronized behavior captured by the ansatz at a
particular value of K . Furthermore, we remark that for values
of the coupling strength near the onset of synchronization the
interaction between the set of partially synchronized oscillators
and the nonentrained oscillators, which may themselves form

0 20 40 60 80
1

1.1

1.2

1.3

1.4

1.5

1.6

FIG. 5. Equilibrium solution α
 for the N = 500 ER network with
uniformly distributed native frequencies for the same network as in
Fig. 4. The solution was obtained solving (11) for a set of nodes Cl

consisting of linearly stable nodes according to (13). We only plot the
equilibrium solution which is closest to α = 1 from the two stationary
solutions of (11).

small partially synchronized clusters, is not captured by the
single-cluster ansatz (8).

We now present results for normally distributed frequencies.
In Fig. 6 it is seen that upon increasing the coupling strength
K the order parameter r̄ becomes nonzero at some coupling
strength Kl ≈ 9 and a few oscillators with native frequencies
close to the zero mean frequency locally synchronize; increas-
ing the coupling strength allows increasingly more oscillators
to synchronize, implying a continuous change of the order
parameter as opposed to the hard transition in the case of
uniformly distributed native frequencies seen in Fig. 4. As
for the case of the uniformly distributed native frequencies,
the larger network’s dynamics is very well described by the
collective coordinate ansatz (8) capturing both the local and the
global synchronization. The smaller network with N = 500
nodes has a larger error describing the synchronization be-
havior accurately near the onset at K = Kl . This is due to,
we conjecture, the presence of interacting clusters which form
upon decreasing the coupling strength. In each of these smaller
clusters, nodes locally synchronize and then interact. This is not
described by the single-cluster ansatz (8). To illustrate the local
synchronization behavior we show in Fig. 7 the normalized
domain length

Ldomain = Nl

N
, (24)

where Nl is the size of the network after discarding the unstable
nodes, i.e., the size of Cl , based on the linearization matrix Llin

as described in Sec. III A. One sees clearly the smooth increase
of the size of the synchronized cluster from Ldomain = 0 at
Kl ≈ 9 with increasing coupling strength K , corresponding to
the larger and larger number of oscillators joining the single
synchronized cluster. At some coupling strength Kc ≈ 16,
global synchronization sets in affecting all oscillators with
Ldomain = 1. We show results for the larger network with
N = 2000; the plot for the smaller network looks similar (not
shown). We remark that the behavior of F(α) as described by
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FIG. 6. Order parameter r̄ as a function of the coupling strength
K for an ER network with normally distributed native frequencies.
Depicted are results from a direct numerical integration of the
Kuramoto model (1) (continuous line, online blue) and from the
collective coordinate approach (8) using (23) (crosses, online red).
(a) ER network with N = 2000 nodes. (b) ER network with N = 500
nodes.

(22) is similar as depicted in Fig. 3 for the case of uniform
distributed frequencies.

In the remainder we show that the collective coordinate
ansatz (16) is able to capture the dynamics of interacting
localized clusters. Since the focus in this work is not on
the identification of clusters, but rather on the ability of the
collective coordinate framework to capture the dynamics of
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0.6
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1

FIG. 7. Normalized domain length Ldomain as a function of the
coupling strength K for the ER networks depicted in Fig. 6 with
N = 2000 nodes and normally distributed native frequencies.
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FIG. 8. Order parameter r̄ as a function of the coupling strength
K for an ER network consisting of two coupled topological clusters
with normally distributed native frequencies. The network is the same
as that used for Fig. 2. Depicted are results from a direct numerical
integration of the Kuramoto model (1) (continuous line, online blue)
and from the collective coordinate approach (8) using (23) (crosses,
online red).

interacting clusters, we artificially generate an ER network
with two well-specified topological clusters with strong in-
tracluster and weak intercluster connectivity. In particular,
we generate two ER networks, one with N1 = 270 and one
with N2 = 230 nodes, each with a connection probability
between two nodes of p = 0.05. The two networks are now
linked by 10 randomly chosen edges to form a large network
with N = 500 nodes, in which the two networks are now
tightly connected clusters. We consider again native frequen-
cies drawn from a normal distribution N (0,0.02) allowing
for local synchronization within each cluster of oscillators
with small absolute native frequencies. Figure 8 shows the
order parameter r̄ as calculated from a long simulation of
the full Kuramoto model (1) as well as for the collective
coordinate approach. The full simulation reveals the following
synchronization behavior of this particular clustered network:
At K ≈ 9 the two topological clusters individually begin to
locally synchronize when increasing the coupling strength
from K = 0 (cf. Fig. 6). Between 50 < K � 142, both clusters
are internally synchronized and the coupling is not strong
enough to allow the two clusters to interact. In this range, the
order parameter is well approximated by

r̄ = �ω

2π

∫ �ω
2π

0

∣∣∣∣ ∑
j∈C1

eiϕj +
∑
j∈C2

eiϕj

∣∣∣∣ dt

≈ �ω

2π

∫ �ω
2π

0

1

N

√
N2

1 + N2
2 + 2N1N2 cos(�ωt) dt

≈ 0.64,

where �ω = 0.023 is the difference in the mean frequencies of
the two respective clusters of the network under consideration.
Increasing the coupling strength past K = 142 the clusters
begin to interact and increasing K eventually leads to global
synchronization. This path to synchronization involving inter-
acting clusters is remarkably well described by the collective
coordinate ansatz. Starting at large values of the coupling
strength the ansatz for two interacting clusters (16) with α1,2
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FIG. 9. Normalized eigenvector v̂, corresponding to the (single)
positive eigenvalue of Llin for an ER network consisting of two cou-
pled topological clusters with normally distributed native frequencies.
The network is the same as that used for Fig. 2 and the coupling
strength is K = 142. The eigenvector clearly separates into the two
clusters with N = 270 and 230 nodes, respectively. For visual aid,
only every sixth component is shown.

and f determined by solving (18) and (19) accurately captures
the interaction between the clusters. A snapshot of the phases
for this network was already presented in Fig. 2 for K =
160. At K ≈ 142 the collective coordinate solution becomes
linearly unstable; the eigenvector v̂ of the linearization matrix
Llin corresponding to this instability consists of two separated
parts identifying accurately the two topological clusters of the
network. This is shown in Fig. 9 where v̂ is shown for K = 142
and the linearly unstable eigenvector clearly separates into the
two clusters. For K � 142 each of the two clusters is well
described by the single-cluster ansatz (8), each with their own
independent collective coordinate α. The stationary solutions
of the evolution equation (11) for the respective collective coor-
dinates and the associated order parameter reproduce very well
the collective behavior of the full finite-size Kuramoto model.

V. DISCUSSION AND OUTLOOK

We proposed a collective coordinate approach for interact-
ing Kuramoto oscillators on arbitrary networks. Our approach
allows for the description of finite-size networks away from the
thermodynamic limit. We have verified our approach against
ER networks with a single synchronized cluster and with two
topological clusters. Our numerical simulations on ER net-
works are suggestive that the collective coordinate framework
is capable of quantitatively describing the collective behavior

of coupled oscillators, including the interaction of clusters. It is
planned for further research to apply the collective coordinate
framework to other complex network topologies such as
scale-free networks and small-world network topologies where
cluster formation is more prevalent. It is a highly nontrivial
and, to our knowledge, an unsolved task to identify clusters for
fixed coupling strength K . Clusters are formed in an intricate
interplay between the network topology and the distribution of
the native frequencies. In the numerical study of two interacting
clusters, which were artificially constructed to have only a few
intercluster links, we found that the linearization matrix Llin

(which incorporates information about the network topology
and the native frequencies) was able to identify the coupling
strength for which clusters start to interact. Whether the
linearization matrix is able to identify clusters in more complex
cases will be studied in further research. With an increasing
number of clusters, the complexity of the model reduction also
increases. This is particularly the case near the onset of local
synchronization where the number of partially synchronized
clusters typically grows and near onset of synchronization
the collective coordinate approach might be computationally
as costly as simulating the full system. The computational
cost, however, if only a few clusters M � N are present is
significantly lower than simulating the whole system. When
there is only a single cluster present, no dynamics needs to be
evolved and the problem reduces to finding roots [cf. (22)].
For M clusters one needs to evolve 2(M − 1) equations for
the collective coordinates αm and fm. In our experience,
the length of the numerical simulation to obtain converged
behavior for the order parameter is much less than for the
full N -dimensional Kuramoto model. Whereas the Kuramoto
model may be a highly stiff dynamical system depending
on the native frequencies used, the evolution equations for
the collective coordinates are not stiff. Hence, simulating the
collective coordinate system allows for a larger time step to be
used in the numerical simulations.

Our simulations did not consider the important case of pos-
sible spatial correlations of the native frequencies. When the
native frequencies are positively (negatively) correlated among
neighboring nodes, synchronization is favored (inhibited).
Determining whether the collective coordinate framework
can reproduce this complex interplay between topology and
dynamics is planned for further research.
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