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We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the
measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of
necessary measurement resources by exploiting network sparsity, symmetry of connections, and potential prior
knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where
nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced
grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.
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I. INTRODUCTION

The secure and reliable operation of complex power grids
requires a precise knowledge of the grid topology and the state
of connected generation and transmission elements. A central
tool is “state estimation,” i.e., the estimation of the current state
of nodes from few, possibly noisy measurements and the grid
data. Various methods and algorithms have been developed
in this field; see, e.g., [1] for a review. A prime example is
the estimation of the voltage phase angles from power flow
measurements (see, e.g., [2] for basic textbook examples).
State estimation algorithms typically assume that the network
structure, i.e., the location and parameters of transmission lines
and transformers, are known. However, parts of the information
might be lacking or uncertain, for example, for contingencies
or attacks, such that the question arises: Is it possible to
reconstruct the network structure from local measurements
only?

In this article we develop two algorithms that enable the
faithful reconstruction of the network structure or parts of it
from the measurement of nodal variables via the dc approxi-
mation. In particular, we show how to reduce the number of
measurements using methods from compressed sensing that
exploit the structural properties of power grids. The presented
algorithms can find several applications in the monitoring and
operation of (smart) power grids. While it is unlikely that the
entire network structure is unknown, situations regularly occur
where parts of the information is lacking. Manual switches
still exist in many distribution grids, transmission lines may
fail in contingency cases, and targeted attacks may collapse
entire regions of the grid. We present an example where the
connectivity in two regions of the grid is a priori unknown,
but can be reconstructed from a single snapshot of the nodal
variables. In future power grids, the network’s structure will
become even more variable: The transmission of high-voltage
direct-current lines in hybrid power grids can be actively

controlled and the effective line parameters can be regulated
with flexible alternating-current transmission system devices.

Several methods were previously proposed to deal with
missing or erroneous information about the grid topology and
parameter [3–17]. These approaches extend the basic idea of
state estimation, removing some knowledge about the topology
and adding some uncertainties. In contrast this article starts
from the reverse case of a completely unknown network, then
adding some amount of prior knowledge. Our approach is thus
complementary to the existing works such that it can contribute
to the development of advanced grid monitoring algorithms
[18,19].

The reconstruction schemes proposed in this article extend
and adapt previous approaches for network reconstruction
developed in different fields of natural science and engineering
[20–30]. Recent reviews can be found in [31,32]. The proposed
methods extend these approaches; an iterative algorithm is
introduced that utilizes the symmetry of the problem and inte-
grates prior knowledge; and we adapt them to the framework
of power grid monitoring including a potential combination
with standard state estimation. We highlight that typical input
data may pose problems for the reconstruction efficiency,
which can be partly compensated for by using the iterative
recovery algorithm, and discuss the robustness with respect
to measurement noise. Finally, we benchmark the proposed
method, comparing the efficiency of different algorithms.

II. STATE AND PARAMETER ESTIMATION

State estimation extracts the state of an electric power
system from a set of measurements [1]. In general, any
measurement zi ∈ R can be expressed as a function of the
system state as

zi = hi(x), (1)
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where x is the system state and hi is a function specific to the
measured quantity zi . Assuming we take M measurements, all
measurements may be written as

z = h(x), (2)

where x ∈ RN×1 is the system state, z ∈ RM×1 is the vector of
measured quantities, and h : RN → RM is a vector function
acting on the measured quantities.

Typically more measurements than the number of state
variables to be determined are taken, i.e., M > N , such
that Eq. (2) is overdetermined. It is then solved in a least-
squares fashion, i.e., one calculates x such that the objective
function

J = ‖z − h(x)‖2
2 (3)

is minimized. For underdetermined equations (2), typically,
many solutions exist.

It is often helpful to work with a simplified dc approximation
model when analyzing the inherent limitations of various meth-
ods related solely to the measurement configuration [33]. The
dc approximation describes the power flow in ac power grids
in a linearized way [2,34–36]. Specifically, it approximates the
real power flow from node s to node r over a transmission line
with reactance Xsr as

Psr = |Vs ||Vr |
Xsr

sin(ϕs − ϕr )
.= X−1

sr (ϕs − ϕr ), (4)

where ϕs is the phase angle at bus s. This approximation is to
first order in the phase angle difference. Thus, the real power
balance at the node s reads

Ps =
N∑

r=1

Psr =
N∑

r=1

X−1
sr (ϕs − ϕr ). (5)

For notational convenience, we summarize these equations
in matrix form. We define the vectors of all voltage an-
gles and power injections, ϕ = (ϕ1, . . . ,ϕN )T ∈ RN and P =
(P1, . . . ,PN )T ∈ RN , where N is the number of buses or
nodes in the grid and the superscript T denotes the transpose
operator.

In particular, the dc approximation yields the linear
model

Bϕ = P, (6)

where the nodal susceptance matrix B ∈ RN×N

Bnk =
{∑N

j=1 X−1
nj if k = n,

−X−1
nk if k �= n,

(7)

is a Laplacian matrix, which has one zero eigenvalue with
eigenvector (1,1, . . . ,1)T [37]. This eigenvector represents a
global shift of all voltage angles without physical significance.
Interestingly, equivalent flow models are used to describe
hydraulic networks [38] and vascular networks of plants [39].

Thus in summary, the dc approximation links the state
of the grid described by the voltage phase angles x = ϕ

to real power flows z = P via the linear function h = B.
Several extensions of the basic concept of state estimation
were developed to deal with missing or erroneous information
about the network parameters (see [3] for a review). One
branch of methods is based on residual sensitivity analysis.

One solves the conventional least-squares problem (3) and
then inspects the residuals z − h(x) to reconstruct potential
errors [4–7]. Alternatively, one can inspect the Lagrangian
multipliers in constrained least-squares optimization [8,9] or
minimize the 1-norm [10]. A second branch of methods is
based on the augmentation of the state vector. One appends
the unknown parameters to the state vector x and then solves
a least-squares problem as the one given by Eq. (3) [11–15]
or uses a Kalman filter instead [16,17]. Both methods can be
combined in a two-stage process: First it is detected which
network parameters are subject to errors and then the respective
parameters are estimated by augmentation.

The installation of new measurement devices and advanced
signal processing algorithms enable new methods for power
grid monitoring and optimization, see [40] for a review. Topol-
ogy estimations from phasor measurement data or historical
time series were discussed in [41,42], however, without making
use of the inherent sparsity of the inference problem. More
recently, algorithms were proposed to simultaneously recon-
struct the state vector and the topology of a grid and demon-
strated for small-scale networks [43,44]. These algorithms
rely on power injection data only, but require longer input
time series. Topology identification from voltage time series
in distribution grids was discussed in [45] and a sparsity-based
algorithm for the localization of line outages was presented in
[46].

III. NETWORK RECONSTRUCTION

In state estimation, one typically assumes that phase angles
ϕ are difficult to measure and shall be estimated from the
knowledge of B and P in Eq. (6). But we may also reverse
the problem and ask what happens if we do not know the
nodal susceptance matrix B. In particular, can we efficiently
reconstruct its entries from measurements of the two remaining
quantities P and ϕ? Such problems may appear hypothetical
at first, as the network structure and parameters are generally
known. However, there are situations where at least parts of
the network structure are unknown: Switches can be open or
closed, transmission lines can undergo failures, or plans may
be inaccurate. Even more, in times of war or terrorism we may
be extremely unsure about the physical integrity of parts of the
grid.

To introduce the method, we start from the hypothetical
situation where B is completely unknown, whereas P and
ϕ are measured perfectly. Related reconstruction problems
were pioneered for gene regulatory network [20], oscillator
networks [22], and social networks [24]. These articles intro-
duce methods to reconstruct the Laplacian or the adjacency
matrix of a network using repeated sampling and exploiting the
sparsity of matrices as we will do below. We extend these works
by introducing an iterative algorithm that takes into account
previous knowledge and can be combined with standard state
estimation. The developed algorithms are thoroughly tested for
various grids and different input data, including measurement
noise. Furthermore, we benchmark the developed method with
respect to other algorithms, comparing the amount of input data
needed for a faithful reconstruction.

So assume that repeated measurements of P and ϕ are taken
at different times t1,t2, . . . ,tM . These measurements yield a
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large number of conditions on the entries of B,∑
k

Brkϕk(tm) = Pr (tm), (8)

which hold for all rows r = 1, . . . ,N of B and all measured
time steps m = 1, . . . ,M (cf. [14]). Furthermore, we know that
the row-sums of the nodal susceptance matrix (7) vanish,∑

k

Brk = 0. (9)

Thus, we have N (M + 1) conditions in total, which we can
use to reconstruct the unknown entries of B.

A. Row-wise reconstruction

In a first approach we aim to reconstruct the nodal ad-
mittance matrix row by row (cf. [22,26,32,47]). To simplify
notation we collect all measurement conditions (8) and the
condition (9) for a given row r and rewrite them in matrix
form⎛

⎜⎜⎝
ϕ1(t1) · · · ϕN (t1)

...
...

ϕ1(tM ) · · · ϕN (tM )
1 · · · 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:�

⎛
⎜⎝Br1

...
BrN

⎞
⎟⎠

︸ ︷︷ ︸
=:Br

=

⎛
⎜⎜⎝

Pr (t1)
...

Pr (tM )
0

⎞
⎟⎟⎠.

︸ ︷︷ ︸
=:P r

(10)

Here, Br ∈ RN×1 denotes the transpose of the rth row of
the nodal admittance matrix B. The matrix � ∈ R(M+1)×N

summarizes all measured phase angles at all time steps, the
vector P r ∈ R(M+1)×1 includes all power injections for node
r only, and the last row of the matrix equation represents
condition (9).

If the system of equations (10) is overdetermined, M +
1 > N , Br is easily reconstructed via least squares [32,47]
minimizing

‖�Br − P r‖2
2 =

M+1∑
k=1

(�Br − P r )2
k. (11)

To efficiently reconstruct the grid topology, we want to rely
on as few measurements as possible. If M + 1 < N , Eq. (10)
is underdetermined, and thereby may admit several solutions
[32]. So, is it possible to obtain the correct solution also in
this case? Do we have more information about Br which we
can exploit? Indeed, we know that a power grid is typically
very sparse; a single substation is connected to only a few
other substations. Thus we choose the one solution to Eq. (10)
which minimizes

‖Br‖0 = lim
p→0

(
N∑

k=1

|Brk|p
)1/p

. (12)

We use the notation ‖ · ‖0 for the sake of convenience, noting
that this is not a vector norm in the strict sense. Unfortunately,
the direct minimization is computationally hard in general.
In 2006, Donoho [48] and Candes et al. [49] showed that an
efficient reconstruction is nevertheless possible using a convex
surrogate for sparsity: the 1-norm. Under weak conditions,
the correct sparse solution can be calculated efficiently by

minimizing the 1-norm

‖Br‖1 =
N∑

k=1

|Brk| (13)

subject to the constraint (10).

B. Partial reconstruction

In a typical application we know the value of Brs of all
transmission lines (s,r) in one part of the grid and have to
reconstruct only the remaining entries of the matrix B; for
instance, we might want to monitor the position of manual
switches at remote places of the grid.

To keep track of our knowledge about the network, we
define the matrix K ∈ RN×N with entries

Krs :=
{

1 if the value of Brs is known for line (r,s),
0 otherwise.

(14)
For the rth row we reduce Eq. (10) to

�red
r Bred

r = P red
r , (15)

where

P red
r = P r −

N∑
c=1

BrcKrc

⎛
⎜⎜⎝

ϕc(t1)
...

ϕc(tM )
1

⎞
⎟⎟⎠, (16)

and �red
r is the submatrix of �r obtained by deleting all

columns c for which Krc = 1 and Bred
r is the submatrix of

Br obtained by deleting all rows r ′ for which Kr,r ′ = 1. The
dimension of the reduced linear system of equations (15) is
smaller than in the original problem (10), such that the correct
solution can typically be found from fewer measurements.

C. Positivity of line susceptances

The reconstruction methods discussed above rely on the
utilization of structural information about the matrix B, in
particular its sparsity. For transmission lines we know that the
reactance Xrs > 0 such that even more prior structural infor-
mation is available. To boost the reconstruction algorithms we
can thus add the constraint

Brs � 0 for all pairs r �= s (17)

to the minimization of the 1-norm ‖Br‖1.
However, care has to be taken as the sign constraint does not

always hold. Branches with Xsr < 0 can occur in the modeling
of two-winding tap-changing transformers and three-winding
transformers. Hence the sign constraint (17) can be employed
only if no such elements are present in the grid or if we know
their location. In the following we consider both cases with
and without imposing the sign constraint (17) when testing the
proposed algorithms. In particular, one test grid (the IEEE 300
bus test grid) contains one negative reactance branch, whose
location is assumed to be known such that we never impose
the constraint (17) for this branch.
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D. Reconstruction from power flow measurements

The reconstruction scheme introduced above requires the
knowledge of the voltage phase angle at all nodes of the
grid. These data can in principle be obtained using phasor
measurement units, but these are typically very expensive. The
measurement of other quantities such as real power flows is
typically much simpler.

Fortunately, we usually do not have to reconstruct the entire
grid in most cases. In a typical application we know a lot about
the grid and have to reconstruct only parts of the matrix B.
Then the measurement of power injections and real power
flows of a certain subset of transmission lines can be enough
to perform the reconstruction of the remaining data using
the methods described above. Technically, this amounts to
combining methods of classical state estimation and network
reconstruction.

So assume that we can measure the power injection Pn for
all nodes n ∈ {1, . . . ,N} at the time steps t1, . . . ,tM . In addition
we have knowledge about the transmission line parameters, in
particular Xsr , and measure the real power flow

Psr (tm) = X−1
sr [ϕr (tm) − ϕs(tm)] (18)

for a subset L of all transmission lines at all time steps
t1, . . . ,tM . If this set of equations is fully determined or even
overdetermined we reconstruct the state vector ϕ(tm) as in
the classical state estimation problem described in Sec. II. As
before, the resulting estimates for the nodal phase angles for
all time steps t1, . . . ,tM are then summarized in the matrix
�. In addition we have partial knowledge about the nodal
susceptance matrix, in particular we already know the entries

Brs = Bsr = −X−1
sr (19)

for all (s,r) ∈ L. This information can then be used to recon-
struct the remaining entries of B as described in the previous
section.

IV. IMPLEMENTATION

A. Row-wise reconstruction

The row-wise reconstruction problem introduced in
Sec. III A is solved using the algorithm depicted in Fig. 1.
Source code for the central part of the program code is listed
in Fig. 2.

First data are collected and the matrix � and the vectors
P r are formed. Then the problem is solved depending on the
rank of the matrix �. If the system is (over)determined, we
directly solve it for B using the MATLAB function mldivide.
If the system is underdetermined we proceed row by row and
reconstruct Br by solving min ‖Br‖1 s.t. �Br = P r . This
optimization problem can be mapped to a linear program as
described in Appendix B and solved with the MATLAB function
linprog.

The code listed in Fig. 2 illustrates the reconstruction
algorithm without utilizing the sign constraint (17). This
constraint can easily be added to the code as described in
Appendix B.

FIG. 1. Flow chart for row-wise reconstruction without imple-
menting the sign constraint (17). MATLAB code for the central part is
listed in Fig. 2.

B. Iterative reconstruction

The reconstruction problem with prior knowledge intro-
duced in Sec. III B is solved using the algorithm depicted
in Fig. 3. Most interestingly, we can also use this algorithm
to greatly improve the convergence of the reconstruction
algorithm. For intermediate values of M we typically face the
situation that some rows are successfully reconstructed while
others are not. If we have not reconstructed B successfully,
but gained further knowledge, we may use it in the following.
Having successfully reconstructed the rth row of B, we also
know the entries Br ′,r = Br,r ′ for all other rows r ′ due to
the symmetry of the matrix. We thus propose to perform the
reconstruction iteratively. In each step of the reconstruction
process we use the initial knowledge about the entries of the
matrix B and also the knowledge gained in previous steps.

The algorithm shown in Fig. 3 starts with the input of the
measurement results and the prior knowledge of the system
which is encoded in the matrices B and K . It solves the
reconstruction problem iteratively, processing row by row in
each iteration. For each row, we calculate the reduced matrices
�red

r and P red
r , see Eq. (15) and then attempt to reconstruct

the vector Bred
r as described above. If the reconstruction was

successful, we add the results to the matrix B and update the
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FIG. 2. MATLAB code for row-wise reconstruction.

knowledge matrix K . To facilitate the bookkeeping we define
two matrices K and K new: We set K = K new at the beginning
of each iteration and only modify K new during the step. The
iteration stops when the reconstruction has been successfully
completed, i.e., Knew

rc = 1 for all r,c = {1 . . . ,N}, or when
no further progress has been made, i.e., Knew has not been
modified during the last step.

One unsolved problem remains: If we do not know the
matrix B a priori, how can we know if the reconstruction
of the rth row has been successful? In the underdetermined
case we cannot decide whether the reconstructed values Brc

are definitely correct, but we can decide if they are reasonable
in terms of the connectivity of the grid, i.e., if the number
of nonzero entries in Br is as small as expected. This partly
rules out undesired solutions, where minimization of the 1-
norm (13) does not yield sufficiently sparse solutions. In the
algorithm shown in Fig. 3 we thus adopt the definition that the
reconstruction of the rth row is assumed to be successful if (a)
the linear system is overdetermined or (b) the reconstructed row
Br is sufficiently sparse, i.e.,

∑
j H (|Brj |) � dmax for some

upper limit dmax and H (x) being the Heaviside step function.
This upper limit is chosen the same for all rows and must be
larger or equal to the maximum degree of any node in the grid.
Based on experience and on typical degrees of real power grids,
we use a value dmax = 15 in what follows.

A slight adaption of this criterion is necessary if the
measurements of the phases or power injections are subject
to noise. Then the reconstructed vector Br will also be noisy;

FIG. 3. Flow chart for the iterative reconstruction algorithm
without implementing the sign constraint (17).

in particular, it will not be strictly but only approximately
sparse. Thus we relax the above criterion for the acceptance
of a reconstructed row counting only entries whose magnitude
exceed a certain threshold

number of entries =
∑

j

H
(|Brj | − ε′) (20)

for some ε′ > 0. The criterion (2) for the acceptance of a
reconstructed row then reads

∑
j H (|Brj | − ε′) � dmax.

V. APPLICATIONS AND PERFORMANCE

A. Reconstruction from time series

We demonstrate the applicability of network reconstruction
from time series measurements for a test grid taken from [50]
illustrated in Fig. 4(a). This data set includes hourly data for
demand and generation Pk(t) for one year and all N = 117
nodes. The nodal voltage angles ϕk(t) are then obtained by
solving the DC approximation (6) for all time steps. The
resulting time series of the power injections and angles are
shown in Fig. 4 (b) for two nodes as an example.

The algorithm shown in Fig. 3 can now reconstruct the
entire network topology, i.e., all entries of the nodal suscep-
tance matrix B, from the time series data. To evaluate the
performance of the algorithm we vary the amount of input
data. For each value of M we run the algorithm and count the
number of successfully reconstructed entries and the number
of reconstruction errors (those entries that do not match the
ground truth). To account for small numerical errors, we say
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FIG. 4. Example of the complete grid reconstruction for a test grid
with N = 117 nodes. (a) Test grid from [50]. It is assumed that the
network topology, i.e., the location and parameters of the transmission
lines (grey) are completely unknown. (b) The reconstruction is based
on the time series of the nodal power injections Pk(t) and voltage
angles ϕk(t). Two time series are shown. (c) Performance of the
iterative algorithm shown in Fig. 3 taking into account the sign
constraint (+) or discarding it (×). Perfect reconstruction is obtained
with M � 26 measurements when the sign constraint is implemented.
We use the test grid and the load and generation time series of the
scenario 2013 from [50]. For the sake of simplicity we have removed
the import and export nodes and rescaled the generation to exactly
match the load.

that a link (r,k) is successfully reconstructed if∣∣Brecon
r,k − B true

r,k

∣∣ < ε
∣∣B true

r,k

∣∣. (21)

The absence of a line between two nodes r and k is successfully
reconstructed if ∣∣Brecon

r,k

∣∣ < ε min
i �=j

∣∣B true
i,j

∣∣, (22)

where the numerical tolerance is chosen as ε = 10−3.
Figure 4(c) shows that Mmin = 26 measurements are suf-

ficient to faithfully reconstruct the entire nodal susceptance
matrix B using the iterative algorithm and including the sign
constraint (17). Most importantly, a faithful reconstruction is
possible in the strongly underdetermined case: The minimum
number of measurements Mmin = 26 is less than a quarter of
the matrix dimension N = 117. This is possible because we
can exploit the sparsity of matrix B as an additional structural
information.
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FIG. 5. Performance of the proposed algorithms for power grid
reconstruction for various test grids taken from [51,52]. We use
synthetic power injection data, choosing either (a) the ϕk randomly
(type I) or (b) the Pk randomly (type II). Shown is the minimum
number of measurements M needed to obtain a faithful reconstruction
for the row-wise reconstruction algorithm with (�) and without (◦)
sign constraint and the iterative algorithm with (×) and without
(+) sign constraint. Results have been averaged over 10 random
realizations.

B. Minimum measurement requirements and scaling

The algorithms presented in Figs. 1 and 3 allow a reconstruc-
tion of the network topology also in the underdetermined case.
But how many measurements Mmin are needed for a faithful
reconstruction and how does this number scale with the grid
size N?

To systematically study the efficiency of the reconstruction
algorithms, we consider various test grids of different sizes
taken from [51,52] and use randomized synthetic data for the
time series. We consider two different types of time series
data. First we draw the voltage phase angles ϕk(t) uniformly
at random from the interval [−π/8, + π/8] (type I). This
scenario is not realistic but close to the original mathematical
work [48,49], where random Gaussian sampling vectors are
considered. Second, we choose the power injections Pk(t)
at random from a normal distribution with mean zero and
standard deviation as in the original test grid (type II). For
both types and both reconstruction algorithms (row-wise and
iterative), we run the reconstruction algorithm as a function of
the number of measurements M taken into account and deter-
mine the minimum number of measurementsMmin for a faithful
reconstruction, i.e., zero reconstruction errors. Each numerical
experiment is repeated 10 times. Results are shown in Fig. 5.

First we observe that an efficient reconstruction is possible
with both algorithms for the type I input data as shown in
Fig. 5(a). The minimum number of measurements Mmin is
much smaller than the grid size N in all cases. The simple
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FIG. 6. Network reconstruction in the presence of measurement noise. The color map plots show the reconstruction error [Eq. (24)] as a
function of the number of measurement snapshots M and the noise strength, assuming that the phase measurements are subject to independent
Gaussian noise with standard deviation σ . The white and black lines indicate the minimum number of measurements Mmin reported in Fig. 5.
Results are shown in (a)–(d) for the row-based algorithm and in (e)–(h) for the iterative algorithm. We run the reconstruction both without
implementing the sign constraint (17), see panels (a), (c), (e), (g); and with the sign constraint (17), see panels (b), (d), (f), (h). The algorithms
are tested for the IEEE 118 bus test grid taken from [51] for synthetic power injection data, choosing either the ϕk randomly [type I data, panels
(a), (b), (e), (f)] or the Pk [type II data, panels (c), (d), (g), (h)] randomly. Results have been averaged over five random runs.

row-wise algorithm performs less well because it does not
exploit the symmetry of the matrix B, such that Mmin is larger
by a factor of up to 3. Furthermore, implementing the sign
constraint (17) only has a minor influence on the performance
of the reconstruction for type I input data.

The theory of compressed sensing shows that a reconstruc-
tion of sparse vectors is possible with high probability from a
number of measurements scaling only logarithmically with the
problem dimension N if some conditions are satisfied [48,49].
This logarithmic scaling is well confirmed by the results of our
numerical experiments as observed in Fig. 5(a). For the itera-
tive algorithm, the scaling appears to be even more favorable.

A different result emerges for type II input data as shown
in Fig. 5(b). The proofs for the efficiency of compressed
sensing depend on two features of the sampling vectors:
isotropy and incoherence. Roughly speaking, isotropy means
that all directions in the vector space are sampled equally well.
Incoherence guarantees that the redundancy in the information
gained by two measurements is small. Both features are no
longer guaranteed for type II input data. In fact, we observe
that the simple row-wise reconstruction algorithm without sign
constraint does not perform well in this case. The minimum
number of measurements Mmin is only slightly smaller than
the problem dimension N . The logarithmic scaling is lost.

Nevertheless we find that an efficient reconstruction is still
possible if we utilize further structural information. Imple-
menting the sign constraint (17) in the row-wise algorithm
drastically reduces the minimum number of measurements
Mmin. Exploiting the symmetry of matrix B in the iterative
algorithm is even more effective. An efficient reconstruction

from few measurements is possible and the logarithmic scaling
of Mmin with the problem size N appears to be restored. Adding
the sign constraint further reduces Mmin by a factor of up to
2.3.

C. Robustness to noise

Every real measurement is susceptible to noise. Hence, a
reconstruction algorithm is applicable in reality only if it is
robust at least for weak noise. We evaluate the performance
of the two algorithms described above assuming that the
measured phases differ from the true values

ϕmeas
j (tm) = ϕtrue

j (tm) + ej,m, (23)

We assume that the measurement errors ej,m are independent
and follow a normal distribution with mean 0 and standard
deviation σ . The quality of the reconstruction of the matrix B
is evaluated by the sum of absolute deviations from the true
value,

E =
N∑

r,k=1

∣∣Brecon
rk − B true

rk

∣∣ . (24)

We evaluate the impact of noise for the IEEE 118 bus test grid
for different randomized input data (types I and II) comparing
the row-wise and iterative algorithms both with and without
implementing the sign constraint (17).

Numerical results reported in Fig. 6 show that both algo-
rithms are robust to weak noise if the sign constraint (17)
is discarded. Significant deviations from the noiseless case
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are found only if the standard deviation exceeds a threshold
σ � 10−4. In particular the measurement error E is close to
zero if the number of measurement snapshots M exceeds the
minimum number Mmin determined for the noiseless case (see
Fig. 5) and σ � 10−4.

In contrast, the sign constraint (17) can make the reconstruc-
tion highly susceptible to measurement noise. In particular, the
row-wise algorithm fails already for a very weak noise level
σ = 10−7 regardless of the input data (types I or II). The itera-
tive algorithm is less susceptible, because it implements a test
of every reconstruction result in view of its sparsity. This test is
capable of avoiding the massive failures present in the row-wise
algorithm to a large extent. Still, the minimum number of
measurements for a faithful reconstruction increases already
for weak noise levels. We conclude that the implementation
of the sign constraint (17) is not always beneficial because it
reduces the robustness of the algorithm.

D. Comparison to other sparse signal recovery methods

The proposed algorithms for network reconstruction are
based on convex relaxation: A sparse solution to an under-
determined system of equations is found by minimizing the
1-norm [Eq. (13)]. Several alternatives have been proposed for
this task; see [53] for an introductory review.

We compare the efficiency of different methods for the
network reconstruction to provide a benchmark for the two
proposed algorithms. To this end, we replace the 1-norm
minimization in the network reconstruction algorithm (lines
11–20 in Fig. 2) by two other methods: the orthogonal matching
pursuit (OMP) [54] and the orthogonal least squares (OLS)
[55]. OLS requires us to specify a maximum target sparsity
of a vector beforehand, which we choose as dmax + 1. We
then repeat simulation for several test grids and evaluate
the minimum number of measurements needed for a faithful
reconstruction of matrix B. We discard the sign constraint (17)
since it degrades the robustness as discussed above. The results
are displayed in Fig. 7.

For the row-wise reconstruction we observe no significant
difference between the minimization of the 1-norm, OMP, and
OLS. In all cases the reconstruction remains rather inefficient
for type II input data, due to the lack of incoherence and
isotropy of the sampling vectors discussed above. Vast dif-
ferences between the methods are observed for the iterative
reconstruction algorithm for both types of input data. The
minimization of the 1-norm outperforms all alternatives by
far: For the largest test grid (N = 300), the minimum number
of measurements for a faithful reconstruction is smaller than
for the alternative methods by a factor of more than 2.8 (type
I) or 6.1 (type II).

E. Reconstruction from flow measurements

The iterative algorithm allows us to take into account prior
knowledge to efficiently reconstruct the missing information
about the grid topology. Such a problem can arise in practice
when a larger part of the grid is subject to damages or attacks.
An example of such a situation is depicted in Fig. 8(a). It is
assumed that we have no reliable information about the grid
in two areas indicated by the question marks. However, we
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FIG. 7. Comparison of three different sparse signal recovery
methods for network reconstruction: the 1-norm minimization, the
orthogonal matching pursuit (OMP) [54], and the orthogonal least-
squares (OLS) [55]. We evaluate the minimum number of measure-
ments for a faithful reconstruction for several test grids of increasing
size N and different input data (type I vs II). (a),(b) Using the
row-wise reconstruction algorithm no significant differences are
observed. (c),(d) Using the iterative reconstruction algorithm, 1-norm
minimization outperforms the alternative methods by far. In all cases,
the reconstruction is performed without enforcing the sign constraint
(17).

do have information about the connections of all remaining
nodes and we assume that we can measure the real power
flow along the colored solid lines. The prior knowledge of
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FIG. 8. Reconstruction of missing information from flow mea-
surements. (a) The IEEE 30-bus test grid. Real power flows are
measured on the colored lines. In two regions the grid topology is
assumed to be unknown. (b) The prior knowledge matrix K . Grey
shading indicates that the respective line parameter Bjk is known. The
white region is completely unknown. (c) The voltage phase angles ϕk

are reconstructed from the power flow measurements using standard
state estimation methods. (d) The complete grid topology is perfectly
reconstructed using the algorithm shown in Fig. 3.
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the grid topology is encoded in matrix K , which is illustrated
in Fig. 8(b). White entries indicate where we do not know the
entries of matrix B.

The missing information is found by combining classical
state estimation and network reconstruction. First, the voltage
phase angles for all nodes of the network are reconstructed
as described in Sec. II, the results being shown in Fig. 8(c).
Second, the iterative reconstruction algorithm shown in Fig. 3
is applied using the measured power injections, the prior
knowledge B and K as well as the estimated voltage phase
angles as input data. The algorithm then faithfully reconstructs
all the missing information about the grid topology. The
reconstructed values of the line susceptances X−1

sr shown in
Fig. 8(d) exactly match the true values. Most importantly, the
full reconstruction is possible already for M = 1 in this case,
i.e., with a single snapshot of the power injections P , making
use of the prior knowledge.

VI. CONCLUSION

We have introduced two algorithms to reconstruct the
structure of a power grid from nodal measurements only. One
algorithm is straightforward and row-based, reconstructing the
lines of the grid node by node. The second is iterative and
takes into account both prior knowledge about the presence of
absence of lines as well as the knowledge generated by that
algorithm during previous steps. We have demonstrated how
these algorithms can be used to reconstruct the entire network
structure from time series or missing information on the grid
topology from a single snapshot.

The presented algorithms exploit several structural prop-
erties of power grids to reduce the number of necessary
measurements. Power grids are typically very sparse, i.e., each
substation is connected to only a few other substations. Hence,
methods from compressed sensing can be used to allow faithful
reconstructions also in the underdetermined case. The iterative
reconstruction algorithm makes use of the symmetry of the
nodal susceptance matrix. Loosely speaking the algorithm
solves the simple parts of the reconstruction problem first
and then uses the gained information for the remaining parts.
We have shown that this trick leads to a vast reduction of
measurement resources.
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APPENDIX A: LEAST-SQUARES SOLUTION

If the system of equations (10) is overdetermined, it then
must be solved in a least-squares fashion, i.e., we have to

solve

min
Br

‖�Br − P r‖2
2 , (A1)

which leads to [32]

Br = (�T �)−1 �T P r (A2)

provided that � is full rank such that the inverse exists. Least-
squares solutions are already implemented in many numerical
solvers, for instance in the MATLAB function mldivide.

APPENDIX B: MINIMIZING THE 1-NORM

The key to an efficient reconstruction of B from an underde-
termined system of equations is the minimization of the 1-norm
[48,49]. This problem can be mapped to a linear program which
can be solved efficiently, i.e., the computation time scales at
most polynomially with the input length.

So we consider the linear system of equations (10) and
assume that it is solvable and underdetermined. The solutions
span an affine subspace of RN with dimension D = N −
rank(�). All solutions can be written as

Br = B(sp)
r + W y, (B1)

where the columns of the matrix W ∈ RN×D form a basis
for the kernel (null space) of � and y ∈ RD is a vector
of parameters. B(sp)

r is a specific solution to Eq. (10); in
the implementation it is obtained using the MATLAB function
mldivide. We now search for the vector y such that the
1-norm (13) assumes its minimum. This optimization problem
is rewritten as a linear program [56]

min
s

1T s such that
B(sp)

r + W y � s,

B(sp)
r + W y 	 −s,

(B2)

where s ∈ RN is an auxiliary variable, 1 ∈ RN is a vector
of ones, and � and 	 denote entry-wise comparison. In the
standard form of many commercial solvers the optimization
problem reads

min
x

f T x such that Ax � b, (B3)

using the further auxiliary variables

x =
(

y
s

)
, A =

(
W −1

−W −1

)
,

b =
(

B(sp)
r

−B(sp)
r

)
, f =

(
0
1

)
,

where 1 ∈ RN×N is the identity matrix and 0 ∈ RD is a vector
of zeros.

Sign constraints of the form (17) can be imposed by adding
additional rows to matrix A and vector b. For every element
with sign constraint Brc � 0 on row is added with the entries:

Aadd = (W c,·,0, . . . ,0), (B4)

badd = −[
B(sp)

r

]
c
. (B5)

Here W c,· denotes the cth row of matrix W and [B(sp)
r ]c is the

cth entry of vector B
(sp)
r .
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