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Classical “kicked Hall systems” (KHSs), i.e., periodically kicked charges in the presence of uniform magnetic
and electric fields that are perpendicular to each other and to the kicking direction, have been introduced and
studied recently. It was shown that KHSs exhibit, under generic conditions, the phenomenon of “superweak
chaos” (SWC), i.e., for small kick strength κ a KHS behaves as if this strength were effectively κ2 rather than κ .
Here we investigate quantum-dynamical and spectral manifestations of this generic SWC. We first derive general
expressions for quantum effective Hamiltonians for the KHSs. We then show that the phenomenon of quantum
antiresonance (QAR), i.e., “frozen” quantum dynamics with flat quasienergy (QE) bands, takes place for integer
values of a scaled Planck constant h̄s and under the same generic conditions for SWC. This appears to be the most
generic occurrence of QAR in quantum systems. The vicinity of QAR is shown to correspond semiclassically to
SWC. A global spectral manifestation of SWC is the fact that a scaled QE spectrum as function of h̄s, at fixed
small value of κ/h̄s, features an approximately “doubled” structure. In the case of standard (cosine) potentials, this
structure is that of a universal (parameters-independent) double Hofstadter butterfly. Also, for standard potentials
and for small h̄s (semiclassical regime), the evolution of the kinetic-energy expectation value exhibits a relatively
slow quantum-diffusive behavior having universal features. These approximate spectral and quantum-dynamical
universalities agree with predictions from the effective Hamiltonian.
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I. INTRODUCTION

Low-dimensional quantum systems, whose classical coun-
terparts are nonintegrable with chaotic dynamics, exhibit a rich
variety of behaviors both in semiclassical and fully quantum
regimes. Two basically different classes of such systems
have become paradigmatic in the field of “quantum chaos.”
The first class includes the kicked rotor (KR) and several
variants of it [1–15]. The classical KR features unbounded
chaotic diffusion on a cylindrical phase space for sufficiently
strong nonintegrability or kicking parameter [2–5]. Quantally,
this diffusion is suppressed due to dynamical localization in
angular-momentum space for generic (irrational) values of
a scaled (dimensionless) Planck constant h̄s [1,7,9,14]. The
dynamical localization is a consequence of an essentially
discrete quasienergy (QE) spectrum [7]. For rational h̄s, the
QE spectrum is band continuous, leading to the diametrically
opposite phenomenon of quantum resonance (QR) [8,10–12],
i.e., a quadratic growth in time of the expectation value of
the quantum KR kinetic energy. Experimental realizations of
both dynamical localization [13] and QR phenomena [14,15]
were achieved using atom-optics methods with cold atoms or
Bose-Einstein condensates.

A second class of systems, introduced by Zaslavsky and
coworkers [16,17] and subsequently generalized in other works
[18–22], are charged particles periodically driven or kicked by
a spatially periodic potential in a direction perpendicular to
a uniform magnetic field B. Unlike the classical KR, these
systems can exhibit, at least for some parameter values, an
unbounded chaotic diffusion on an infinite “stochastic web” in
the phase plane for arbitrarily small nonintegrability strength
[16,17,21,22]. Quantally, the QE spectrum of such weak-chaos
web systems was numerically shown to have a fractal structure

for generic h̄s [23], leading to quantum diffusion [23–25],
i.e., an almost linear increase in time of the kinetic-energy
expectation value. QR again occurs in these systems for
rational h̄s.

Recently, another class of systems has been introduced and
their classical dynamics was studied. These are the “kicked
Hall systems” (KHSs) [26], obtained from the Zaslavsky
systems by adding a uniform electric field E perpendicular
to both the magnetic field B and the kicking direction. It
was shown [26] that for resonant values of B and E and
for small kicking strength κ there exists a generic family of
periodic kicking potentials for which the Hall effect from B
and E significantly suppresses the weak chaos in the Zaslavsky
systems, replacing it by “superweak” chaos (SWC). This
means that the system behaves as if the kicking strength wereκ2

rather than κ . Classical manifestations of SWC are a decrease
in the instability of periodic orbits, a narrowing of the chaotic
layers, and slower chaotic diffusion on stochastic webs, relative
to the ordinary weak-chaos case (E = 0) [26].

In this paper, we investigate quantum-dynamical and spec-
tral manifestations of SWC in KHSs by restricting ourselves,
for simplicity, to stochastic webs with square rotational sym-
metry. The content and organization of the paper are as follows.
In Sec. II, we present a summary of relevant properties of
classical KHSs (see more details in Ref. [26]). In Sec. III,
the basic evolution operator for the quantum KHS and general
expressions for quantum effective Hamiltonians are given. In
Sec. IV, we show that for integer values of h̄s and for the same
generic family of kicking potentials for which SWC occurs,
there takes place the phenomenon of quantum antiresonance
(QAR), i.e., frozen quantum dynamics with flat (infinitely
degenerate) QE bands. This QAR in KHSs is much more
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generic than the rare QAR occurring in the KR [8] (or variants
of it [9]) and in the Zaslavsky systems [21,25]. We also show
that the vicinity of QAR (h̄s close to integers) corresponds
semiclassically to SWC. In Sec. V, we show the following
global spectral manifestation of SWC: A scaled QE spectrum
as function of h̄s, at fixed small value of κ/h̄s, features an
approximately “doubled” structure. In the case of standard (co-
sine) potentials, this structure is that of a universal (parameters-
independent) double Hofstadter butterfly. In Sec. VI, we study
numerically the evolution of the kinetic-energy expectation
value of the KHS for standard potentials in a semiclassical
regime (small irrational h̄s). This evolution is found to exhibit
an approximate quantum-diffusive behavior which is slower
than that in the ordinary weak-chaos case and has universal
features under variations of the electric field. The observed
approximate universalities are in accordance with predictions
from the effective Hamiltonian. A summary and conclusions
are presented in Sec. VII. Detailed derivations of several results
are given in the Appendices.

II. SUMMARY OF PROPERTIES OF CLASSICAL KHSs

The KHS is a charged particle in uniform magnetic and
electric fields, B = B ẑ and E = Eŷ, respectively, and period-
ically kicked by a spatially periodic potential V (x) in the x

direction. Assuming, without loss of generality, a particle of
unit mass and charge, the Hamiltonian is

H = �

2

2

− Ey + κV (x)
∞∑

s=−∞
δ(t − sT ), (1)

where � = p − B × r/(2c) is the kinetic momentum, κ is
a nonintegrability parameter, and T is the time period. It is
useful to express (1) in the two natural degrees of freedom
in a magnetic field [27], given by the independent conjugate
pairs (xc, yc) (coordinates of the cyclotron-orbit center) and
(u = �x/ω, v = �y/ω), with ω = B/c being the cyclotron
angular velocity. From simple geometry one has x = xc − v

and y = yc + u. Defining the variable u′ = u − E/ω2, which
we redenote by u, the Hamiltonian (1) can then be expressed
as follows:

H = ω2(u2 + v2)/2 − Eyc + κV (xc − v)
∞∑

s=−∞
δ(t − sT ),

(2)
where a constant E2/(2ω2) was omitted. Choosing units such
that ω = 1 from now on, the conjugate pairs above have
Poisson brackets {yc, xc} = {u, v} = 1. From the Hamilton
equation ẋc = −∂H/∂yc = E, we see that xc evolves linearly
in time (Hall effect):

xc = x (0)
c + Et. (3)

Using Eq. (3), we see that the Hamiltonian (2) is just that of a
harmonic oscillator [in the conjugate pair (u, v)] periodically
kicked by a time modulated potential V (x (0)

c + Et − v). For
E = 0, xc is a constant of the motion.

From {u, v} = 1, the Hamilton equations for (u, v) are u̇ =
∂H/∂v and v̇ = −∂H/∂u, where H is given by (2) with (3).
Integrating the latter equations from t = sT − 0 to t = (s +
1)T − 0 and denoting us = u(t = sT − 0), vs = v(t = sT −

0), one obtains the one-period Poincaré map for the KHS:

Mγ,η : zs+1 = [
zs + κf

(
x (0)

c + sη − vs

)]
e−iγ , (4)

where zs = us + ivs , f (x) = −dV/dx, γ = ωT = T , and
η = ET . We assume the period of V (x) to be 2π , without loss
of generality, and that γ and η satisfy the resonance conditions:

γ

2π
= m

n
,

η

2π
= k

	
, (5)

where (m, n) and (k, 	) are two pairs of coprime integers. Let
r = lcm(n, 	) be the least common multiple of n and 	. Then,
the map from zs to zs+r is given by

Mr
γ,η : zs+r = zs + κ

r−1∑
j=0

f
(
x (0)

c + (s + j )η − vs+j

)
eijγ .

(6)

The map (6) is the smallest iterate of the map (4) that is a near
identity (zs+r ≈ zs) for small κ . Thus, (6) may be considered
as the basic map for the system.

The map (4) for n = 1, 2 (γ = 0, π ) is integrable for all η,
so that chaos may emerge only for n > 2. We say that the map
(6) for n > 2 and small κ � 1 exhibits SWC if its expansion
in powers of κ starts from κ2,

Mγ,η,r : zs+r = zs + O(κ2). (7)

This is unlike ordinary weak chaos, with zs+r = zs + O(κ ).
Equation (7) implies [26] a decrease of the instability of
hyperbolic fixed points (or periodic orbits), i.e., the local
Lyapunov exponent of such a point in a SWC regime is
significantly smaller than that in a case of ordinary weak chaos.
As a consequence, a SWC layer emanating from this fixed point
is narrower than an ordinary weak-chaos layer (see Figs. 3 and
4 in Ref. [26]). Also, the SWC diffusion on stochastic webs
is significantly slower than the ordinary weak-chaos one (see
Figs. 1, 2, 6, and 7 in Ref. [26]).

Given the general family of 2π -periodic potentials with
finite Fourier expansion,

V (x) =
N∑

g=−N

Vg exp (igx), V0 = 0, (8)

one can show the following [26]. For E = 0, Eq. (7) holds only
if n is even and the function V (xc − v) is odd: V (xc + v) =
−V (xc − v). For E �= 0, with the resonance conditions (5),
let us write n/	 = n′/	′, where (n′, 	′) are coprime integers.
Then, if

	′ > N, (9)

Eq. (7) for SWC holds for arbitrary potential (8) and initial
value x (0)

c in Eq. (6), independently of the parity of n. Thus,
unlike the case of E = 0, SWC for E �= 0 occurs under quite
generic conditions.

From now on, we shall restrict ourselves to the case of
γ = π/2, i.e., m/n = 1/4 in Eq. (5), corresponding to chaotic
motion on stochastic webs having translational invariance in
both u and v with period 2π and an approximately square web
cell for small κ; see, e.g., Fig. 1. This case was extensively
considered in the study of classical KHSs [26].
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FIG. 1. Portions of stochastic webs in the 2π × 2π unit cell of
periodicity −π � u, v < π for V (x ) = − cos(x ), γ = π/2, x (0)

c =
0, and (a) κ = 0.6, η = 0 (ordinary weak-chaos case); (b) κ = 0.1,
η = 4π/3 (SWC case). Notice the approximately square web cell in
both cases. The web-cell area in case (a) is approximately twice that
in case (b).

III. QUANTUM EVOLUTION OPERATOR AND
EFFECTIVE HAMILTONIANS

The quantum analogs of the Poisson brackets {yc, xc} =
{u, v} = 1 are the commutators [ŷc, x̂c] = [û, v̂] = ih̄, where
the quantum variables (operators) are indicated by carets as
usual. From Eq. (2) (with ω = 1 in our units), the quantum
Hamiltonian is written as

Ĥ = h̄(â†â + 1/2) − Eŷc + κV (x̂c − v̂)
∞∑

s=−∞
δ(t − sT ),

(10)
where â = (v̂ − iû)/

√
2h̄. The basic evolution operator for

the Hamiltonian (10), from t = sT − 0 to t = (s + r )T − 0,
corresponding to the basic classical map (6), is derived in
Appendix A in the case assumed in this paper, i.e., γ = π/2.
After omitting nonrelevant terms, the final result is

Ûr =
r∏

j=1

exp[−iμV (x̂c − jη − v̂j )], (11)

where μ = κ/h̄, x̂c can be considered from now on as a
constant number xc, and the factors in the product are arranged
from left to right in order of increasing j after defining v̂1 = û,
v̂2 = −v̂, v̂3 = −û, v̂4 = v̂, with v̂j being periodic in j with
period 4.

The operator (11) is a unitary one and can then be formally
written as

Ûr = exp(−iμĤe ), (12)

where Ĥe is a Hermitian operator, the quantum effective
Hamiltonian. Denoting h̄s = h̄/(2π ), the following results are
derived in Appendix A:

Ĥe = Ĥ0(û, v̂) +
∞∑
ı=1

εıĤı (û, v̂; h̄s), (13)

where

Ĥ0(û, v̂) =
r∑

j=1

V (xc − jη − v̂j ), (14)

ε = μ sin(πh̄s) = κ

2

sin(πh̄s)

πh̄s
, (15)

and Ĥı (û, v̂; h̄s) is 2π -periodic in both (û, v̂) and nonvanishing
for integer h̄s. The ıth term in the expansion (13) is a
linear combination of (repeated) commutators, each involving
ı + 1 operators (A3) [for example, [Â, [Â, B̂]] in Eq. (A4)
involves three operators]. An explicit general expression for
Ĥ1(û, v̂; h̄s) is derived in Appendix B, see Eq. (B8).

IV. QAR, QAR VICINITY, AND SWC

A. QAR

The QAR phenomenon in time-periodic systems occurs
when the evolution operator in some basic time interval (given
by a fixed number of time periods) is equal to the identity
operator times a constant phase factor for some parameter
values [8,9,21,25]. This implies a frozen quantum dynamics,
i.e., no wave packet evolves after times multiples of the above
time interval. In the case of the basic operator (11) or (12) in
r time periods, QAR occurs only if Ĥe is equal to the identity
times a constant, which can be chosen to be zero without loss
of generality. Then, since the eigenvalues of a unitary operator
(12) must have the form exp(−iE ), where the phases E are
the QEs, all the QE spectrum collapses into a flat (infinitely
degenerate) band E = 0 under QAR conditions.

From Eq. (13), we see that Ĥe = 0 identically provided
two conditions are satisfied: (1) ε = 0, i.e., h̄s is integer from
Eq. (15); (2) Ĥ0(û, v̂) = 0. Using Eq. (14) with Eq. (8) and
r = lcm(n = 4, 	) = 4	′ (see Sec. II), we get

Ĥ0(û, v̂) =
r∑

j=1

N∑
g=−N

Vge
ig(xc−jη)e−igv̂j

=
N∑

g=−N

Vge
igxc

4∑
n̄=1

	′−1∑
l=0

e−ig[(4l+n̄)η+v̂4l+n̄]

=
N∑

g=−N

Vge
igxc

4∑
n̄=1

e−ig(n̄η+v̂n̄ ) 1 − e−2πikn′g

1 − e−2πikn′g/	′ ,

(16)

where we used the periodicity of v̂j with period n = 4 and the
fact that 4η = 2πkn/	 = 2πkn′/	′ [see Sec. II, in particular
Eq. (5)] to perform the sum over l. The latter is a geometric sum,
equal to the ratio in the last line of Eq. (16). Clearly, this ratio is
identically zero for all g only if 	′ > N , which is precisely the
SWC condition (9). We thus see that QAR in KHSs occurs for
integer h̄s under the same generic conditions as SWC, i.e., for
general potential (8) with N < 	′ and for arbitrary constant xc.

B. QAR vicinity and SWC

Consider the close vicinity of QAR, i.e., h̄s close to an
integer value h̄(0)

s (assumed to be odd, for simplicity and
without loss of generality): h̄s = h̄(0)

s − δ, 0 < δ � 1. Then,
from Eq. (15),

ε ≈ κ ′ = κδ

2
(
h̄(0)

s − δ
) . (17)

Since Ĥ0(û, v̂) = 0 under the QAR condition 	′ > N (see
Sec. IV A), the evolution operator (12), with μ = κ/h̄ and
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the expansion (13), is approximately given by

Ûr ≈ exp

[
−i

(κ ′)2

h̄′ Ĥ1(û, v̂; h̄s)

]
, h̄′ = h̄δ

2
(
h̄(0)

s − δ
) , (18)

after using Eq. (17). Equation (18) is a quantum map deviating
from the identity by quantities of order (κ ′)2, κ ′ � 1. This
quantum map is precisely a semiclassical approximation of
the classical SWC map (7) with κ = κ ′ and effective small
Planck constant h̄′ � 1. Thus, the QAR vicinity corresponds
to semiclassical SWC.

V. SWC AND NEARLY DOUBLED GLOBAL QE SPECTRUM

We study here the QE spectrum under SWC conditions. We
recall that a QE is the phase E determining the eigenvalues
exp(−iE ) of the basic evolution operator (11): Ûr |�E 〉 =
exp(−iE )|�E 〉. The QE spectra can be calculated for rational
values of h̄s using, e.g., the formalism in Ref. [28], which we
summarize in Appendix C for the reader convenience.

Under the classical SWC condition (9), the leading term
(14) in the expansion (13) vanishes (see Sec. IV A), so that
for sufficiently small μ = κ/h̄ the basic operator (12) is
approximately given by

Ûr ≈ exp[−iμεĤ1(û, v̂; h̄s)], (19)

where an expression for Ĥ1(û, v̂; h̄s) is derived in Appendix
B, see Eq. (B8). Let us now assume that 	′ > 2N , a condition
stronger than the SWC one (9). Then, the second sum in
Eq. (B8) does not appear, so that Ĥ1(û, v̂; h̄s) does not
depend on xc and the phases of Vg . Also it depends on (û, v̂)
only through the new phase-space variables û′ = û + v̂ and
v̂′ = v̂ − û. This implies that the unit cell of periodicity of
Ĥ1(û, v̂; h̄s) in phase space is half the size of the ordinary
2π × 2π unit cell. Classically, this means that the SWC web
cell is expected to be approximately half the size of the ordinary
weak-chaos web cell. This is demonstrated by the example in
Fig. 1(b) [to be compared with Fig. 1(a)], showing the case of
	′ = 3 > 2N = 2 for N = 1.

Quantally, the eigenvalues of the operator (19) only approx-
imate the exact eigenvalues exp(−iE ), so that the scaled QE
E/(με) should approximate the eigenvalues of Ĥ1(û, v̂; h̄s).
The latter operator depends on the variables û′ and v̂′ above
which satisfy [û′, v̂′] = 2πih̄′

s, where h̄′
s = 2h̄s. Now the exact

QE spectrum of the operator (12) at fixed μ is periodic in
h̄s with period 1 since the matrices in Eq. (C4) exhibit this
periodicity, as one can see from Eq. (C12). Similarly, the
spectrum of Ĥ1(û, v̂; h̄s) must be periodic in h̄′

s with period
1. But when h̄s covers the interval 0 � h̄s < 1, h̄′

s = 2h̄s

will cover the interval 0 � h̄′
s < 2. Therefore, the scaled QE

spectrum E/(με) at fixed μ should exhibit an approximately
double structure, i.e., this spectrum for 0 � h̄s < 1/2 should
look almost the same as that for 1/2 � h̄s < 1.

Let us illustrate this in detail in the case of standard
potentials (8) with N = 1 and 	′ > 2N = 2; in this case, other
results can be derived. Choosing, for the sake of definiteness,
|V1| = 1/2 [corresponding to the cosine potential V (x) =
cos(x + α) for arbitrary phase α], Eq. (B8) can be rewritten in

this case as

2 cos(η)Ĥ1(û, v̂; h̄s)

	′ = −[cos(û′) + cos(v̂′)], (20)

using J (1; h̄s) = 1 from Eq. (A7). Since the eigenvalues
of Ĥ1(û, v̂; h̄s) are approximately E/(με) (see above), the
eigenvalues of the operator on the left-hand side of Eq. (20)
will approximate Ẽ = 2 cos(η)E/(	′με) = 8 cos(η)E/(rμε).
The operator on the right-hand side of Eq. (20) is the Harper
one [29,30], whose spectra for all h̄′

s in the interval 0 � h̄′
s < 1

form the well-known Hofstadter “butterfly” [30]. Therefore,
by the above general considerations, the exact spectra Ẽ at
fixed μ will be approximated by a double Hofstadter butterfly,
as shown in Fig. 2 for several values of η. In terms of the
variable Ẽ , obtained by scaling the QEE by quantities including
cos(η), the spectra assume an almost universal form, nearly
independent of η.

Measures of the small deviations of the exact spectra from
the universal form of the double Hofstadter butterfly for small
μ are studied in some detail in Appendix D; we briefly
summarize here the main results. While the exact spectra for
h̄s = 0, 1 coincide with those from Eq. (20), there will be small
differences between the two spectra at general values of h̄s.
In particular, the exact spectra slightly depend on xc [due to
high-order terms in the expansion (13)], unlike the spectra from
Eq. (20). For example, for h̄s = 1/2 the difference between the
width of the exact spectrum and that of the approximate one
(which coincides with that for h̄s = 0, 1) is an expansion in
powers of μ starting from μ2 and featuring a dependence on xc

from sufficiently high-order terms. Also, the exact spectrum for
η �= 0 and h̄s = 1/2 generally consists of two bands separated
by a small gap, which is visible in Fig. 2(a).

VI. QUANTUM EVOLUTION AND DIFFUSION

In this section, we study the time evolution of wave packets
and expectation values in semiclassical weak-chaos and SWC
regimes for a generic, irrational value of h̄s. Let us apply
s ′ times the basic evolution operator (11) to an initial wave
packet �0(u) in the u representation. Since the operator (11)
corresponds to r time steps (kicks), the final wave packet will
be labeled by s = rs ′ time steps:

�s=rs ′ (u) = Û s ′
r �0(u). (21)

As in Sec. V, we shall consider a N = 1 potential (8),
V (x) = − cos(x), and we shall assume the strong SWC
condition 	′ > 2N = 2. Then, Eq. (20) holds, so that, using
Eqs. (19), (20), and 	′ = r/4, we get

Û s ′
r ≈ exp

{
iμε

rs ′

8 cos(η)
[cos(û′) + cos(v̂′)]

}
. (22)

Defining the scaled time variable

τ = rs ′

8| cos(η)| = s

8| cos(η)| , (23)

we see that the approximate evolution operator (22) exhibits, in
terms of τ , a universal form independent of η. This is analogous
to the universal double Hofstadter butterfly in terms of the
scaled QE Ẽ = 8 cos(η)E/(rμε), see Sec. V and Fig. 2. Indeed,
one may include in τ a factor με, in analogy to Ẽ , so that
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-2

2

Ẽ

(b)

0 0.5 1
h̄s

-2

2 (c)

FIG. 2. Scaled QE spectra Ẽ = 8 cos(η)E/(rμε) for μ = 0.1,
xc = 0, and (a) η/(2π ) = 2/3; (b) η/(2π ) = 3/5; (c) η/(2π ) =
8/13. The scaled Planck constant h̄s takes the rational values q/p for
all coprime integers p and q with p � 30 and q < p. The approximate
structure of a double Hofstadter butterfly is evident in all the plots.

the operator (22) will be approximately independent also of μ

and ε for small μ. We shall not consider here this generalized
definition of τ , since we shall not vary μ and ε.

To verify the universality predicted by Eq. (22) with Eq. (23)
and to study other topics, we calculate expectation values in the
evolving state (21) as functions of s using the exact evolution

operator (11). These calculations can be easily performed by
well-known methods [10,25], which we briefly summarize in
Appendix E.

As the initial wave packet, we choose a normalized coherent
state centered at a hyperbolic fixed point z′ = u′ + iv′ of the
basic classical map (6) (i.e., zr = z0 for z0 = z′):

�0(u) = (πh̄)−1/4 exp[iv′u/h̄ − (u − u′)2/(2h̄)]. (24)

Denoting δû = û − u′ and δv̂ = v̂ − v′, we consider the ex-
pectation value

〈δû2 + δv̂2〉s =
∫ ∞

−∞
du�∗

s (u)(δû2 + δv̂2)�s (u) (25)

(v̂ = −ih̄d/du) in the evolving state (21) with (24). A classical
quantity analogous to (25) is

〈(us − u0)2 + (vs − v0)2〉, (26)

where (us, vs ) (s = rs ′) is determined from the map (6) and
〈 〉 denotes average over an ensemble of initial conditions
(u0, v0) uniformly distributed over a disk centered at (u′, v′)
and of radius

√
2h̄. Since (u′, v′) is a hyperbolic fixed point

from which there emanates a stochastic web (see Fig. 1), the
quantity (26) will reflect both the classical chaotic diffusion
on the web and the stable (elliptic) motions near the web.
Our calculations of (25) and (26) were performed for μ = 0.1,
h̄s = 1/[11 + (

√
5 − 1)/2] (corresponding to κ ≈ 0.054), and

for several values of η/(2π ) and xc.
The results are shown in Fig. 3. In Fig. 3(a), the quantities

(25) and (26) are plotted in the ordinary weak-chaos case of
η/(2π ) = 0/1 (= 0) and in the SWC case of η/(2π ) = 2/3,
with xc = 0 in both cases. The plots of (25) (thick solid line and
dashed line) start with a transient behavior almost coinciding
with the classical quantity (26) (thin solid lines) up to some
crossover time s ∼ s∗. For s > s∗, the quantity (26) saturates
to a constant value, due to the fact that for the small value
of κ ≈ 0.054 the classical chaotic diffusion is very close to a
regular motion on separatrix lines approximating the stochastic
web and connecting the hyperbolic fixed points (see Fig. 1).
This motion essentially stops when δu and δv are of the order
of the size of the web cell, i.e., δu, δv ∼ 2π in the weak-chaos
case [Fig. 1(a)] and δu, δv ∼ π in the SWC case [Fig. 1(b)]. On
the other hand, the quantum wave packet continues to spread
because of tunneling between neighboring web cells, leading to
quantum diffusion of (25) for s > s∗. The quantum diffusion is
due to the fractal nature of the spectrum (approximately given
by a double Hofstadter butterfly, see Fig. 2) for irrational h̄s

[23,24]. As expected, the quantum-diffusion rate in the weak-
chaos case is significantly larger than that in the SWC case.

Figure 3(b) shows, for η/(2π ) = 2/3 and s not too large,
that the quantities (25) for two extreme values of xc almost
coincide, in consistency with the approximate evolution op-
erator (22), which is independent of xc. The dependence on
xc emerges only at large s, due to high-order terms in the
expansion (13). A similar independence on xc is featured by
the corresponding classical quantities (26) [almost coinciding
thin solid lines in Fig. 3(b)], due to an analog of Eq. (22) for
the classical map (6) [26].

Figure 3(c) shows the quantities (25) for η/(2π ) =
2/3, 3/5, 8/13 and xc = 0. The closeness of these quantities
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FIG. 3. Plots of the quantities (25) for μ = 0.1, h̄s = 1/[11 +
(
√

5 − 1)/2], and several values of η/(2π ) or xc, as specified in
the legends. The classical quantities (26) [close to their quantum
counterparts (25) for small s] are plotted as thin solid lines. (a) Cases
of η/(2π ) = 0/1, 2/3 for xc = 0. (b) Cases of η/(2π ) = 2/3 for
xc = 0, π/2. (c) Cases of η/(2π ) = 2/3, 3/5, 8/13 for xc = 0; the
classical quantities (26) (thin solid lines) correspond to η/(2π ) =
2/3, 8/13, 3/5 in order of descending lines at s = 5000. (d) Same
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FIG. 4. Probability distributions |�̃s (x )|2 in real space x for the
wave packet �̃s (x ) after s time steps in the two cases of Fig. 3(a)
with xc = x (0)

c = 0 : (a) Ordinary weak-chaos case of η/(2π ) = 0/1;
(b) SWC case of η/(2π ) = 2/3. In both cases, the values of s in
the three plots, from above to below, are s = 120, 3600, 48 000. The
wave packet �̃s (x ) was calculated using the relation x = xc − v, so
that �̃s (x ) = �̄s (v = xc − x ), where �̄s (v) is the wave packet in
the v representation, see Appendix E. Also, in case (b), the time (s)
dependence of xc as xc = x (0)

c + ηrs [see Eq. (3) with t = rsT and
η = ET ] was removed by plotting |�̃s (x )|2 in the moving Hall frame,
so that xc = x (0)

c = 0.

to the corresponding classical ones (26), up to some crossover
time s ∼ s∗, can now be seen for different SWC values of η.
Again, for s > s∗, the classical quantities (26) saturate while
the quantum ones (25) feature quantum diffusion. If all these
quantities are plotted versus the scaled time variable (23), as in
Fig. 3(d), we get an almost perfect coincidence of the quantities
(25) for all values of η, provided s is not too large. This is in
agreement with the predictions from Eqs. (22) and (23); the
deviations from coincidence for large s are due to high-order
terms in the expansion (13). The very good coincidence of the
classical quantities (26) for all η is again due to the analog of
Eq. (22) for the classical map (6).

Figure 4 shows the probability distributions in real space x

for the evolving wave packets in the two cases of Fig. 3(a). It
is clear that the quantum diffusion of the wave packet in the
ordinary weak-chaos case [Fig. 4(a)] is much faster than that
in the SWC case [Fig. 4(b)].

VII. SUMMARY AND CONCLUSIONS

In this paper, we have studied quantum-dynamical and
spectral manifestations of classical SWC in KHSs, defined
by the general Hamiltonian (1). The presence of an electric
field E = Ey , satisfying the resonance conditions (5) with

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIG. 3. (Continued) plots as in (c) but versus the scaled time variable
(23); there is an almost perfect coincidence of the quantities (25) for
the different values of η/(2π ) and even a better coincidence of the
corresponding classical quantities (26).
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η = ET �= 0, causes SWC, defined by Eq. (7), to be a generic
phenomenon in KHSs, occurring for arbitrary potential (8) with
N < 	′ [Eq. (9)] and arbitrary initial value x (0)

c in Eq. (3) [26].
We have shown that quantum antiresonance (QAR), with the

QE spectrum of the basic evolution operator (11) consisting of
just one flat (infinitely degenerate) band, occurs for integer
values of a scaled Planck constant h̄s and under the same
generic classical conditions for SWC. Thus, QAR may be
viewed as a quantum analog of SWC. In fact, in the close
vicinity of QAR (h̄s close to an integer), the evolution operator
(12) was shown to describe a regime of semiclassical SWC.
The generic QAR in KHSs should be compared with the rare
one occurring in other systems [8,9,21,25].

We remark that a phenomenon similar to QAR is known
to take place for tight-binding electrons in two-dimensional
periodic structures perpendicular to a magnetic field [31].
When the magnetic flux per unit cell is some rational multiple
of the quantum of flux, the energy eigenstates are localized
on just a finite number of sites, forming a bounded region
known as “Aharonov-Bohm cage,” and the energy spectrum
then consists of a finite number of flat bands [31].

A global spectral manifestation of SWC was shown in the
general case of 	′ > 2N , a condition stronger than the usual
SWC one (9): The plot of a scaled QE spectrum versus h̄s

at fixed small value of μ = κ/h̄ exhibits an approximately
doubled structure, i.e., it is approximately periodic in h̄s with
period 1/2 rather than the ordinary period 1. This reflects the
classical fact that the unit cell of the SWC web cell for 	′ > 2N

is approximately half the size of the ordinary weak-chaos web
cell, see Fig. 1. In the case of standard (cosine) potentials,
with N = 1 and 	′ > 2, the plot of a scaled QE spectrum is
approximately a double Hofstadter butterfly having universal
features; see Sec. V and Fig. 2.

This universality is reflected in the quantum evolution
of wave packets for standard potentials. This evolution was
predicted to exhibit an approximately universal behavior,
independent of η and xc, in terms of the scaled time variable
(23). We have verified this prediction for times not too large
by numerical studies of the evolution of the kinetic-energy
expectation value for a small generic (irrational) value of h̄s;
see Sec. VI and Fig. 3.

For an electric field in an arbitrary direction on the (x, y)
plane, the generic conditions for SWC and its quantum man-
ifestations in KHSs will depend only on the y component Ey

of the field. In fact, one can easily show that the directed Hall
drift (3) will always hold exactly with E replaced by Ey , while
Ex will essentially add only a constant phase to the argument
xc − v of the kicking potential in the Hamiltonian (2). This
phase is equivalent to a change in the initial condition x (0)

c in
Eq. (3). However, SWC in KHSs occur for arbitrary values of
x (0)

c (see Sec. II and Ref. [26]), so that Ex will not affect the
SWC conditions.

If the kicking potential in the KHS is replaced by a time-
independent two-dimensional periodic potential in the (x, y)
plane, one gets a system studied in works [32,33]. Unlike
the quantum manifestations of SWC in KHSs, the quantum
properties of this system strongly depend on the direction of
the electric field in the (x, y) plane [33]. Also, for fields in
some fixed direction, say y, the directed Hall drift may take
place only for specific initial conditions and for electric-field

102 104 106
s
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102

104

δû
2
+

δv̂
2

slo
pe

 =
 2

η/(2π)=1/4
η/(2π)=1/8

FIG. 5. Similar to Fig. 3(a) but in the ordinary weak-chaos case
of η/(2π ) = 1/4 (	′ = 1) and in the SWC case of η/(2π ) = 1/8
(	′ = 2); in both cases, xc = 0.3π/2. It is evident that the asymptotic
quantum evolution is now that of a ballistic motion rather than
quantum diffusion. Again, however, the rate of this motion in the
SWC case is significantly smaller than that in the weak-chaos case.
The thin solid lines are the corresponding classical quantities (26),
calculated as explained in Sec. VI, which again agree reasonably well
with the quantum behaviors.

magnitudes smaller than a critical value; otherwise, wave
packets spread ballistically in both directions orthogonal to the
electric field [32]. In KHSs, an asymptotic quantum ballistic
spreading in the (u, v) or (x, y) variables may occur for
irrational h̄s only in special cases, e.g., 	′ = 1, 2 for standard
potentials; see Fig. 5. This is in contrast with the asymptotic
quantum-diffusive behavior, illustrated by Fig. 3, occurring
under much more generic conditions.

We remark that since the general KHS is essentially equiv-
alent to a modulated kicked harmonic oscillator, as explained
after Eq. (3), the quantized KHS may be experimentally
realizable as it was done for the ordinary quantum kicked
harmonic oscillator using either atom-optics methods with
Bose-Einstein condensates [34] or paraxial-optics methods
with light beams [35].

APPENDIX A

Results in Sec. III are derived here in some detail.
Basic evolution operator. The one-period evolution oper-

ator for the Hamiltonian (10), from t = sT − 0 to t = (s +
1)T − 0, is given by

Û = Ûγ Û ′
η exp [−iμV (x̂c − v̂)], (A1)

where Ûγ = exp [−iγ (â†a + 1/2)] (γ = ωT = T ), Û ′
η =

exp(iηŷc/h̄) (η = ET ), and μ = κ/h̄. The operator Ûγ is a ro-
tation by angle γ in the (u, v) phase plane: Ûγ f (â†, â)Û−1

γ =
f (â†e−iγ , âeiγ ), for arbitrary function f (â†, â) [36]. In the
case assumed in this paper, i.e., γ = π/2, this is a clockwise
rotation by π/2: v → u → −v → −u → v. From [ŷc, x̂c] =
ih̄, one has ŷc = ih̄d/dxc, so that Û ′

η = exp(−ηd/dxc), a
translation of x̂c by −η. Using all this and Eq. (5), one
can then write the basic evolution operator for the KHS, Û r

[r = lcm(n = 4, 	) = 4	′, see Sec. II], corresponding to the
basic classical map (6):

Û r = Ûr (−1)	
′
exp(−2πn′kd/dxc), (A2)
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where Ûr is defined by Eq. (11). The two terms besides Ûr in
Eq. (A2) are as follows: (−1)	

′ = Û r
γ , since Û 4

γ = −1 and r =
4	′; exp(−2πn′kd/dxc) = (Û ′

η )r from Eq. (5) and r = n′	.
Since the first term is just a constant and we shall consider only
wave functions in the (u, v) degree of freedom, independent
of (xc, yc), these terms will be ignored from now on, so that
Û r is given by just Eq. (11) with x̂c replaced by a constant
number xc.

Effective Hamiltonian. We shall now derive an expression
for the effective Hamiltonian Ĥe in Eq. (12). Assuming a
general potential (8), the argument of the exponent under the
product sign in Eq. (11) is given by

Ôj = −iμV (xc − jη − v̂j )

= −iμ

N∑
g=−N

Vg exp[ig(xc − jη)] exp(−igv̂j ). (A3)

Now, given two operators Â and B̂, one has [37]

exp(Â) exp(B̂ ) = exp
(
Â + B̂ + 1

2 [Â, B̂] + 1
12 [Â, [Â, B̂]]

+ 1
12 [[Â, B̂], B̂] + . . .

)
, (A4)

involving a series of repeated commutators on the right-hand
side. Equation (A4) can be applied to derive systematically an
expansion for Ĥe in Eq. (12) as follows. From the definition of
v̂j after Eq. (11), we see that if v̂j = û or v̂j = v̂ (up to sign)
then v̂j+1 = v̂ or v̂j+1 = û (up to sign), respectively. Therefore,
the commutator [Ôj , Ôj+1] of two adjacent operators (A3) will
be a linear combination of commutators of the form

[iμeig1û, iμeig2 v̂] = 2iμ2 sin(g1g2πh̄s)ei(g1û+g2 v̂) (A5)

for integers g1 and g2, after using Eq. (A4) with [û, v̂] = ih̄

and denoting h̄s = h̄/(2π ). More generally, for integers g1, g2,
g3, g4,[

iμei(g1û+g2 v̂), iμei(g3û+g4 v̂)
]

= 2iμ2 sin[(g1g4 − g2g3)πh̄s]e
i(g1+g3 )û+i(g2+g4 )v̂ . (A6)

We also note that for nonzero integer a one has

sin(aπh̄s) = J (a; h̄s) sin(πh̄s), (A7)

where the function J (a; h̄s) does not vanish for integer h̄s.
It is then easy to see from Eqs. (A5)–(A7) that the repeated
commutators of operators (A3) in Eq. (A4) imply the expansion
(13) with Eqs. (14) and (15).

APPENDIX B

We derive here an explicit expression for Ĥ1(û, v̂; h̄s) in
Eq. (13) for the general potential (8). From what we mentioned
at the end of Sec. III, we see that this expression results entirely
from the simple (nonrepeated) commutators in Eq. (A4). Using
then Eqs. (11), (A3), and (A4), we can write

εĤ1(û, v̂; h̄s) = − 1

2iμ

r∑
j=1

r∑
j ′=j

[Ôj , Ôj ′ ]

= − iμ

2

N∑
g=−N

N∑
g′=−N

Vg,g′ (xc)F̂g,g′ , (B1)

where Vg,g′ (xc) = VgVg′ei(g+g′ )xc and

F̂g,g′ =
r∑

j=1

r∑
j ′=j

Ĉ
(j,j ′ )
g,g′ (B2)

with

Ĉ
(j,j ′ )
g,g′ = [

e−ig(jη+v̂j ), e−ig′(j ′η+v̂j ′ )
]
.

We decompose F̂g,g′ in Eq. (B2) into three summations as
follows:

F̂g,g′ =
r−4∑

j=−3

r∑
j ′=j+4

Ĉ
(j+4,j ′ )
g,g′

= e−i4gη

r∑
j ′=1

j ′−4∑
j=−3

Ĉ
(j,j ′ )
g,g′

= e−i4gη

r∑
j ′=1

⎛
⎝ j ′∑

j=1

+
0∑

j=−3

−
j ′∑

j=j ′−3

⎞
⎠Ĉ

(j,j ′ )
g,g′

= e−i4gη

⎛
⎝ r∑

j=1

r∑
j ′=j

Ĉ
(j,j ′ )
g,g′ +

0∑
j=−3

r∑
j ′=1

Ĉ
(j,j ′ )
g,g′

−
r∑

j ′=1

j ′∑
j=j ′−3

Ĉ
(j,j ′ )
g,g′

⎞
⎠, (B3)

where we used the periodicity of v̂j in j with period 4 to get
the second equality. The first summation in the last parentheses
of Eq. (B3) is F̂g,g′ itself [see Eq. (B2)] and the second one
does not contribute since

∑r
j ′=1 e−ig′(j ′η+v̂j ′ ) = 0 under the

SWC condition 	′ > N , as shown in the derivation of Eq. (16).
Therefore, F̂g,g′ is expressed by the third summation as

F̂g,g′ = e−i4gη

e−i4gη − 1

r∑
j ′=1

j ′∑
j=j ′−3

Ĉ
(j,j ′ )
g,g′

= 1

e−i4gη − 1

	′−1∑
l=0

e−i4(g+g′ )ηl

4∑
n̄=1

e−ign̄η

×
4∑

n̄′=1

e−i(g+g′ )n̄′η[e−igv̂n̄+n̄′ , e−ig′ v̂n̄′ ], (B4)

where the second equality is obtained after the successive
replacements j → j ′ + n̄ − 4, j ′ → 4l + n̄′, and by using the
periodicity of v̂j in j with period 4 in Ĉ

(j,j ′ )
g,g′ . For 	′ > N , one

has |g + g′| < 2	′, so that the geometric sum over l in Eq. (B4)
gives

	′−1∑
l=0

e−i4(g+g′ )ηl = 	′(δg+g′,0 + δg+g′,	′ + δg+g′,−	′ ). (B5)

Using Eqs. (B5) and (A5), and also the fact that the commutator
in Eq. (B4) is nonzero only for n̄ = 1, 3, we find, after some
lengthy but straightforward calculations,

F̂g,g′ = 1
2 (f̂g,g′ + f̂g′,g ), (B6)
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where

f̂g,g′ = −4	′ sin(gg′πh̄s)

sin(2gη)
(δg+g′,0 + δg+g′,	′ + δg+g′,−	′ )

× [e−igη cos(g′û + gv̂ + (g + g′)η)

− eigη cos(g′û − gv̂ + (g + g′)η)]. (B7)

Note that the denominator sin(2gη) in Eq. (B7) does not vanish,
since its argument 2gη = πkn′g/	′ is never an integer multiple
of π except for g = 0, which can be ignored since we take
V0 = 0 by definition in Eq. (8). Substituting Eq. (B6) with (B7)
into (B1) and using (A7), we obtain the explicit expression for
Ĥ1(û, v̂; h̄s):

Ĥ1(û, v̂; h̄s) = −2	′
N∑

g=1

J (g2; h̄s)
|Vg|2

cos(gη)

×{cos[g(û + v̂)] + cos[g(û − v̂)]}

− 4	′�
⎛
⎝ei	′xc

N∑
g=	′−N

J [g(	′ − g); h̄s]
VgV	′−g

sin(2gη)

×{e−igη cos[(	′ − g)û + gv̂ + 	′η]

− eigη cos[(	′ − g)û − gv̂ + 	′η]}
⎞
⎠. (B8)

We see from Eq. (B8) that the dependence on xc and the phases
of Vg in Ĥ1(û, v̂; h̄s) arises only from the second sum, which
does not appear for 	′ > 2N .

APPENDIX C

We present here a general expression for the QE eigenstates
and consider some basic properties of them, as well as useful
matrix representations of the evolution operator Ûr based on
them. Clearly, Ûr in Eq. (11) commutes with translations by
2π in û and v̂. Since [û, v̂] = 2πih̄s, one has û = 2πih̄sd/dv

and v̂ = −2πih̄sd/du, so that the translations above are given
by the operators D̂0 = exp(iv̂/h̄s) and D̂1 = exp(−iû/h̄s).
In general, the latter operators do not commute. However,
for rational h̄s = q/p, where q and p are coprime integers,
the operators D̂1 and D̂2 = D̂

q

0 = exp(ipv̂) commute and, of
course, they commute also with Ûr . The simultaneous QE
eigenstates of Ûr , D̂1, and D̂2 in the v-representation can be
written as [28]:

〈v|�b,w〉 =
p−1∑
d=0

φb(d; w)
∞∑

l=−∞
eil(w1/q+2πd/p)

× δ(v − w2 + 2πl/p). (C1)

Here the index b = 1, . . . , p labels p QE bands Eb(w), where
w = (w1, w2) is a Bloch wave vector ranging in the Brillouin
zone 0 � w1 < 2πq/p, 0 � w2 < 2π/p; {φb(d; w)}p−1

d=0 , b =
1, . . . , p, are p independent vectors of coefficients. Assuming
the QE eigenvalues to be all different at any fixed w, i.e.,
exp[−iEb(w)] �= exp[−iEb′ (w)] for b �= b′, it is easy to see
that each QE band Eb(w) is q-fold degenerate. In fact, the
q operators D̂

j

0 , j = 0, . . . , q − 1, commute with Ûr but not

with D̂1. Thus, the q states D̂
j

0 |�b,w〉 are all different and are
degenerate eigenstates belonging to QE band b.

The eigenvalue problem for Ûr can be written as that of
a p × p unitary matrix in the basis of general states (C1), as
follows. We first define the operator Ûr = ŜÛr Ŝ

†, where Ŝ =
exp [−iμV (xc − v̂)]. Then, using Eq. (11), we find that

Ûr =
r−1∏
j=0

exp[−iμV (xc − jη − v̂j )]

=
r/2−1∏
j=0

Û
(j )
KH(û, v̂), (C2)

where

Û
(j )
KH(û, v̂) = exp[−iμV (xc − 2jη − (−1)j v̂)]

× exp[−iμV (xc − (2j + 1)η − (−1)j û)]

(C3)

is a generalized “kicked Harper” evolution operator [28]. In
the basis (C1), the operator (C3) is represented by a p × p w-
dependent unitary matrix M(j )

KH(w), whose elements are given
below in an explicit and compact form. Then, the operator (C2)
is represented by the p × p unitary matrix

Mr (w) =
r/2−1∏
j=0

M(j )
KH(w), (C4)

whose diagonalization gives the QE eigenvalues of Ûr . By
definition of Ûr , its eigenvalues are the same as those of Ûr .
As explained below, the eigenstates 〈v|�̄b,w〉 of Ûr are given
by Eq. (C1) with φb(d; w) replaced by exp(−idw2)φ̄b(d; w),
where {φ̄b(d; w)}p−1

d=0 are the eigenvectors of the matrix (C4).
Finally, the eigenstates of Ûr are obtained as |�b,w〉 =
Ŝ†|�̄b,w〉.

We now derive the matrix elements of Mr (w) in Eq. (C4). To
this end, we start from a generalized kicked-Harper evolution
operator [28] defined by

ÛKH = exp [−iμW2(v̂)] exp [−iμW1(û)], (C5)

where W1(x) and W2(x) are arbitrary 2π -periodic functions.
Each factor in ÛKH can be expanded in a Fourier series as

exp [−iμW1(û)] =
∞∑

s=−∞
J1,se

isû,

exp [−iμW2(v̂)] =
∞∑

s=−∞
J2,se

isv̂ . (C6)

By applying the operator (C5) to the states (C1) and using
Eqs. (C6), we get

〈v|ÛKH|�b,w〉 =
p−1∑
l,l′=0

F̃1,l (w1)F̃2,l′ (w2)ei(lw1+l′w2 )

×
p−1∑
d=0

φb(d; w)e2πildh̄sψw1+2π (d−l′ )h̄s,w2 (v),

(C7)
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where, for j = 1, 2,

F̃j,l (wj ) =
∞∑

s=−∞
Jj,sp+le

ispwj (C8)

and

ψw(v) =
∞∑

l=−∞
eilw1/qδ(v − w2 + 2πl/p) (C9)

are “kq” distributions [38]. Defining

φ̄b(d; w) ≡ eidw2φb(d; w), (C10)

and using the independence of the kq distributions (C9) for
different w’s [38], we obtain from Eq. (C7) the eigenvalue
equation for the column vector Vb(w) ≡ {φ̄b(d; w)}p−1

d=0 :

MKH(w)Vb(w) = exp[−iEb(w)]Vb(w), (C11)

where MKH(w) is a p × p unitary matrix with elements

(MKH)d,d ′ (w) = 1

p

p−1∑
s=0

exp[−iμW1(w1 + 2πh̄sd
′)

− iμW2(w2 + 2πs/p)

−i(w2 + 2πs/p)(d ′ − d )], (C12)

d, d ′ = 0, . . . , p − 1. The matrix Mr (w) in Eq. (C4) is the
product of matrices M(j )

KH(w) having elements (C12) with

W1(x) = V [xc − (2j + 1)η − (−1)j x],

W2(x) = V [xc − 2jη − (−1)j x]. (C13)

Since the eigenvalue equation for each matrix M(j )
KH(w) has

the form (C11), also the eigenvalue equation for the matrix
(C4) will have this form, where Vb(w) ≡ {φ̄b(d; w)}p−1

d=0 and
φ̄b(d; w) are given by Eq. (C10) with φb(d; w) being the
coefficients in Eq. (C1).

APPENDIX D

We evaluate here the spectrum width and gap width for h̄s =
1/2 and several SWC values of η in the case of the potential
V (x) = − cos(x). For h̄s = 1/2 (p = 2), Mr (w) in Eq. (C4)
is the product of 2 × 2 matrices M(j )

KH(w) having elements
(C12) with (C13). For V (x) = − cos(x), these matrices can
be compactly written as

M(j )
KH(w) = Dw2e

iμ cos[xc−2jη−(−1)j w2]σx

× eiμ cos[xc−(2j+1)η−(−1)j w1]σzD−1
w2

, (D1)

where σx and σz are Pauli matrices and Dw2 = diag(1, eiw2 ).
Equations (C4) and (D1) imply that det Mr (w) = 1.
Thus, if the QE eigenvalues of Mr (w) are exp[−iE1(w)]
and exp[−iE2(w)], we must have E1(w) = −E2(w).
Also, Tr[Mr (w)] = 2 cos[�E (w)/2], where �E (w) =
E1(w) − E2(w) = 2E1(w).

For η = 0 (r = 4, 	′ = 1), SWC occurs only at xc = π/2.
In this case, we get from Eqs. (C4) and (D1) the exact result

�E (w) = 4 arcsin{sin[μ sin(w1)] sin[μ sin(w2)]}. (D2)

It is clear from Eq. (D2) that the spectrum width � =
�E (π/2, π/2) and the gap width δ = �E (w′), where w′ =
(w1, 0), (0, w2):

� = 4 arcsin[sin2(μ)] = 4μ2(1 − μ2/3 + · · · ),

δ = 0. (D3)

Thus, there is no gap in this case.
For η �= 0 with odd 	′, Tr[Mr (w)] has symmetries in the

Brillouin zone of w. This can be shown by the following
calculation, using Eq. (C4) with r = 4	′:

Tr[Mr (−w)] = Tr

⎡
⎣2	′−1∏

j=0

M(j )
KH(−w)

⎤
⎦

= Tr

⎡
⎣	′−1∏

j=0

M(j )
KH(−w)

2	′−1∏
j=	′

M(j )
KH(−w)

⎤
⎦

= Tr

⎡
⎣2	′−1∏

j=	′
M(j−	′ )

KH (−w)
	′−1∏
j=0

M(j+	′ )
KH (−w)

⎤
⎦.

(D4)

In the last line of Eq. (D4), the shift by ±	′ in j gives both
a sign change −w → w and a phase shift by 2	′η = πn′k in
the cosine functions in Eq. (D1). For even n′k, this shift can be
ignored; we then get, using also the identity Tr(AB) = Tr(BA),

Tr[Mr (−w)] = Tr[Mr (w)]. (D5)

In the case of odd n′k, the phase shift leads to changes of the
sign of the exponents in Eq. (D1); however, using the formula
e−iaσx,z = σye

iaσx,zσy , for any number a, and the fact that σ 2
y

is the 2 × 2 identity matrix, we see that Eq. (D5) holds also in
this case.

For h̄s = 1/2 the spectrum of the matrix (C4), like that
of (C12), is periodic in both w1 and w2 with period π [28].
Therefore, Eq. (D5) can be generalized:

Tr[Mr (wt − w)] = Tr[Mr (w)], (D6)

where wt = (0, 0), (π, 0), (0, π ), (π.π ). It follows from
Eq. (D6) and Tr[Mr (w)] = 2 cos[�E (w)/2] that �E (w) is
symmetric under inversion around four symmetry centers:
wsc = (0, 0), (π/2, 0), (0, π/2), (π/2, π/2). Each of these
symmetry centers should be an extremum point of �E (w).
In fact, our numerical observations for all the values of η

considered below indicate that �E (w) has a global minimum
at wsc = (0, 0), a global maximum at wsc = (π/2, π/2), and
saddles at wsc = (π/2, 0), (0, π/2). Therefore, the spectrum
width � = �E (π/2, π/2) and the gap width δ = �E (0, 0).
Expressions for the latter quantities were calculated using
Mathematica. In terms of the scaled QE Ẽ = 2 cos(η)E/(	′με)
(see Sec. V), where ε = μ for h̄s = 1/2, these expressions are
given by

�̃ = 4

[
1 − μ2 + 1

360
(685 − cos(6xc))μ4 + · · ·

]
,

δ̃ = 2

√
2

3
| cos(3xc)|μ

(
1 − 1

4
μ2 + · · ·

)
(D7)
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for η/(2π ) = 2/3,

�̃ = 4

(
1 − 3 − √

5

2
μ2 + 246 − 107

√
5

36
μ4 + · · ·

)
,

δ̃ =
√

2(6 + √
5)

30
| cos(5xc)|μ3

(
1 − 81 + 2

√
5

186
μ2 + · · ·

)

(D8)

for η/(2π ) = 3/5, and

�̃ = 4(1 − a2μ
2 + a4μ

4 + · · · ),

δ̃ = 0.00389344| cos(13xc)|μ11 + · · · (D9)

for η/(2π ) = 8/13, where a2 = −0.446215 and a4 =
0.324429 are roots of sixth-degree algebraic equations.

APPENDIX E

We summarize here briefly well known methods [10,25] for
calculating the evolving state (21) and expectation values in it
using the exact evolution operator (11). Let us first express
�0(u) (assumed to be normalized) by its v-representation
�̄0(v):

�0(u) = h̄−1
∫ ∞

−∞
dv exp(iuv/h̄)�̄0(v)

=
∫ 1

0
dβ exp(iβu)�0,β (u), (E1)

�0,β (u) =
∞∑

l=−∞
�̄0[(l + β )h̄] exp(ilu). (E2)

Since the function (E2) is clearly 2π -periodic in u, Eq. (E1) is a
decomposition of �0(u) into Bloch functions exp(iβu)�0,β (u)
with quasimomenta βh̄, 0 � β < 1. By applying to such a
function the evolution operator (11), denoted here by Ûr (û, v̂),
and using v̂ = −ih̄d/du, we easily get:

Ûr (û, v̂)eiβu�0,β (u) = eiβuÛr,β (û, v̂)�0,β (u), (E3)

where

Ûr,β (û, v̂) = Ûr (û, v̂ + βh̄) = Ûr (û, βh̄ − ih̄d/du). (E4)

Then, by applying s ′ times the operator (11) to the initial wave
packet (E1) and using Eq. (E3), we obtain

�s (u) = Û s ′
r (û, v̂)�0(u) =

∫ 1

0
dβ exp(iβu)�s,β (u), (E5)

where s = rs ′ and

�s,β (u) = Û s ′
r,β (û, v̂)�0,β (u)

=
∞∑

l=−∞
�̄s[(l + β )h̄] exp(ilu). (E6)

We thus see that the time evolution (E5) can be decomposed
or “fibrated” [10] into independent evolutions (E6) under the
operator (E4) at fixedβ. The latter evolutions are relatively easy
to calculate, as explained below, since they involve a Fourier
series rather than a Fourier transform. Also, the expectation
value of any Hermitian operator function of v̂, F (v̂), in the
evolving state (E5) can be written as

〈F (v̂)〉s =
∫ ∞

−∞
du�∗

s (u)F (v̂)�s (u) =
∫ 1

0
dβ〈F (v̂)〉s,β ,

(E7)

where

〈F (v̂)〉s,β = 2π

∞∑
l=−∞

|�̄s[(l + β )h̄]|2F [(l + β )h̄], (E8)

namely, the expectation value (E7) can be fibrated into the
expectation values (E8) at fixed β, 0 � β < 1.

In Eq. (E6), the discrete v-representation �̄s[(l + β )h̄] of
the evolving wave packet for s = rs ′ + j ′, j ′ = 0, . . . , r − 1,
can be calculated, for even j ′, by multiplying �̄0[(l + β )h̄]
by terms j = r − j ′ in the product (11) with v̂ replaced by
(l + β )h̄; the application of the û-dependent terms for odd j ′ in
(11) is equivalent to a convolution in the discrete v = (l + β )h̄
space. We thus have

�̄rs ′+j ′+1[(l + β )h̄] = exp{−iμV [xc + j ′η − (−1)j
′/2

× (l + β )h̄]}�̄rs ′+j ′ [(l + β )h̄],

(E9)

for j ′ = 0, 2, 4, . . . , r − 2 and

�̄rs ′+j ′+1[(l + β )h̄] =
∞∑

l′=−∞
J̃(−1)(j ′−1)/2(l−l′ )(xc + j ′η; μ)

× �̄rs ′+j ′ [(l′ + β )h̄], (E10)

for j ′ = 1, 3, 5, . . . , r − 1, where J̃l (x; μ) is defined by

exp [−iμV (x + u)] =
∞∑

l=−∞
J̃l (x; μ) exp(ilu). (E11)

As Fourier coefficients in Eq. (E11), J̃l (x; μ) usually decay
fast with |l|, so that the sum in Eq. (E10) can be truncated to
get accurate enough results in a simple way.

Similarly, the expectation value of any Hermitian operator
function of û, G(û), in the evolving state can be calculated by
fibrating it into the expectation values at fixed quasiposition λh̄

for all λ, 0 � λ < 1; i.e., in Eqs. (E7) and (E8), one essentially
replaces v̂, u, β by û, v, λ, respectively, exchanging also �s

and �̄s . One can then calculate expectation values such as (25)
in Sec. VI.
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