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Kinks in chains with on-site bistable nondegenerate potential: Beyond traveling waves
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This paper revisits the well-known transition fronts (kinks) in chains of coupled oscillators with nondegenerate
on-site potentials. Usually, such transition fronts are considered in terms of traveling-wave solutions. We explore
the loss of stability of such traveling waves. Generically, it corresponds to one of the common scenarios for
fixed points of discrete maps. For example, one can encounter the quasiperiodic kink propagation (due to Hopf
bifurcation), or the Feigenbaum cascade of period doublings, leading to a chaoticlike propagation pattern. The
aforementioned scenarios show up, for instance, for triparabolic and ϕ4 on-site potentials. Numeric evidence
suggests that the loss of stability occurs due to resonances between the frequency associated with the kink
propagation, and the linear band gaps of the chain. Particular resonance mechanisms are model dependent. For
the classical Atkinson-Cabrera model with a biparabolic on-site potential, the stability threshold is estimated by
the simple means of linear algebra. The loss of stability in this model occurs through Hopf bifurcation. The results
are in good agreement with numerical simulations.
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I. INTRODUCTION

Lattice models of mobile defects and transition fronts
(kinks) are ubiquitous in physics. The idea dates back to a
seminal work of Frenkel and Kontorova (FK model), who used
a discrete variant of the sine-Gordon equation to describe the
motion of dislocations [1]. Atkinson and Cabrera [2] replaced
the sinusoidal potential with a simplified piecewise parabolic
one to obtain analytically solvable equations for the original
discrete lattice. A variant of the FK model with a triple-
parabola potential was adopted for twinning dislocations in [3].
A similar model was further used to describe transition between
dynamical phases, unlocking transitions, and Aubry transitions
in Josephson junction arrays [4]. In [5], Truskinovsky and
Vainchtein used the model with piecewise linear interparticle
forcing to analyze martensitic phase transitions. Among other
applications, one encounters detonation of primary explosives,
domain walls in ferroelectrics [6], cracks in metals [7,8], lattice
distortion around twin boundaries [9], dry friction [10], statis-
tical mechanics [11], crowdions in anisotropic crystals [12],
motion of fronts in semiconductor superlattices [13], dynamics
of carbon nanotube foams [14], interaction of nonrigid walls in
double-walled carbon nanotubes [15], superionic conductors
[16], calcium release in cells [17], and others [18].

Propagating transition fronts in the bistable medium are
usually explored as traveling waves [2,5,19–21]. It is com-
monly believed that in such models the front propagation
velocity is uniquely defined by the system parameters. In
linear chains with a piecewise parabolic on-site potential,
above a certain threshold of the energetic gain at each site (or,
equivalently, constant external forcing), the solution satisfies
an “admissibility condition,” meaning that at each instance
the chain is separated into two continuous segments; one
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is placed within the metastable well and the other within
the stable one [21,3]. Under this assumption, the model is
solvable analytically, and one can obtain the unique velocity
of the kink propagation. The consequent relation between
the applied stress and the velocity of propagation, called the
“kinetic relation,” consists of segments separated by resonant
velocities. It turns out that all the segments below the highest of
resonant velocities actually violate the assumed admissibility
condition and have to be removed due to inconsistency with
the admissible traveling-wave solution. It is important to notice
that the existence of “admissible traveling waves” does not
imply their stability. Rather, the traveling waves lose stability
above the first resonant velocity [19,22,23].

For linear chains with a smooth nondegenerate bistable on-
site potential, the analytical solution is not available. However,
numerical studies and asymptotic analytical approximations
indicate, in most cases, qualitatively similar behavior [19–21].
The stability of a driven topological soliton in a Frenkel-
Kontorova model in the so-called “fast region” has been studied
by Braun et al. [24]. In the underdamped case, the solution
loses stability by appearance of a discrete breather within
the tail. Recent studies devoted to the effect of nonlinear
interparticle interactions [25,20], demonstrated that in these
cases the propagation of the traveling-wave fronts is dominated
mostly by the nonlinearity, if the latter is strong enough.
In this case, the traveling fronts propagate in the form of
shock waves and reach very large energy concentration and
far supersonic velocity, and primarily depend only on general
shape characteristics of the on-site potential, rather than on its
fine details. Other studies [26,27], which also address the case
of generic coupling with on-site damping, propose a relation
between the transported kinetic energy, the dissipation ratio,
and the velocity.

Much less is known about the propagation of transition
fronts for the parameter region that does not allow the ad-
missibility conditions to be satisfied. This could happen for
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low values of the energetic gain, where the front moves
relatively slowly, and its velocity falls below the maximum
group velocity of the linear substructure of the chain [28].
For the Atkinson-Cabrera model, below a certain threshold,
traveling waves do not exist in this case [2,3,19,21,22]. This
conclusion motivated studies that tried to construct solutions
in the “problematic” region. Vainchtein in [3] implements
an analytical approach proposed by Flytzanis et al. [29] to
study a generalization of the Atkinson-Cabrera model. In
this model, the two convex parabolas are connected by a
concave one (a spinodal region) and form a continuously
differentiable function. If the spinodal region is wide enough,
solutions with more complex structure are stable. Specifically,
solutions with low velocities are stable and emit waves in both
directions. Similar results were also observed by Peyrard and
Kruskal [30] and Earmme and Weiner [22]. Another interesting
observation, obtained numerically, is that by implementing
a fully nonlinear potential, the slow solutions are further
stabilized. The authors of [23] focus on the degenerate case
of [3], where the spinodal region is with zero width, or equiv-
alently the Atkinson-Cabrera model. By applying a similar
analytical approach, new solutions, which apparently complete
the gap where the basic admissibility conditions are violated,
are constructed. However, numerical simulations indicate that
these solutions are unstable. Therefore, it seems that the basic
piecewise parabolic model cannot be applied to describe slow
propagation of dislocations. In [31] a trilinear nearest-neighbor
interaction is considered and is also solved by applying the
technique of [29]. As the spinodal region is increased, one
encounters solutions that emit waves of different frequencies
in both directions, and a kinetic relation with several segments
separated by velocity gaps.

At the same time, as previously noted, even if the admis-
sibility conditions are satisfied (put simply, the kink velocity
exceeds the maximum linear group velocity in the system), it
does not mean that such traveling-wave propagating front will
be stable. The propagating front can have more complicated
structure than the one enforced by the traveling-wave ansatz.
For instance, rich patterns of possible front propagation were
observed in continuous models of detonation waves based on
the Burgers equation. The authors of [32] propose an extension
of the Fickett model [33] to describe a chemical reaction with
an induction zone followed by a heat release zone. These
models yield pulsating and even chaotic propagating solutions.
In [34], a model that predicts a shock wave in detonation in
chemical mixtures is considered. Although this model is a very
simple scalar first order partial differential equation, it is rich
enough to produce instability and chaos through the classical
sequence of period doublings.

In discrete lattices such kinks, that are not traveling waves,
are less known and less explored. However, from general
considerations, they should be ubiquitous in the chain models
with appropriate structure. The reason is that the problem of the
front propagation may be reformulated as a nonlinear map, and
the traveling-wave solution corresponds to the fixed point of
this map. When the parameters vary, such fixed points can lose
stability through generic and well-known bifurcation scenarios
[35,36]. After such bifurcations, one expects to observe stable
propagating fronts that do not obey the traveling-wave ansatz.
In the current paper, we describe such kinks for two benchmark

FIG. 1. A generic on-site bistable potential U2(ϕ).

models and illustrate physical mechanisms underlying the loss
of stability of the traveling waves.

II. DESCRIPTION OF THE GENERAL MODEL

To illustrate the general idea, we consider a common
chain of oscillators with a smooth nearest-neighbor coupling
potential U1(ϕn − ϕn+1) subject to a bistable on-site potential
U2(ϕn). The chain is described by the following set of equa-
tions:

ϕ̈n + U ′
1(ϕn − ϕn+1) + U ′

1(ϕn − ϕn−1) + ξ ϕ̇n = −U ′
2(ϕn).

(1)

ϕn is the displacement of the nth particle from the initial
equilibrium state meta-stable); ξ is the linear on-site damping
coefficient. The mass of each particle is set to unity.

The generic on-site potential U2 is characterized by the
energetic effect Q, the height of the potential barrier B, the
coordinate of the barrier b, and the coordinate of the stable state
ϕ∗, as illustrated in Fig. 1. The condition for nondegeneracy
of the potential is Q > 0.

We consider the propagation of a general transition front
(not necessarily a traveling wave) and therefore assume that
every particle passes for the first time from the metastable to
the stable well in successive order. Each particle passes the
barrier for the first time at certain time instance tk: ϕk (tk ) =
b, ti < tj∀i < j ; i, j ∈ Z. Without loss of generality we set
t0 = 0. The state vector is defined as follows:

X̄(t ) =
(

�̄

V̄

)
, �̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
ϕn−1(t )
ϕn(t )

ϕn+1(t )
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, V̄ = d�̄

dt
. (2)

Then, if one denotes X̄k = X̄(tk ), then X̄k constitutes a
complete set of initial conditions for system (1) at time instance
t = tk . Therefore, it defines the state of the system when the
next particle will cross the barrier for the first time. Formally,
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this obvious fact can be written down as a formal smooth map:

X̄k+1 = F(X̄k ). (3)

Then, we define an invertible “shift backwards” operator
acting on X̄(t ) as follows:

Ŝ(X̄) =
(

Q̄

P̄

)
, qn = ϕn+1, P̄ = dQ̄

dt
. (4)

A similar idea with the introduction of the cyclic shift
matrix was used for stability analysis of the kink in a driven
Frenkel-Kontorova chain with periodic boundary conditions
[24,37]. We introduce an auxiliary variable Ȳk = ŜkX̄k and
rewrite mapping (3) as follows:

Ȳk+1 = Ŝk+1F̄ (Ŝ−kȲk ). (5)

The discrete map (5) is smooth due to the smoothness
of system (1). Moreover, if system (1) has traveling-wave
solutions in a form ϕn(t ) = ϕ(n − vt ), then these solutions
correspond to the fixed points of the map (5). In this case tk =
k/v and v is the front velocity. Thus, as explained above, we
expect that with variation of the system parameters these fixed
points of the smooth map will lose stability through generic
scenarios of codimension 1 and yield the stable propagating
fronts of transition, which are not traveling waves. In the next
section, this possible loss of stability of the kinks is exemplified
for two well-known benchmark models.

III. EXAMPLES

A. Triparabolic potential

As the first example, we examine a model with a linear
nearest-neighbor coupling U1(ϕ) = ϕ2/2 and a differentiable
triparabolic on-site potential U2. Similar potentials were pre-
viously considered in several works as a generalization of
the biparabolic potential by inclusion of a nonconvex region
that smoothens the cusp [31,23,3]. The third intermediate
nonconvex region is often addressed as a “spinodal region.”

The triparabolic potential is considered as a smoothening of
the biparabolic potential with equal well curvatures ω2

0 and the
potential barrier situated at the distance b = √

2B/ω0 from
the metastable well. To smoothen the cusp and obtain the
differentiable function, one introduces the spinodal region of
width 2δ with appropriate matching (a plot is presented in
Fig. 2):

U2(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

ω2
0ϕ

2

2 ϕ < b − δ

asϕ
2 + bsϕ + cs b − δ < ϕ < b + δ

ω2
0 (ϕ−ϕ∗ )2

2 − Q ϕ > b + δ

,

as = 1

4

ω2
0(2δ − ϕ∗)

δ
, bs = ϕ∗ω2

0(b − δ)

2δ
,

cs = −ϕ∗ω2
0(b − δ)2

4δ
, ϕ∗ =

√
2B + √

2(B + Q)

ω0
.

(6)

It is important to notice that B is the energetic barrier of the
initial nonsmooth biparabolic potential. The actual potential

FIG. 2. Triparabolic bistable on-site potential.

barrier B∗ of the triparabolic potential can be expressed as

B∗ = cs − b2
s

4as

. (7)

The force F2(ϕ) = −U ′
2(ϕ) can be expressed in symmetric

form with respect to the bias force σ , which is addressed in the
literature as a configurational force [21]:

F2(ϕ) = σ +

⎧⎪⎨
⎪⎩

f1 ϕ < b − δ

f2 b − δ < ϕ < b + δ

f3 ϕ > b + δ

,

σ = −ω0

2
[
√

2B −
√

2(B + Q)], f1 = −ω2
0ϕ − σ,

f2 = −asϕ − bs − σ, f3 = −ω2
0(ϕ − ϕ∗) − σ. (8)

This representation is symmetric in terms of f1(b − δ) =
−f3(b + δ) for any Q, whereas the term that is responsible
to the drive is the configurational force σ , with the following
equivalent condition for nondegeneracy: Q �= 0 ⇔ σ �= 0.

1. Particular case δ = 0: Classical Atkinson-Cabrera model

When δ = 0, the potential U2 reduces to the well-known
biparabolic on-site potential (the region b − δ < ϕ < b + δ

disappears). This model has an especially simple structure.
As was mentioned above, here we consider the case of equal
well curvatures. Therefore, between the instances when some
particle crosses the barrier, the system is in fact linear. This
simplification allows us to explore the stability of well-known
kink solution [2,19–21] in explicit manner with the help of
Floquet analysis.

One should explore the evolution of small perturbations
of fixed points of map (5) in a linear approximation. This
task requires computation of the monodromy matrix which
describes the evolution of perturbation of the state vector (2),
for a single period.

According to the theory, the loss of stability occurs when at
least one eigenvalue leaves the unit circle in the complex plane.
We select the start of the period, τ , immediately after particle
m − 1 has passed the energetic barrier ϕm−1 = b and the end
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FIG. 3. Floquet multipliers at the transition from (a) stable traveling wave, ω0 = 1.13, to (b) an unstable one, ω0 = 1.15, for a model with
a biparabolic bistable on-site potential. Parameters: Q = 0.5, B = 0.5, ξ = 0, n = 500, m = 250.

of the period—the time instance, when the particle m crosses
the barrier. In the selected model, the evolution of the state
vector (and, therefore, the evolution of its small perturbations)
between the barrier crossings obeys a linear equation and thus
does not depend on the unperturbed solution. Formally, the
linear evolution of the state vector is defined by operator Â:

˙̄X = ÂX̄. (9)

The instance when the particle crosses the barrier corre-
sponds to a discontinuous jump of acceleration of this particle.
The value of this jump depends on the unperturbed solution for
the kink. The effect of such discontinuities on the evolution of
small perturbations of the phase flow is conveniently taken into
account with the help of so-called saltation matrices [38–41].
We denote the appropriate “saltation operator” for our infinite
chain as D̂. Thus, the monodromy operator may be formally
written as follows:

M̂ = Q̂D̂, Q̂ = eτÂ. (10)

For a genuine infinite chain, the eigenvalues of the mon-
odromy operator will not depend on the exact site at which the
crossing occurs. However, for practical calculations we need to
truncate the state vector and to use finite matrices instead of the
operators. In the considered classical Atkinson-Cabrera model,
all coupling springs have the same unit stiffness, and all on-site
springs have equal stiffness ω2

0. Therefore, the truncated matrix
A of the linear evolution does not depend on the specific sites of

the truncation, but only on the length of the truncated fragment
of the chain. The explicit shape of this matrix is given by block
construction in (11), where I is a n × n identity matrix, 0 is
a n × n zero matrix, and the Laplace adjacency matrix L is
presented below:

A2n × 2n =
(

0 I

L 0

)
, (11)

Ln × n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 − ω2
0 1 0 · · · 0

1 −2 − ω2
0

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . −2 − ω2
0 1

0 · · · 0 1 −1 − ω2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

As for the saltation matrix, we construct it in a way that
the discontinuity site is inside the truncated fragment of the
chain, and not close to its boundaries. The exact meaning of
these conditions will be clarified below. The saltation matrix
is constructed geometrically in the phase plane in terms of
the normal ν to the switching surface � that in our case
is simply � = ϕm, f −

p , and f +
p , which are computed as

FIG. 4. Loss of stability of the traveling wave with a biparabolic bistable on-site potential; (a)ω0 = 1.13, (b)ω0 = 1.15. Common parameters:
Q = 0.5, B = 0.5, ξ = 0, t = 1000.
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fp = ˙̄X at the instances before and after crossing the barrier,
respectively [38]:

D = I + (f +
p − f −

p )νT

νT f −
p + ∂ν

∂t

∣∣
t=tp

. (13)

In our case of the acceleration discontinuity, the saltation
matrix is presented by block construction in (14), where 0
is a n × n zero matrix, I is a n × n identity matrix, and
C is presented below in Eq. (15). The particle that changes
acceleration at the particular instance is m, and for this reason
(m,m) is the only nonzero term in matrix C.

D2n × 2n =
(

I 0
C I

)
, (14)

Cn× n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
...

. . .
...

0 · · · 0

0
...
0

0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0 ϕ̈+

m−ϕ̈−
m

ϕ̇−
m

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

0
...
0

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

The values that are required for the computation of the
monodromy matrix, ϕ̈+

m (the acceleration of particle m after
crossing the barrier), ϕ̈−

m (the acceleration of particle m before
crossing the barrier), ϕ̇−

m (the speed of particle m before cross-
ing the barrier), and the period τ = 1/V are straightforwardly
extracted from the known analytical solution [20,21]. It should

FIG. 5. Bifurcation diagram for the chain with triparabolic bistable on-site potential; Fixed parameters: Q = 0.5, B = 0.5, ξ = 0.005.
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be stressed that this single off-diagonal term of the saltation
matrix depends on the solution for the unperturbed kink and
governs the loss of stability.

In the numerical simulations, the truncated length, n, is
chosen to be large enough, and we check that further elongation
does not affect the stability threshold. The length n = 500 was
found to be more than sufficient for this purpose. Then, the
problem becomes easy enough to be handled by a personal
computer. The site of the barrier crossing, m, is chosen in
the middle of the chain. Yet, it was checked that the stability
thresholds are not affected in any noticeable manner by
displacement of the site by 50 units in each direction.

We gradually increase the bifurcation parameter ω0 and
examine the eigenvalues of M . At ω0 = 1.13 all eigenvalues
still are at the unit circle, whereas, at about ω0 = 1.15, one
observes two eigenvalues that detach from the unit circle, thus
indicating the loss of stability. These detaching eigenvalues are
a complex conjugate, and thus one deals with Hopf bifurcation
(see Fig. 3). To verify the prediction, the system is simulated
numerically for the values of ω0, which correspond to the states
right before and right after the stability loss. The results are
presented in Fig. 4. One observes that the loss of stability
indeed occurs close to ω0 = 1.15 and is characterized by
radiation on both sides of the front, in complete correspondence
to the analytical predictions.

2. Numerical study of the case δ �= 0

To numerically examine the pattern of loss of stability for
a triparabolic potential with a nondegenerate spinodal region
(δ �= 0), we integrate Eq. (1) with the specified potentials
U1, U2. For a sufficiently long chain, the transition front is
initiated by applying an initial velocity to the first particle.
Specifically, throughout the simulations the following condi-
tion was used, ϕ̇1(t = 0) = 10, though the exact magnitude
was not found to influence the velocity of propagation in the
steady state. In Sec. III C the effect of initial conditions is
further addressed.

FIG. 6. Loss of stability of the traveling-wave solution with a
triparabolic bistable on-site potential. Solid line: theoretical limit;
circles: numerical data. Fixed parameters: Q = 0.5, B = 0.5, ξ =
0.005.

FIG. 7. FFT of a tail particle in the double-period region
of the bifurcation diagram. Q = 0.5, B = 0.5, ξ = 0.005, δ =
0.2, ω0 = 1.65.

Then one parameter is varied slowly enough to ensure an
evolution that converges to the steady state of the kink at any
instantaneous parameter value. The damping (0 < ξ 	 1) is
incorporated to stabilize the numerical solutions, and is chosen
to be low enough, such that the obtained solutions can be
considered as a small perturbation of the undamped case. It was
verified that further decrease of the damping affected the con-
vergence time without any noticeable effect on the bifurcation
diagrams. In this example, the frequency of free oscillations
in the well ω0 is selected as the bifurcation parameter. The
velocity of kink propagation V is instantaneously evaluated in
the course of simulation, as the inverse of the time required for
the front to pass between two neighboring sites:

V = Vj = (tj − tj−1)−1. (16)

FIG. 8. Bifurcation diagram of the front velocity as a function of
ϕ∗ change. B = 0.47, Q = 0.5, ξ = 0.02.
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FIG. 9. Coexistence of propagating traveling waves for the same set of parameters: (a) V = 0.404, (b) V = 0.2877. Parameters: ϕ∗ =
1.9, Q = 0.5, B = 0.47, ξ = 0.02.

In Fig. 5 we present a diagram for the kink velocity V as a
function of bifurcation parameter ω0. Different curves in Fig. 5
correspond to different values of δ. The left curve plotted for
δ = 0 corresponds to the Atkinson-Cabrera model, discussed
above. As δ increases, the diagrams deviate considerably from
the biparabolic case. For the triparabolic on-site potential, for
all cases besides δ = 0 we clearly resolve a period-doubling
cascade, apparently leading to chaoticlike propagation of the
kink (appears as a “scatter” of points in the plot).

As mentioned above, for the case of the traveling-wave
kink one obtains Vj = v = const. for all particles. The single-
branch dependence of V on ω0 implies the stability of the
traveling-wave kink. Multiplication of the branches means that
for the same set of parameters one records different values of
Vj . Consequently, the bifurcation of the single-branch curve
corresponds to the loss of stability of the traveling-wave kink.

An important question to consider is what triggers the initial
loss of stability of the traveling wave. The dispersion relation
within the convex wells reads

ω =
√

ω2
0 + 4sin2 k

2
. (17)

From Eq. (17) it follows that the frequency of oscillation of
particles within the tail is bounded in the propagation zone:

ω0 � ω � ωtail max =
√

ω2
0 + 4. (18)

We compare the propagation zone with the natural fre-
quency related to the kink propagation in the discrete chain.
The front passes the barrier with period τ = 1/V and the
associated cyclic frequency is defined as follows:

ωp = 2π

τ
= 2πV. (19)

For the considered case, we observe the loss of stability
of the traveling-wave solution, when the kink propagation
frequency approaches the upper passband: ωp ≈ ωtail max;
hence, the following approximate analytical criterion can be
suggested for the stability of the traveling-wave kinks in the
considered model:

V � 1

2π

√
ω2

0 + 4. (20)

To verify the criterion (20), we numerically determine the
actual point of stability loss (ω0,cr , Vcr ) for different values
of δ in Fig. 6. The numerical results are in good agreement
with the analytical prediction for δ → 0. This can shed light
on the limit of stability of the celebrated Atkinson-Cabrera
model which corresponds to δ = 0, though it requires a more
specific exploration in the limit ξ → 0. As δ increases, the
numerical results deviate from the theoretical curve. This may
be explained by the influence of the spinodal zone that governs
the interaction within the transitional area.

Once the stability of the traveling wave is lost, an apparently
stable solution with a double spatial period of propagation

FIG. 10. An oscillatory front velocity following a Hopf bifurcation of the fast velocity branch. Parameters: ϕ∗ = 1.871, Q = 0.5, B =
0.47, ξ = 0.02.

012220-7



I. B. SHIROKY AND O. V. GENDELMAN PHYSICAL REVIEW E 98, 012220 (2018)

FIG. 11. Modulation amplitude of Hopf bifurcation, double log-
arithmic scale. Slope of the line is equal to 1

2 . Parameters: ϕ∗
cr =

1.8958, ξ = 0.02, Q = 0.5, B = 0.47.

appears. Numerical sampling within the double-period region
reveals that the loss of stability results in further modifications
of the solution. First, at the exact point of stability loss, an
additional frequency equal to ωtail max appears in the spectrum
of the tail particles. In total, at this instance the spectrum of the
tail consists of ωtail max and the frequency ω in accordance
with (17), with phase velocity equal to the velocity of the
kink. As parameter ω0 increases, the frequencies of the tail
remain almost constant. A typical fast Fourier transform (FFT)
is taken for δ = 0.2, ξ = 0.005 and is presented in Fig. 7,
which demonstrates this point. Further dynamics of the kink
beyond the stability loss requires additional analysis.

FIG. 12. Loss of stability due to Hopf bifurcation; Solid line:
frequency band limits; circles: propagation frequency at stability loss.
Parameters: ξ = 0.02, B = 0.47.

FIG. 13. Solution within the period-doubling region. Dashed red:
averaged front velocity according to (22). Fixed parameters: ξ =
0.02, Q = 0.5, B = 0.47.

B. ϕ4 potential

1. Exploration of the solutions and bifurcations

Here we consider an example of a “fully nonlinear
potential”—the simple and very popular ϕ4 model with linear
nearest-neighbor coupling U1 = (ϕn − ϕn+1)2/2 and quartic
on-site potential U2(ϕ) = a2ϕ

2 + a3ϕ
3 + a4ϕ

4 with coeffi-
cients adjusted to deliver the desired values of Q, B, ϕ∗.
Bifurcation diagrams are produced for the control parameters
ϕ∗ and Q. In the simulation, one of these parameters is varied
slowly enough to ensure a front propagation that corresponds
to the steady state at the instantaneous parameter. The initiation
here is similar to that in Sect. III A 2. It is important to notice
that for some parameters, where two solutions coexist, each
solution is initiated in the region where it apparently is stable
and unique and then the coexistence region is approached by
numerical continuation for each solution in the appropriate

FIG. 14. Frequency ratio at the period-doubling loss of stability
for the ϕ4 potential. Fixed parameters: ξ = 0.02, B = 0.47.
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FIG. 15. Wave propagation in the chaoticlike region: (a) ϕ = ϕ(n); t = 2000, (b) front location as a function of time, (c) front velocity as
a function of time. Parameters: ϕ∗ = 1.77, Q = 0.5, B = 0.47, ξ = 0.02.

direction, in order to explore the hysteretic behavior. Further
comments on the initiation and stability of the solutions are
presented in Sec. III C. Again, the measured quantity is the ve-
locity of transition of the front between two neighboring sites.

First, we present the bifurcation diagram of the front
velocity as a function of parameter ϕ∗ (Fig. 8). It is important
to notice that changing the parameter ϕ∗ affects parameter a2

that governs the frequency of free oscillations within the stale
well.

One observes that for ϕ∗ > 1.94 a single solution exists.
The latter is similar to, for instance, the well-known traveling-
wave fronts, which satisfy the admissibility conditions in the
Atkinson-Cabrera model. In the region 1.86 < ϕ∗ < 1.94,
two different solutions coexist. One is a continuation of the
ϕ∗ > 1.94 branch, while for the second, the front velocity is
about 40% lower. The structure differences as well as the dif-
ferent rates of propagation of the two traveling-wave solutions
are demonstrated in n − t − ϕ space in Fig. 9. Stability of
both waves was verified numerically by introducing relatively
strong random perturbations (see Sec. III C for further details).
The difference between the velocities is about 40%, and the
frequency content considerably differs.

An additional interesting feature is that the upper branch
undergoes the Hopf bifurcation at about ϕ∗ = 1.897. Conse-
quently, over the upper branch in the region 1.861 < ϕ∗ <

1.897, the stable propagating front violates the traveling-wave
ansatz and propagates with oscillations. This phenomenon may

be related to stick-slip behavior reported in similar systems
[10,42]. Example of such behavior is presented in Fig. 10. In
Fig. 11 we show a typical illustration for the Hopf bifurcation
relationship (21) between the bifurcation parameter |ϕ∗ − ϕ∗

cr |
and the modulation amplitude of V in the region of quasiperi-
odic propagation. The amplitude of the front oscillations starts
growing as ϕ∗ reaches the point ϕ∗ = 1.861.

aV ∼ √|ϕ∗ − ϕ∗
cr |. (21)

Similarly to the previous subsection, we assume that the
Hopf bifurcation is caused by certain resonance between
the discrete kink frequency and the passband. To reveal this
relationship, we look for the bifurcation points numerically in
the Q − ϕ∗ plane and evaluate the frequency of propagation
ωp (19). Also, we estimate the local curvature of the stable well
ω̃0 in the vicinity of its minimum as a Taylor expansion of the
ϕ4 potential for the particular set of parameters B − Q − ϕ∗.
Then, the linear propagation zone obeys ω̃0 < ω <

√
ω̃2

0 + 4.
We show in Fig. 12 the actual loss of stability values ωp. It
turns out that in this case loss of stability occurs due to the
resonance with the lower passband.

As the value of ϕ∗ is further decreased, the front velocity
enters a “period-doubling” cascade. The first doubling from
a single branch to two branches occurs at ϕ∗ = 1.85 and the
lowest parameter value at which distinct branches of period
doubling are observed is ϕ∗ = 1.791, with eight branches.
Within the doubling region the stationary propagation can be

FIG. 16. Bifurcation diagram of the front velocity as a function of Q change: (a) ϕ∗ = 1.84, (b) ϕ∗ = 1.8. Fixed parameters: ξ = 0.02, B =
0.47. Dashed red: averaged front velocity according to (22).
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FIG. 17. Sensitivity of the solution to on-site damping change.
Parameters: ϕ∗ = 1.83, Q = 0.5, B = 0.47.

described in an averaged sense as follows:

〈V 〉 = m∑m
j=1 �tj

= m∑m
j=1

1
Vj

. (22)

Here m is the number of branches of front velocity for
the specific parameters ϕ∗,Q. The averaged front velocity is
demonstrated in Fig. 13.

Again, it is reasonable to assume that there exists a certain
resonance that triggers the entrance into the period-doubling
cascade. Similarly to the previous analysis of the Hopf bifurca-
tion, we determine the stability loss in terms of Q − ϕ∗ values
and estimate the approximate curvature ω̃0 at each parameter
set. Then ratio (23) is evaluated for different values of Q and
plotted in Fig. 14. One can observe that the ratio is very close
to 2 : 1 and asymptotically tends to it for high Q.

ωtail max

ωp

=
√

ω̃2
0 + 4

ωp

. (23)

Finally, the decrease in parameter ϕ∗ to the region ϕ∗ <

1.79 leads to an apparently chaotic propagation of the kink.
This appears in Figs. 8 and 13 as a scatter of points, yet at
each section (for each value of ϕ∗) it corresponds to a single
nontraveling wave. More exactly, the kink propagates with

FIG. 18. Piecewise constant initiation profile.

certain average velocity, with chaoticlike oscillations around
this average value. Figure 15 presents an example of such a
response. Subplot (a) shows that visually the response shape
does not deviate much from typical responses in the nonchaotic
regions. However, when exploring the plots of front location
(b) and front velocity (c) as a function of time, the chaos is
visually evident.

In Fig. 16 additional bifurcation diagrams are presented
for control parameter Q for different fixed values of ϕ∗. At
ϕ∗ = 1.84 the period doubling occurs at Q = 0.11 and a period
halving at Q = 0.81; hence this section does not lead to the
chaoticlike behavior. By taking a different section, ϕ∗ = 1.8,
as Q is increased, the periods are doubled to the total number
of 16, and at about Q = 0.78 the response is again chaoticlike.

2. Effect of damping

Throughout the simulations of this subsection, the on-site
damping was chosen as ξ = 0.02 to faster suppress effects of
initial conditions that turned out to decay very slowly without
the presence of damping. Here, we examine the sensitivity of
the solution to damping changes. We start the simulation at
ξ = 0.02 and gradually decrease it to zero. The result that is
presented in Fig. 17 implies that the solution is only slightly
modified, so, we might expect some quantitative modifications
of the bifurcation diagrams due to the damping.

FIG. 19. Effect of initial conditions for a set of parameters with a single stable solution; (a) piecewise at t = 0, (b) ϕ̇1(t = 0) = 3, (c)
ϕ̇1(t = 0) = 50. On-site potential: ϕ4 with parameters ϕ∗ = 1.83, Q = 0.5, B = 0.47, ξ = 0.02.
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FIG. 20. Numerical stability test of coexisting solutions. On-site
potential: ϕ4 with parameters ξ = 0.02, Q = 0.5, B = 0.47.

C. Numerical exploration of the stability and sensitivity
to initial conditions of the obtained solutions

Selection of initial conditions plays a key role in nonlinear
systems. This is particularly crucial when the stability of
solutions is examined and when several apparently stable
solutions coexist with a limited basin of attraction for each
one of them. Hence, in this subsection we examine how the
results are affected by different perturbations of the assumed
“fixed point” solutions.

We first address parameter zones where a single stable
solution is assumed. Here we present an example taken for
the ϕ4 potential in accordance with the diagram in Fig. 8 for
ϕ∗ = 1.83 where a single solution with two periods exists.
We instantiate the dynamic response in three different ways:
(a) a piecewise constant profile with the left part placed
within the minimum of the stable well (ϕ∗) and the right part
within the minimum of the metastable well (Fig. 18), and
(b) and (c) two initial values of velocity of the first particle:
ϕ̇1(0) = 3, ϕ̇1(0) = 50. The comparison of the corresponding
time series (Fig. 19) shows that all three solutions converge
to the same steady state, which indicates stability of a single
solution for the given set of parameters as expected. The results
were similar for other combinations of parameters for both
triparabolic and ϕ4 potentials in the regions where a single
stable solution was assumed.

In theϕ4 model a coexistence of two solutions was observed.
To examine the stability of the two branches of the coexisting
solutions, we perform the following numerical test. During
the gradual change of parameter over each branch we turn
on a white Gaussian noise over the entire chain during some
interval of parameter value and then shut it off. Specifically,
over the upper branch the noise is turned on at ϕ∗

on = 1.92,
and off at ϕ∗

off = 1.919; over the lower branch the noise is
turned on at ϕ∗

on = 1.91 and off at ϕ∗
off = 1.911. The results

are shown in Fig. 20. In both cases the response is stabilized to
the respective branch after a period of time (or equivalently a
period of parameter change). This might indicate the stability
of both coexisting solutions.

IV. CONCLUDING REMARKS

To conclude, we reveal that regular codimension 1 bifur-
cations of the fixed points in an appropriately defined smooth
map correspond to quite unusual patterns of the transition front
propagation in chains with a bistable nondegenerate on-site
potential. One encounters quasiperiodic, multiperiodic, and
chaoticlike propagation—all these solutions are beyond the
common traveling-wave behavior. These propagation regimes
can be interpreted as the propagating kinks with coupled
oscillatory states.

Several mechanisms of stability loss were revealed for the
considered triparabolic and ϕ4 model examples. In all of the
examined cases, the loss of stability was due to the resonances
between the kink propagation frequency and the boundaries of
the propagation zone of the oscillatory tail. However, due to
the variety of possible resonances revealed [with either upper
or lower limits of the passband, and either 1:1 or 2:1 frequency
ratio] such interactions turn out to be substantially model
dependent. For the Atkinson-Cabrera model, one can obtain
explicit semianalytic evaluation of the stability threshold with
the help of a relatively simple approach based on linear algebra,
instead of heavy direct numeric calculation of the monodromy
matrix. In this model, the loss of stability of the traveling-wave
kink occurs far above the limit of the admissibility conditions.
From a physical point of view, after the loss of stability one still
observes the propagating transition front with an oscillatory
tail. However, this solution does not obey the traveling-wave
ansatz, the oscillatory tail has a complicated structure, and the
kink velocity is constant only on average.

It is well known that, for instance, for the celebrated
continuous degenerate ϕ4 model one encounters oscillatory
states around the stable kink solutions [43]. However, in the
considered system the situation is substantially different: The
kinks with coupled periodic or chaotic oscillatory states can
propagate through the lattice in the regions of the parametric
space where the kinks without such coupled states do not exist
or are unstable. Formation of a discrete breather attached to
the kink has been reported also in a driven Frenkel-Kontorova
chain [24].

The last remark is that the observed regularities follow only
from the general properties of map (5). One can expect that the
regimes of front propagation beyond the common traveling
waves will be ubiquitous in similar lattice models, both in one
dimension and in higher dimensions.
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