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We study the dynamics of sets of independent systems, all of which are coupled to the same time-dependent
external force. Using optimal control theory, we compute the most efficient temporal pulse shape for this force
that can maximize simultaneously the collective response of these systems. This response can be a weighted sum
of all amplitudes at the final interaction time. Remarkably, it turns out that for certain systems this optimal force
for the collective response can be related to the individual forces that would optimize each system separately. We
illustrate this superposition principle for the simultaneous optimization of collective responses with numerical
and also analytical solutions for sets of damped linear and nonlinear oscillators. We also apply this principle to
predict the optimal temporal profile of a laser pulse that can maximize the final macroscopic polarization (total
dipole moment) of a set of quantum mechanical two-level atoms.
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I. INTRODUCTION

There are numerous examples in science, technology, and
engineering where certain desired dynamical variables need
to be optimized [1–8]. In physics, for example, the very
fundamental laws of nature, such as Newton’s law and the
Schrödinger, Dirac, or Maxwell equations, are usually given by
differential equations that specify those solutions that optimize
a certain action. More specifically, the area of coherent quan-
tum control has recently received a lot of attention [9]. Here the
goal is to tailor external laser pulse shapes to control the final
outcome of complex chemical reactions or to create or break
a particular bond in a molecule [10,11]. Naively, one would
expect that lasers that are tuned to particular resonances would
be ideal. However, due to internal energy conversions based on
vibrational relaxations often the entire molecule was heated.
Most recent experiments have exploited rather sophisticated
adaptive laser pulse-shaping techniques including closed-loop
learning that also permits the independent shaping of the laser’s
polarization [12] and amplitude as well as phase.

From a theoretical point of view a powerful approach is
the optimal control theory, where a certain objective function
is optimized under suitable constraints. As this is a very
intensively studied area, there are numerous reviews available.
In some situations, a finite number of variables needs to be
optimized that can often be accomplished via straightforward
conjugate-gradient-like search algorithms. Computationally
more demanding are infinite-dimensional problems, where, for
example, an entire function of time needs to be computed,
equivalent to an infinite-dimensional optimization with con-
straints. What is common to most problems, however, is the
fact that dynamical variables that characterize a single system
are usually considered.

While it is possible in many cases to calculate the optimum
signal, however, it is much more difficult to obtain an intuition
for the best signal. It is one of the purposes of this article to

obtain an intuition or qualitative guidance about the properties
of the optimum signal and not to introduce a new computational
methodology for a particular system. In particular, in this
article, we examine dynamical situations where a collective
response of several (and possibly infinitely many) independent
systems needs to be optimized. The key question studied here
is whether one can learn something from the corresponding
optimal control characteristic for each system individually.

In this article, we will show, that for those situations, where
the coupling of the external field can be modeled in an additive
way in the equations of motion, the optimum force field that
maximizes the collective response of all systems can be com-
puted from a suitable superposition of the individual optimum
pulse shapes, where the weight factors depend on the temporal
derivative of the individual fields. While the superposition prin-
ciple for the simultaneous optimization (SPSO) of collective
responses is not exactly valid for nonlinear systems or those
where the control field is not coupled as inhomogeneous source
terms, it can still provide a remarkably accurate guidance to
predict the optimal control field for the collective response
from the individual optimizers for each subsystem.

The goal of simultaneously optimizing several degrees of
freedom has been studied for single optically driven multilevel
systems. For example, in the special case where the energy
levels are cleanly separated from each other, the system can
be controlled by sequentially addressing the pairs of levels
[13]. The optimum pulse can then be accomplished by a
sequence of tailored pulses, each of which then addresses
only a prescribed pair of levels. A control based on frequency
discrimination is not always possible; e.g., it is not suitable for
systems with equally or almost equally spaced or degenerate
energy levels [14].

The article is organized as follows: In Sec. II we derive
the general theoretical framework of optimal control theory
applied to an infinite set of general dynamical systems, all of
which are coupled to the same external force. We introduce the

2470-0045/2018/98(1)/012221(10) 012221-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.012221&domain=pdf&date_stamp=2018-07-31
https://doi.org/10.1103/PhysRevE.98.012221


S. DONG, R. FLORES, J. UNGER, Q. SU, AND R. GROBE PHYSICAL REVIEW E 98, 012221 (2018)

superposition principle for the simultaneous optimization of
collective responses. In Sec. III we illustrate this principle with
analytical solutions for sets of damped harmonic oscillators.
In Sec. IV we show that it can serve as a qualitative guidance
to estimate the optimal force for sets of nonlinear oscillators.
In Sec. V we examine the optimal laser field to maximize the
macroscopic polarization of two-level systems. We conclude
in Sec. VI with critical questions and speculations for future
projects.

II. OPTIMAL CONTROL THEORY FOR COLLECTIVE
RESPONSE OF N DYNAMICAL SYSTEMS

A. General framework and its numerical solution technique

In this work, we examine the collective response of N

dynamical systems, all of which are coupled to the same
external force field, denoted by U (t). The ultimate goal
is to examine the properties of the optimal control field
Uopt(t) that can maximize a certain collective response of
all systems at a final time T . In the concrete examples,
examined below, this collective response will be the sum
of all final amplitudes of harmonic as well as anharmonic
oscillators, or the macroscopic dipole response of a collection
of two-level atoms. We will show that for some systems it is
possible to construct this collective response exactly from the
knowledge about the optimal control fields associated with
every single system, denoted for the nth system by Uopt,n(t).
We denote this the “superposition principle for simultaneous
optimization” (SPSO). It turns out that for those systems for
which this principle is violated (such as anharmonic oscillators
or two-level systems), the SPSO can nevertheless provide a
good guidance for the true optimal field Uopt(t).

In order to avoid nonsensible optimal force fields that are
infinite, we restrict the total “energy” of the external force field
to a fixed value E = ∫ T

0 dtU (t)2. We denote the dynamical
variables of the nth system by the state vector Yn(t) and require
these “amplitudes” to fulfill the state equation dYn/dt =
Kn[Yn(t),U (t)] with a known initial condition Yn(t = 0).
As a collective variable, which we like to maximize after
an interaction time T , we could choose the combination∑

n

∑
iwi,nYi,n(T ), where the given parameters wi,n would

characterize the importance we like to assign to the ith state
variable of the nth system. In Appendix A we review the
application of the variational principles of optimal control
theory to this set of systems and derive the following set of
equations that the optimal control field Uopt(t) has to satisfy.

dYn/dt = Kn[Yn(t),U (t)] with Yn(t = 0) = Yn(0), (2.1)

dλn/dt = −λn∂Kn/∂Yn with λn(T ) = wn, (2.2)

U (t) = (2λ0)−1
∑

n

λn(t)∂Kn(Yn,U )/∂U. (2.3)

The first equation reproduces the state equation for the
amplitudes; the second one is for the Lagrange multiplier
functions and needs to be solved reversely in time as its final
values are known, λn(T ) = wn. As the functional form of
the Lagrange functions λn(t) depends on the collective U (t),
the last equation is in general a complicated transcendental

equation that the optimum field has to satisfy. The single
Lagrange parameter λ0 needs to be chosen such that the optimal
control field satisfies E = ∫ T

0 dtU (t)2. While Eqs. (2.1) and
(2.2) seem to be decoupled at first, the fact that the optimum
function Uopt(t) in Eq. (2.3) depends on each system’s solution
effectively couples all of these equations for different systems.

If only a single system is coupled to the field, such that only∑
iwi,nYi,n(T ) needs to be optimized, then the optimizer has

to fulfill Uopt,n(t) = (2λ0,n)−1λn(t)∂Kn(Yn,U )/∂U . However,
as the solutions λn(t) in this particular expression are different
from the solutions λn(t) in Eq. (2.3), there is unfortunately
in general no relationship between Uopt(t) and the individual
optimizers Uopt,n(t) for each system separately.

B. Numerical solution techniques

There are a wide variety of numerical techniques available
to find the three solutions Yn(t), λn(t), and U (t), that satisfy
simultaneously the set of equations (2.1)–(2.3). For most of the
specific systems and parameter ranges examined in this work,
we found it sufficient to use a simple iterative scheme that led to
convergent solutions. It was based on an initial guess for U (t),
denoted by U (0)(t). Using this force field the state equation
as well as the costate equation were solved. The resulting
solutions Yn(t), λn(t) were then inserted into the right-hand
side of Eq. (2.3). This right-hand side was then interpreted as an
improved solution for U (t), similar to the numerical strategies
employed in most predictor-corrector schemes, denoted by
U (1)(t). This function was then inserted again as an improved
guess for Uopt(t) into Eqs. (2.1) and (2.2). This scheme was
then repeated until the iterates U (n)(t) and U (n+1)(t) became
numerically indistinguishable from each other.

To have an independent check of the numerical solutions
for Uopt(t), we also used steepest descent- and conjugate-
gradient-based approaches [15]. Here the objective J [U (t)] =∑

n

∑
iwi,nYi,n(T ) is solely a function of U (t); however, J

depends on Yi,n(T ) whose values need to be determined from
the solution to the differential equation (2.1) for each given
U (t). But there is no need to involve any costate variables
λn(t) and λ0 because we restrict U (t) to take values consis-
tent with the constraint. The function U (t) was sampled at
M points on a temporal grid, with tm = (m − 1)/(M − 1)T
and m = 1,2, . . . ,M , such that the objective J becomes a
function of M parameters U (tm) ≡ Um. For simplicity, we de-
note the resulting M-dimensional vector (U1,U2, . . . ,UM ) ≡
R. The resulting M-dimensional maximization problem re-
quired an initial guess for R(0), which was used to cal-
culate the M-component gradient vector ∇J = ∂J/∂R(0) ≡
(∂J/∂U (0)

1,∂J/∂U (0)
2, . . . ,∂J/∂U (0)

M ). We then performed
a line search based on the standard bisection techniques to
find the value for α that would maximize J (R(0) + α∂J/∂R(0))
along this particular direction in this vector space, i.e.,
∂J (R(0) + α∂J/∂R(0))/∂α = 0 for α = α(0). The next line
search was based on the improved location R(1) = R(0) +
α(0)∂J/∂R(0) and a new line search direction was either given
by the new gradient ∂J/∂R(1) (steepest ascent method, [15]) or
by a combination of the prior and the new gradient (Fletcher-
Reeves method, [16]). Due to the fact that the calculation
of each component of ∂J/∂R required the solution of the
differential equation (2.1), this method is very CPU time
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intensive but leads to a rapid convergence in terms of the
number of required line searches.

C. Superposition principle for collective responses (SPSO)

We will now show that if the generator of the time evolution
Kn takes a simpler form, where the state variables Yn of the nth
system are mutually coupled by a temporally constant matrix
Mn, and the external force field U (t) enters as an additive term,
i.e.,

dYn/dt = MnYn + VnU (t), (2.4)

then the optimizing force field of the collective response of
all systems can be obtained exactly from the knowledge of
the single-system optimizers Uopt,n(t). The given temporally
constant vector Vn permits us to couple the external force to
each amplitude Yi,n differently. The differential equation is
inhomogeneous such that the sum of two individual solutions
is in general not a solution to the same differential equation.
However, due to the special coupling to the external force as
a source term, this system can always be solved exactly based
on the diagonalization of the matrix Mn.

In Appendix B we derive the superposition principle for the
collective responses (SPSO):

Uopt(t) = (2λ0)−1
∑

n

anUopt,n(t), (2.5)

where the time-independent amplitude factors are determined
by an ≡ −(MT

n wn)Vn/U
′
opt,n(T ). We consider this principle as

the main result of this article. Each amplitude factor an depends
on the temporal derivative of the optimal control field U ′

opt,n(T )
at the final time t = T and can be easily obtained from the
optimal solution Uopt,n(t) for each system. These amplitudes
an depend linearly on the given weight factors wn for each
amplitude Yn as well as the coupling strength Vn of the external
field to each individual state amplitude.

While the magnitude of the overall factor (2λ0)−1 depends
nontrivially on each individual field Uopt,n(t), its sole purpose
is to guarantee that the collective optimal control field satisfies
E = ∫ T

0 dtUopt(t)2. It can therefore easily be determined at the
end after the summation in Eq. (2.5) is calculated.

III. SIMULTANEOUS OPTIMIZATION OF COUPLED
DAMPED HARMONIC OSCILLATORS

In this section, we consider a special system of the form
dYn/dt = MnYn + VnU (t). The temporally constant vector
Vn permits us to couple the external force to each amplitude
Yi,n differently.

We provide fully analytical solutions for Uopt,n(t) that
allow for a concrete interpretation of the formal amplitude
factors an in the expression of the superposition law Eq. (2.5).
The state equations for the nth oscillator (of unit mass) are
given by dxn/dt = pn and dpn/dt = −ω2

nxn − γnpn + U (t),
corresponding to the 2 × 2 matrix Mn = {{0,1}, {−ω2

n, − γn}}
and Vn = {0,1}. We therefore have the Hamiltonian

H ≡
∑

n

λnKn =
∑

n

λ1,npn

+ λ2,n

[−ω2
nxn − γnpn + U (t)

]
, (3.1)

which should not be confused with the Hamiltonian (time
generator) for the evolution of xn(t) and pn(t), which exists
only for γn = 0. For simplicity, let us assume we try to optimize
the sum of all final amplitudes J ′′ ≡ ∑

nxn(T ) with equal
weight, or equivalently we choose w1,n = 1 and w2,n = 0.
Then the required costate equations

dλ1,n/dt = −dH/dxn = ω2
nλ2,n, (3.2a)

dλ2,n/dt = −dH/dpn = −λ1,n + γnλ2,n (3.2b)

can be solved analytically with λ1,n(T ) = 1 and λ2,n(T ) = 0,
leading to the solution for λ2,n(t):

λ2,n(T ) = −2 exp[γn(t − T )/2] sinh
[(

γ 2
n − 4ω2

n

)1/2

× (t − T )/2
]/(

γ 2
n − 4ω2

n

)1/2
. (3.3)

As this solution is directly related to the optimum force
field Uopt,n(t), we should briefly discuss the time depen-
dence of this solution. In the nondissipative limit (γn =
0) this simplifies to λ2,n(t) = − sin[ωn(t − T )]/ωn. In the
opposite overdamped limit (ωn = 0), we obtain λ2,n(t) =
−2 exp[γn(t − T )/2]sinh[γn(t − T )/2]/γn. For T > γ −1

n the
latter function is nearly constant, λ2,n(t) = γ −1

n , before it
approaches zero for t = T . Most interestingly, for ωn ≈
γn, λ2,n(t) grows slowly in time to reach its maximum close
to t = T , before it decays to zero at t = T . This behavior
is intuitively expected as the optimum force field Uopt,n(t)
required to maximize the final amplitude xn(T ) has only a finite
energy E. It is more advantageous to transfer this finite amount
close to the final interaction time, as any early excitations are
automatically damped out long before the important final time
is reached.

According to Eqs. (A14) and (A15), and using
∂Kn(Yn,U )/∂U = Vn = {0,1}, the resulting optimizing force
for the nth oscillator is directly proportional to λ2,n(t),

Uopt,n(t) = (2λ0,n)−1λ2,n(t), (3.4)

with the energy normalization factor (2λ0,n) =
E−1/2{∫ dtλ2,n(t)2}1/2. This integral can be evaluated
analytically leading to the expression∫

dtλ2,n(t)2

= exp(−γnT )
{
4ωn

2 + vn
2 exp(γnT ) − γn

[
γn cosh(vnT )

+ vn sinh(vnT )
]}/(

2ωn
2γnnn

2
)
, (3.5)

where we abbreviate νn ≡ (γ 2
n − 4ω2

n)1/2.
As, according to Eq. (B3), these normalization factors

(2λ0,n) are also equal to the weights an of the individual optimal
forces with regard to the optimal control for the collective
response of all oscillators, we obtain

an = E−1/2
∫

dtλ2,n(t)2. (3.6)

This complicated expression based on Eq. (3.5) takes an
easier form in the limit for γn = 0:

an = E−1/2
{
[2ωnT − sin(2ωnT )]

/(
4ω3

n

)}1/2
. (3.7)

Equivalently, the same amplitude factor an also could
be determined from the form −(MT

n wn)Vn/U
′
opt,n(T ). Here
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FIG. 1. The temporal pulse shape of the optimal force field Uopt(t)
that simultaneously maximizes the sum of all final amplitudes xn(T )
of a continuous set of harmonic oscillators with a uniform distribution
of frequencies ωn between ωmin and infinity. Inset: The optimal force
field Uopt(t) for ωmin = 1 for three interaction times T .

we can use MT
n wn = {{0,−ω2

n}, {1,−γn}}{1,0} = {0, 1}, and
Vn = {0,1} and using Eq. (3.2b), dλ2,n(t)/dt |t=T = −1, this
leads to U ′

opt,n(T ) = −(2λ0,n)−1 and we therefore obtain for
γn = 0 the same expression. In the limit of large frequencies
ωn, or, equivalently in the limit of sufficiently long inter-
action times (T � 2π/ωn), the weight factors an decrease
with increasing frequency ωn as an ≈ E−1/2T 1/2/(21/2ωn).
In the opposite limit of very short interaction times, (T �
2π/ωn), the weight factors lose their frequency dependence,
an ≈ E−1/2T 3. This means, that in this case, the functional
form of the collective optimizer is simply given by Uopt(t) ≈
(2λ0)−1E−1/2T 3∑

nUopt,n(t).
We will close this subsection with a brief numerical example

of the time dependence ofUopt(t) for a continuum of oscillators.
For simplicity, we assume that the distribution of the frequen-
cies ωn is uniform between ωmin and ωmax = ∞. In this spe-
cial case, the summation Uopt(t) = (2λ0)−1∑

nanUopt,n(t) =
−(2λ0)−1∑

n sin[ωn(t − T )]/ωn can be expressed as an inte-
gral,

Uopt(t) = −N

∫ ∞

ωmin

dω sin [ω(t − T )]/ω, (3.8)

where the normalization factor N guarantees that the total
energy of Uopt(t) is E. The pulse shape of the optimal collective
control field depends on the relationship between ωmin and the
interaction time T . For ωmin = 0, the control field is constant,
Uopt(t) = (E/T )1/2. For slightly larger values of ωmin, Uopt(t)
grows linearly to its maximum value close to t = T . For an
even larger ωmin, Uopt(t) becomes oscillatory with frequency
ωmin and an exponentially increasing amplitude. In the extreme
limit where ωmin is very large, Uopt(t) approaches a function
that basically vanishes for all times, except close to the final
time, Uopt(t) = (E)1/2δ(t − T )1/2. We display this trend for a
few frequencies in Fig. 1.

A similar trend can also be observed for a fixed lowest
frequency, ωmin, as a function of the interaction time T . In
the inset of the figure, we show the transition for a linearly

growing Uopt(t) for small T to one that is nonzero only close
to the final interaction time T .

For a closely related example of a physical situation where
an external force field needs to be optimized we refer the
reader to the works by Glasgow et al. [17–19], where an
optimal field was constructed that, for a given excitation level
of a passive dielectric material, would minimize the necessary
energy density that has to be deposited in the medium. While
the main general conclusions were model independent, the
linear susceptibility of the medium was modeled by multiple
Lorenz oscillators with characteristic resonance frequencies,
oscillator strengths, and damping rates. The authors showed
that there are many admissible field histories that lead to the
same state in the medium and optimized the particular shape
that would minimize the unavoidable energy loss. The early
time behavior of the optimum creation field was characterized
by a dc portion, an exponential growth, and a spike. These three
particular temporal features shown in [18] are in an interesting
qualitative agreement with those graphed in Fig. 1.

Reference [18] also embodies a similar linear superposition
principle that is discussed in the present work. However,
in contrast to our work, where a prescribed optimum state
at a finite time was the objective, the prior work addresses
an infinite-duration optimal excitation pulse for which even
analytical solutions can be found. The authors also provided
several theorems applicable to linear as well as nonlinear
dielectric media to describe the general properties of optimal
fields with regard to extracting as well as infusing energy from
and into dielectrics.

IV. SPSO FOR ANHARMONIC OSCILLATORS

In this section, we will examine a state equation that is
highly nonlinear in Yn(t), but the external force U (t) is still
coupled in an additive manner as a source term to the dynamics.
Many oscillator systems in atomic or molecular physics are
modeled by the Morse, Lennard-Jones, or other semiempirical
potential functions, all of which are harmonic oscillators close
to equilibrium. Therefore, as nonlinearities occur here only
for very large excitations, it is obvious that the SPSO would
naturally apply as well for lower excitations of those systems.
Here we would expect discrepancies to arise only if the
amplitudes are driven far from equilibrium into regions where
the restoring forces show deviations from Hooke’s law.

In order to study exclusively nonlinear responses, we choose
in this section purposely a set of systems that are intrinsically
nonlinear from the very beginning for any amplitude. We
choose a set of quartic oscillators, whose state equations are
given by

dxn/dt = pn, (4.1a)

dpn/dt = −κnx
3
n + U (t), (4.1b)

with positive coefficients of nonlinearity κn. Furthermore, to
enhance the importance of the nonlinearity, we place the par-
ticles initially at xn(t = 0) = 1, such that they experience the
spatial nonlinearity of the force field from the very beginning.
We therefore have the Hamiltonian

H ≡
∑

n

λnKn =
∑

n

λ1,npn + λ2,n

[−κnx
3
n + U (t)

]
. (4.2)
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To be comparable to the conclusions of the prior section,
we try to optimize again the sum of all final amplitudes J ′′ ≡∑

nxn(T ) with equal weight, or equivalently we choose w1,n =
1 and w2,n = 0. Then the required costate equations take the
form

dλ1,n/dt = −dH/dxn = κnλ2,n3x2
n, (4.3a)

dλ2,n/dt = −dH/dpn = −λ1,n, (4.3b)

with λ1,n(T ) = 1 and λ2,n(T ) = 0. In contrast to the costate
equations (3.2), which were entirely independent of U (t), this
set of equations depends implicitly on U (t) due to the coupling
with the source term κnλ2,n(t)3xn(t)2. Obviously, this highly
nonlinear coupling of the state and costate equations requires
numerical approaches to construct Uopt,n(t) as well as Uopt(t).
We will argue below that the absence of an explicit dependence
of U (t) in the costate equation is extremely important for the
validity of the superposition principle in the low-E limit for
U (t).

In order to test the applicability of the SPSO according to
Eq. (2.5), we have to compute the suitable weight factors an

for our system. Due to the coupling of U (t) as an additive
source term, we have here again ∂Kn(Yn,U )/∂U = {0,1},
such that Eq. (A14) predicts here the transcendental equation
U (t) = (2λ0)−1∑

nλ2,n for the collective response, which is
also consistent with Eq. (B1). In contrast to the prior section,
here the costates depend intrinsically on U (t), i.e., λ2,n =
λ2,n[t,U (t)], such that this expression is a transcendental equa-
tion that the optimal Uopt(t) has to satisfy. While the equation
contains a simple sum of the costates and suggests some kind of
“additivity property,” due to its transcendental character, it does
not imply any validity of the superposition principle. In fact,
it also follows that the costate solutions are therefore different
from the costate solutions for each system individually; i.e.,
λ2,n[t,Uopt(t)] 
= λ2,n[t,Uopt,n(t)]. However, it is nevertheless
rather tempting to examine if the superposition principle has
at least some relevance for this system.

In order to examine this question, we have computed
Uopt,1(t) and Uopt,2(t) for two systems and compared them
with Uopt(t) for the collective response. In the special
case of two identical systems, i.e., κ1 = κ2, it is clear
that Uopt,1(t) = Uopt,2(t) and therefore trivially we have
[Uopt,1(t) + Uopt,2(t)]/2 = Uopt(t).

Let us discuss a concrete numerical example for the opposite
and more interesting case, where the two nonlinearities are
rather different, say, κ1 = 2 and κ2 = 10. In the inset of
Fig. 2 we show the time evolution of the two amplitudes
x1(t) and x2(t) associated with the two optimal fields Uopt,1(t)
and Uopt,2(t). In the absence of any external field, both
particles [starting at x1,2(t = 0) = 1] experience the potential
V (x) = (κ/4)x4 and would initially first accelerate to the left
and then approach their final amplitudes at time t = T = 5,
x1(T ) = 0.610, and x2(T ) = 0.942. In order to maximize the
final elongation, the required actions of the two optimal fields
are very different. In order to optimize the first oscillator,
Uopt,1(t) has to decelerate the particle first [Uopt,1(t) > 0],
while the second particle requires apparently an initial boost
to the left [Uopt,2(t) < 0] to accelerate it in order to maximize
its final elongation. As a result of the time-dependent force
fields, the final optimized amplitudes are x1(T ) = 0.757

-0.04

0

0.04

0 1 2 3 5

U
opt,1

(t)

t (arb. units)

U
opt

(t)

U
opt,2

(t)
-0.8

0

0.8

0 2 4 t (a.u.)

x (t)1

2
x (t)

FIG. 2. The optimal pulse shapes Uopt,1(t) and Uopt,2(t) for two
quartic oscillators with κ1 = 2 and κ2 = 10 (dashed and dotted
lines). The continuous line is the optimum Uopt(t) to maximize
simultaneously the sum of the two final amplitudes, J ′′ = x1(T ) +
x2(T ). The open circles are the predictions of the SPSO for Uopt(t).
The inset shows the individual orbits optimized under Uopt,1(t) and
Uopt,2(t) (E = 0.005).

and x2(T ) = 1.06. The amount of enhancement of the final
amplitudes increases obviously with the available energy E

of the control field.
The figure also shows the optimal control field Uopt(t)

for the collective response, leading to x1(T ) = 0.723 and
x2(T ) = 1.02, which is slightly less than their optimal values
possible under individual optimization. For comparison, the
open circles show the predicted optimal response according to
the superposition principle according to Eq. (2.5), i.e.,

Uopt(t) = (2λ0)−1
[
a1Uopt,1(t) + a2Uopt,2(t)

]
, (4.4)

with an ≡ −1/U ′
opt,n(T ). The qualitative agreement with the

exact Uopt(t) is remarkable. As we increase the available energy
E of the control field, we find that the agreement deteriorates.

To provide a more general idea about the quality of the
SPSO for a wider range of nonlinearities, we display in Fig. 3 a
comparison of the exact collective optimizing force Uopt(t) and
the (approximate) predictions based on the SPSO, calculated
from the individual optimizers Uopt,1(t) and Uopt,2(t) and their
derivatives at t = T according to Eq. (4.4). We have kept
the nonlinearity κ2 of the first oscillator constant (= 10) and
chose selected values for κ1 in the range from zero to 10. Due
to the large degree of nonlinearity, the forces Uopt(t) depend
extremely sensitively on κ1. The qualitative agreement of the
predicted and exact optimizers over the entire parameter range
is, in view of the large nonlinearities, rather remarkable. While
for κ1 very close to 10 the agreement is expected, as the two
systems become identical, the optimal trajectories for κ1 = 9
and κ2 = 10 and the resulting individual optimizers Uopt,1(t)
and Uopt,2(t) are entirely different.

The surprising applicability of the SPSO for this highly
nonlinear system (for which analytical solutions do not exist)
can also be suggested analytically if the pulse energy E is
sufficiently small. We can view Uopt(t) as a perturbation in
the state equations and can formally insert this solution for
xn(t) [obtained for U (t) = 0 in Eqs. (4.1)] into the costate
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FIG. 3. Comparison of the exactUopt(t) for the collective response
of two nonlinear oscillators (with four nonlinearities κ1 = 0, 3, 6, and
9 and κ2 = 10) and the corresponding prediction according to the
SPSO denoted by the open circles (E = 0.005).

equation (4.3), despite the fact that this nonlinear solution is
not analytically known. As Eq. (4.3) does not contain U (t)
explicitly, the costate equations therefore no longer depend on
U (t) even implicitly. As a result, the Lagrange functions λ1,n(t)
and λ2,n(t) that determine the final Uopt,n(t) make the SPSO
exact in this case.

In summary, while the SPSO is not expected at all to
have any meaning for (intrinsically) nonlinear oscillators, it
can still serve as a surprisingly accurate guidance to predict
Uopt(t) from Uopt,n(t) for two special cases. In the first case,
the systems are dynamically similar (κn ≈ κm) and, more
importantly, in the second case the SPSO is valid for all systems
(independently of the degree of nonlinearity) where the energy
of the optimal force is small, and the set of nonlinear systems
can be controlled perturbatively.

V. SPSO FOR THE MACROSCOPIC DIPOLE MOMENT
OF A SET OF DRIVEN TWO-LEVEL ATOMS

In contrast to the two prior systems discussed in Secs. III
and IV, we examine here the SPSO for a system where
the external control field is not coupled as a source term.
Here the state equations follow the general form dYn/dt =
Ln[U (t)]Yn. This set is linear as the generator Ln[U (t)] is a
U (t)-dependent matrix and the sum of two individual solutions
is automatically also the solution to the same differential
equation. However, despite this additivity, analytical solutions
for Yn(t) are possible only in very special situations, as the two
generator matrices Ln[U (tj )] and Ln[U (tk)] do not commute
in general at different times tj and tk .

More specifically, we will now examine the validity of the
SPSO for a quantum mechanical system. We consider a set of
two-level atoms, each of which is coupled to the same external
field U (t). For a nicely written review on optimal control theory
for quantum systems and on the optimization of a single two-
level system in the rotating wave or the perturbative approxi-
mation in particular, see [9]. The Schrödinger-Hamiltonian (in

scaled or atomic units) is given by

HQM ≡
∑

n

[gn|g; n〉〈g; n| + en|e; n〉〈e; n|

+U (t)|e; n〉〈g; n| + U (t)|g; n〉〈e; n|], (5.1)

and the collective state is a product of the superpositions
of the ground and excited states of the nth atom, |�(t)〉 =
�n[Cg,n(t)|g; n〉 + Ce,n(t)|e; n〉]. The time-dependent ampli-
tudes follow from the Schrödinger equation i∂|�(t)〉/∂t =
HQM|�(t)〉 as

idCg,n(t)/dt = gnCg,n(t) + U (t)Ce,n(t), (5.2a)

idCe,n(t)/dt = enCe,n(t) + U (t)Cg,n(t). (5.2b)

In order to convert the complex amplitudes into real vari-
ables, we can introduce the Bloch vector variables as

S1,n(t) ≡ Cg,n(t)Ce,n(t)∗ + Cg,n(t)∗Ce,n(t), (5.3a)

S2,n(t) ≡ −i[Cg,n(t)Ce,n(t)∗ − Cg,n(t)∗Ce,n(t)], (5.3b)

S3,n(t) ≡ |Ce,n(t)|2 − |Cg,n(t)|2. (5.3c)

These variables also permit us to include phenomenolog-
ically various dissipative terms. For example, the collisional
broadening can lead to an atomic dipole’s dephasing rate
γn. The longitudinal decay rate is denoted by n [20,21]. If
we abbreviate the energy-level spacing by ωn ≡ en–gn, the
equations of motion become

dS1,n(t)/dt = −ωnS2,n(t) − γnS1,n(t), (5.4a)

dS2,n(t)/dt = ωnS1,n(t) − 2S3,n(t)U (t) − γnS2,n(t), (5.4b)

dS3,n(t)/dt = 2S2,n(t)U (t) − n[S3,n(t) + 1], (5.4c)

to be solved with S1,n(t = 0) = S2,n(t = 0) = 0 and
S3,n(t = 0) = −1, meaning that all atoms are initially in
their ground state. Note the nonadditive coupling of the
external field, due to the terms S3,n(t)U (t) and S2,n(t)U (t).

The goal would be here to construct the properties of an
optimum laser pulse Uopt(t), such that the final macroscopic
dipole moment after the pulse

∑
nS1,n(T ) is maximal. The

resulting Hamiltonian of optimal control theory is given by

H =
∑

n

{λ1,n(−ωnS2,n − γnS1,n) + λ2,n(ωnS1,n − 2S3,nU

− γnS2,n) + λ3,n(2S2,nU − n[S3,n + 1])}, (5.5)

which leads to the following costate equations for the Lagrange
functions λi,n:

dλ1,n(t)/dt = γnλ1,n(t) − ωnλ2,n(t), (5.6a)

dλ2,n(t)/dt = ωnλ1,n(t) + γnλ2,n(t) − 2U (t)λ3,n(t), (5.6b)

dλ3,n(t)/dt = 2U (t)λ2,n(t) − 2U (t)λ3,n(t) + nλ3,n(t),

(5.6c)

to be solved with λ1,n(T ) = 1 and λ2,n(T ) = λ3,n(T ) = 0.
Coincidentally, the state and costate equations are remarkably
similar. While this set of equations is formally decoupled from
the state equations, due to the terms Uλ2,n and Uλ3,n they
do not permit any relationship between the solutions λ1,n(t)
obtained for U (t) = Uopt,n(t) and U (t) = Uopt(t), which would
be required by the SPSO to be valid exactly.
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FIG. 4. The final polarization S1(T ) for the optimal pulse shape
for a driven two-level atom as a function of the fixed energy of the
pulse (T = 11.3, ω1 = 1/(2π ), γn = 0).

However, there are two important limiting cases, where the
SPSO becomes valid. These two cases can be realized when
either the damping n is sufficiently large, and the pulse energy
E is short (or equivalently, the total interaction time T is less
than the Rabi period of the atom). Then we can assume that
the inversion S3,n(t) differs only slightly from its initial value
such that S3,n(t) = −1 + ε(t). Consequently, the last equation
can be decoupled from S1,n(t)/dt and S2,n(t)/dt , leading to

dS1,n(t)/dt = −ωnS2,n(t) − γnS1,n(t), (5.7a)

dS2,n(t)/dt = ωnS1,n(t) − γnS2,n(t) + 2U (t) . (5.7b)

In order to test the reliability of this approximation with
regard to the optimization scheme, we have calculated nu-
merically the final polarization S1,n(T ) for the nth atom for
the optimal laser pulse with a fixed total pulse energy E =∫

dtU (t)2. We compare the predictions according to the exact
theory (5.6) with the approximation (5.7) as a function of the
pulse energy E for ωn = 2π and T = 11.3 in Fig. 4. We find
that the approximation (5.7) is surprisingly valid up to pulse
energies E for which the polarization is almost 50% of its
maximum total value [S1(T ) = 1].

Note that in this weak-field approximation the external laser
field is coupled to the equations of motion in an additive man-
ner. This means automatically that the superposition principle
derived in Sec. II applies exactly if we optimize the collective
macroscopic polarization at the end of the laser pulse, given
by S1(t) ≡ ∑

nS1,n(t). In this limit, the Hamiltonian takes
the form H = ∑

n{λ1,n(−ωnS2,n − γnS1,n) + λ2,n(ωnS1,n +
2U − γnS2,n)} such that the costate equations become

dλ1,n(t)/dt = −ωnλ2,n(t) + γnλ1,n(t), (5.8a)

dλ2,n(t)/dt = ωnλ1,n(t) + γnλ2,n(t), (5.8b)

which leads to the solution for λ2,n(t) =
exp[γn(t − T )]sin[ωn(t − T )]. Applying Eq. (A14)
to construct the collective optimal control Uopt(t)
to maximize S1(t) ≡ ∑

nS1,n(t) then takes the form
Uopt(t) = (2λ0)−1∑

n2λ2,n(t), such that we have

Uopt(t) = (λ0)−1
∑

n

exp[γn(t − T )] sin[ωn(t − T )]. (5.9)

-0.8

-0.4

0

0.4

0.8

0 2 4 6 10

U    (t)opt

time t

for an ensemble of 2-level atoms

FIG. 5. The optimal field Uopt(t) (in units of E1/2) to maximize
the final macroscopic dipole moment of a distribution of two-level
atoms with transition frequencies ω in the range 8 < ω < 10 and
equal damping γ = 0.

If we assume an infinite ensemble of atoms with uniformly
distributed transition frequencies ωn, between ωmin and ωmax

such that
∑

n → const.
∫

dω, and assume the same damping
constants γn ≡ γ , the optimum pulse shape becomes

Uopt(t) = N exp[γ (t − T )]{cos[ωmin(t − T )]

− cos[ωmax(t − T )]}/(t − T ), (5.10)

where the normalization constant N guarantees that∫
dtUopt(t)2 = E.
In Fig. 5 we provide a typical example for Uopt(t) for γ = 0.

As the damping is increased the oscillations at early times
vanish and more of the pulses’ energy is shifted towards the
final time T , approaching a single peaked distribution close to
t = T .

VI. SUMMARY AND OUTLOOK

In summary, we have pointed out a superposition principle
for the simultaneous optimization for the final collective
response of a set of dynamical systems that permits us to predict
the optimal control field Uopt(t) from a weighted superposition
of the optimal force fields Uopt,n(t) of every single subsystem
separately. The weights are inversely proportional to the
temporal derivative at the final time, U ′

opt,n(T ). It is interesting
that this principle can be exact for systems for which a sum
of individual solutions to the state equations is not a solution,
but it is never exactly valid for those systems whose solutions
are additive. We have illustrated the SPSO for several systems
and suggested that even for those systems where it is not
strictly valid (nonlinear oscillators or two-level systems), it
can provide under certain situations (small total energy of the
control field or short interaction times) a surprisingly accurate
guidance to predict the optimal control field Uopt(t).

The SPSO opens the door to many interesting future studies,
one of which we sketch here. A research area where the SPSO
would find an obvious and direct application is the predicted
laser-induced decay of the quantum field theoretical vacuum
state. Here it is predicted that the photon energy of an extremely
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focused laser pulse can be converted to the creation of electron-
positron pairs [22]. Very recently, it was suggested by Kohlfürst
et al. [23,24] and Hebenstreit and Fillion-Gourdeau [25] that
optimal control theory could be applied to determine the time
dependence of the optimal electromagnetic field configuration
that would lead to the largest number of created electron-
positron pairs. Due to the enormous requirement on CPU
time, most studies so far in this research have focused on a
finite-dimensional optimization, where typically some phases,
amplitudes, or spatial length scales [26] were optimized.
However, if the spatial inhomogeneity of electromagnetic field
is neglected, which is sometimes nontrivial [27], then the
interaction of the time-dependent electric field with the vacuum
state can be exactly mapped onto an infinite set of uncoupled
two-level systems, whose energy separation exceeds twice the
rest mass energy of the electron, ωmin > 2mc2. The resulting
theoretical framework is then nearly identical to the one
examined in Sec. V, where the SPSO was shown to be ideally
suited to provide accurate predictions for short interaction
times.
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APPENDIX A: OPTIMAL CONTROL THEORY
FOR COLLECTIVE RESPONSE

We consider N independent dynamical systems,
each of which is characterized by I degrees of
freedom, represented by the I -dimensional vector
Yn(t) ≡ {Y1,n(t),Y2,n(t), . . . ,YI,n(t)}. We also assume that
each vector has to satisfy the corresponding equations:

dYn/dt = Kn[Yn,U (t)], (A1)

where the I -component vector Kn can be a nonlinear function
of Yn and the external force U (t). We assume that we know
the initial values Yn(t = 0).

The goal is to construct the best possible pulse shape U (t)
such that a certain collective quantity of all N systems, such
as a certain weighted superposition of the final amplitudes at
a given time T , becomes maximal. In other words, we might
want to optimize the objective J ′′,

J ′′ ≡
∑

n

∑
i

wi,nYi,n(T ) , (A2)

where we can choose specific factors wi,n to possibly weight
the contributions of each amplitude Yi,n of the nth system in a
desired way.

In order to limit the possible range of forces U (t), we
consider only those with a given “energy” E, i.e., U (t) has
to fulfill the constraint E = ∫

dtU (t)2, where the integration
limits on all temporal integrals are from now on from t = 0 to
t = T . We can introduce the single Lagrange multiplier λ0 to

account for this constraint and obtain an objective J ′:

J ′ =
∑

n

∑
i

wi,nYi,n(T ) + λ0

[
E −

∫
dtU (t)2

]
. (A3)

Furthermore, we introduce a set of Lagrange functions λn(t)
to account for the equations of motions (A1) as constraints.
As each system has several degrees of freedom, the notation
λn(t) refers to an I -component vector with the individual
components denoted by λi,n(t). We therefore arrive at the
objective J , which is a function of λ0 and a functional of U (t),
Yn(t), and λn(t).

J =
∑

n

{∑
i

wi,nYi,n(T ) +
∫

dt[λn(Kn − dYn/dt)]

}

+ λ0

[
E −

∫
dtU (t)

]2

. (A4)

It turns out that the notation can be simplified if we define
a collective Hamiltonian according to

H ≡
∑

n

λnKn =
∑

n

∑
i

λi,nKi,n. (A5)

Then the objective functional reduces to

J =
∑

n

{∑
i

wi,nYi,n(T ) −
∫

dtλndYn/dt

}

+ λ0

[
E −

∫
dtU (t)2

]
+

∫
dtH. (A6)

If we compute the variation of the objective δJ , we obtain

δJ =
∑

n

{∑
i

wi,nδYi,n(T )

−
∫

dt[δλndYn/dt + λnδ(dYn/dt)]

}

+ δλ0

[
E −

∫
dtU (t)2

]
− λ0

[∫
dt2UδU

]

+
∫

dtδH. (A7)

After integrating the terms containing δ[dYn/dt] by parts,
and using δYn(t = 0) = 0, due to the fixed initial conditions,
we write −λnδYn = −∑

iλi,nδYi,n and obtain

δJ =
∑

n

{∑
i

[
wi,n − λi,n(T )

]
δYi,n(T )

−
∫

dt[δλndYn/dt − dλn/dtδYn]

}

+ δλ0

[
E −

∫
dtU (t)2

]
− λ0

[∫
dt2UδU

]

+
∫

dtδH. (A8)
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Next, the variation of H amounts to

δH = (∂H/∂U )δU +
∑

n

{(∂H/∂Yn)δYn + (∂H/∂λn)δλn}.

(A9)

Using the specific definition of H , the partial derivatives
simplify to ∂H/∂λn = Kn. If we want the variation δJ to
vanish for the optimal solutions, we have to require that each
cofactor of each variation [δU, δλ0, δλn, δYn, and δYn(0)]
vanishes; i.e., we obtain

−λ02U + ∂H/∂U = 0, (A10)

E −
∫

dtU (t)2 = 0, (A11)

dYn/dt = ∂H/∂λn = Kn with Yn(t = 0) = Yn(0), (A12)

dλn/dt = −∂H/∂Yn = −λn∂Kn/∂Yn with λn(T ) = wn .

(A13)

Equation (A10) is the main control equation and can be
rewritten as U (t) = (2λ0)−1∂H/∂U . Together with Eq. (A5)
it leads to

U (t) = (2λ0)−1
∑

n

λn∂Kn(Yn,U )/∂U. (A14)

This is in general a very complicated and possibly even
transcendental equation that U (t) has to fulfill. This is es-
pecially true as each system can be coupled to the force
U (t) in a functionally different way. The single Lagrange
parameter (2λ0)−1 needs to be chosen such that Eq. (A11) is
satisfied; i.e., E − ∫

dt[(2λ0)−1∑
nλn∂Kn(Yn,U )/∂U ]2 = 0.

Therefore, we have the energy normalization factor:

(2λ0)−1 = E1/2

⎧⎨
⎩

∫
dt

[∑
n

λn∂Kn(Vn,U )/∂U

]2
⎫⎬
⎭

−1/2

.

(A15)

We arbitrarily chose here the rhs to be positive. However, the
correct sign of λ0 depends on the particular system.

APPENDIX B: SUPERPOSITION PRINCIPLE
FOR COLLECTIVE RESPONSES

Let us now examine special cases where the right-hand side
of the equation of motion (A12) is given by simple matrices.
The system we consider is dYn/dt = MnYn + VnU (t). The
temporally constant vector Vn permits us to couple the external
force to each amplitude Yi,n differently. Here the matrix Mn

is time independent, but the differential equation is inhomo-
geneous such that the sum of two individual solutions is in
general not a solution to the same differential equation.

The Hamiltonian reduces here to H =∑
nλn[MnYn + VnU (t)], such that the control equation

(A14) simplifies significantly to

U (t) = (2λ0)−1
∑

n

λn(t)Vn. (B1)

In this case, the costate equation also simplifies signif-
icantly. If we rewrite the products in terms of its compo-
nents, λnMnYn = ∑

iλi,n

∑
jMi,j,nYj,n, then ∂H/∂Yk,n leads

to ∂H/∂Yk,n = ∑
iλi,nMi,k,n = ∑

i λi,nM
T
k,i,n, where the su-

perscript T denotes the transposed matrix. In other words,
we obtain ∂H/∂Yn = MT

n λn, such that the resulting costate
equation dλn/dt = −MT

n λn [with λn(T ) = wn] no longer
depends on U (t). In other words, the transcendental equation
(A14) for the optimum force field becomes, therefore, a
solution solely in terms of the relevant Lagrange functions
λn(t) and Vn. This observation has significant implications
with regard to the ultimate goal of predicting the optimum
force U (t) for the collective response for all N systems from
the N optimum forces associated with each system separately,
denoted by Uopt,n(t) and given by

Uopt,n(t) = (2λ0,n)−1λn(t)Vn. (B2)

The collective optimum function Uopt(t) can therefore be
rewritten as a linear superposition of the individual optimizers
Uopt,n(t) with individual weight factors (2λ0,n) ≡ an.

Uopt(t) = (2λ0)−1
∑

n

anUopt,n(t). (B3)

As a side issue, we remark that the normalization E =∫
dtUopt,n(t)2 = ∫

dt[(2λ0,n)−1λnVn]2 leads to (2λ0,n) =
E−1/2[

∫
dt(λnVn)2]1/2.

As the Lagrange functions λn(t) are just mathematical
auxiliary functions and cannot be measured directly, we have
to show how the weight factors an ≡ (2λ0,n) are related to the
observed Uopt,n(t). The time derivative of Uopt,n(t) evaluated
at the final time T is given by

dUopt,n(t)/dt |t=T ≡ U ′
opt,n(t) = (2λ0,n)−1[dλn(t)/dt |t=T ]Vn

= −(2λ0,n)−1
(
MT

n λn|t=T

)
Vn

= −(2λ0,n)−1
(
MT

n wn

)
Vn, (B4)

such that the weight factors can be constructed via an =
(2λ0,n) = −(MT

n wn)Vn/U
′
opt,n(T ). We therefore arrived at the

final form of the superposition principle for collective re-
sponses. As one might expect, the an depend linearly on the
weight factors wi,n associated with each amplitude Yi,n for the
nth system. It is interesting to note that once the optimum
field Uopt,n(t) is measured for each system, also its temporal
derivative at the end point T needs to be calculated in order
to predict the optimum force field for the collective response.
The larger the slope of the individual optimizer Uopt,n(t) is at
the final moment in time, the less Uopt,n(t) will contribute to
the optimizer of the collective system.
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