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Bound on the exponential growth rate of out-of-time-ordered correlators
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It has been conjectured by Maldacena, Shenker, and Stanford [J. Maldacena, S. H. Shenker, and D. Stanford,
J. High Energy Phys. 08 (2016) 106] that the exponential growth rate of the out-of-time-ordered correlator (OTOC)
F (t ) has a universal upper bound 2πkBT /h̄. Here we introduce a one-parameter family of out-of-time-ordered
correlators Fγ (t ) (0 � γ � 1), which has as good properties as F (t ) as a regularization of the out-of-time-ordered
part of the squared commutator 〈[Â(t ), B̂(0)]2〉 that diagnoses quantum many-body chaos, and coincides with
F (t ) at γ = 1/2. We rigorously prove that if Fγ (t ) shows a transient exponential growth for all γ in 0 � γ � 1,
that is, if the OTOC shows an exponential growth regardless of the choice of the regularization, then the growth
rate λ does not depend on the regularization parameter γ and satisfies the inequality λ � 2πkBT /h̄.

DOI: 10.1103/PhysRevE.98.012216

I. INTRODUCTION

Chaos in classical systems is characterized by the Lyapunov
exponent, which represents the exponential growth rate of
the distance between different classical orbits that initially lie
in the immediate vicinity of each other in phase space. The
phenomenon in which a tiny change in the initial condition
blows up exponentially in time is known as the butterfly
effect. A quantum analog of the Lyapunov exponent has
attracted much interest recently, and is given by an out-of-
time-ordered correlator (OTOC) [1], a four-point correlation
function such as 〈Â(t )B̂(0)Â(t )B̂(0)〉 that does not obey
the usual time-ordering rule. Such a correlator arises from
the squared commutator −〈[Â(t ), B̂(0)]

2〉, which is a second
moment of the variation of the operator Â at time t against a
perturbation of a force B̂ at time 0, and represents the sensitivity
of the time-evolving observable to the initial perturbation. If
the OTOC grows exponentially in time, the growth rate of the
OTOC is expected to play a role similar to that of the Lyapunov
exponent in quantum many-body systems [2,3].

Recently, a remarkable conjecture has been made by Mal-
dacena, Shenker, and Stanford (MSS) [3] to the effect that in
thermal equilibrium there exists a universal upper bound on
the exponential growth rate λ of the OTOCs

λ � 2πkBT

h̄
, (1)

where kB is the Boltzmann constant, T is the temperature of
the system, and h̄ is the Planck constant. Precisely speaking,
they introduce an OTOC of the form

F (t ) ≡ Tr[ρ̂
1
4 Â(t )ρ̂

1
4 B̂(0)ρ̂

1
4 Â(t )ρ̂

1
4 B̂(0)], (2)

where ρ̂ = e−βĤ /Z is the thermal density-matrix operator,
β = 1/kBT is the inverse temperature, Ĥ is the Hamiltonian,
Z = Tr(e−βĤ ) is the partition function, and Â and B̂ are
arbitrary Hermitian operators. They focus on a situation where
there is a clear separation between the dissipation time at which
a usual time-ordered correlator decays to a constant and the

scrambling time (or the Ehrenfest time) until which an OTOC
grows exponentially. Let us suppose that the OTOC (2) shows
an exponential growth

F (t ) = c0 − εc1e
λt + O(ε2), (c1, λ > 0), (3)

with time t well after the dissipation time but before the
scrambling time. Here ε is a certain small positive expansion
parameter such as h̄2 in the semiclassical approximation or
1/N2 in large-N theories. Then the MSS conjecture states that
λ always satisfies the inequality (1) regardless of the choices of
Â and B̂ and the details of Ĥ . In this sense, the bound is com-
pletely universal, and is thought to be a fundamental property
of quantum systems. It may be viewed as a refinement of the
fast scrambling conjecture [4]. Several examples are known
to saturate the bound (1), including black holes in Einstein
gravity [3,5–7] and the Sachdev-Ye-Kitaev model [2,8–10].
Various analytical as well as numerical calculations have been
performed for the growth rate of OTOCs in many different
systems [11–22]. No clear counterexample that violates the
bound (1) has been presented so far.

The motivation to consider F (t ) in Eq. (2) rather than
the squared commutator is that in quantum field theory
〈[Â(t ), B̂(0)]

2〉 = Tr(ρ̂[Â(t ), B̂(0)]
2
) is not necessarily well-

defined since two operators can approach in time arbitrarily
close to each other. A convenient prescription is to regularize
it as Tr(ρ̂

1
2 [Â(t ), B̂(0)]ρ̂

1
2 [Â(t ), B̂(0)]) [3], which is called

the bipartite OTOC [23]. The difference between the squared
commutator and the bipartite OTOC, Tr(ρ̂[Â(t ), B̂(0)]

2
) −

Tr(ρ̂
1
2 [Â(t ), B̂(0)]ρ̂

1
2 [Â(t ), B̂(0)]), can be expressed in terms

of the Wigner-Yanase (WY) skew information defined by
I 1

2
(ρ̂, Ô ) ≡ Tr(ρ̂Ô2) − Tr(ρ̂

1
2 Ôρ̂

1
2 Ô ) for a Hermitian oper-

ator Ô [23,24]. The WY skew information is known as an
information-theoretic measure of quantum fluctuations. In the
semiclassical regime of our interest (i.e., before the scrambling
time), we expect that the difference of the skew information is
expected to be suppressed. The out-of-time-ordered (ABAB
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and BABA) part of the bipartite OTOC is defined by

F0(t ) ≡ 1

2
Tr[ρ̂

1
2 Â(t )B̂(0)ρ̂

1
2 Â(t )B̂(0)]

+ 1

2
Tr[ρ̂

1
2 B̂(0)Â(t )ρ̂

1
2 B̂(0)Â(t )]. (4)

F (t ) in Eq. (2) may be viewed as a variant of the regularization
of the out-of-time-ordered part of the squared commutator.
As we will see below, F (t ) and F0(t ) are related to each
other through the analytic continuation into the complex time
domain [see Eq. (15)].

The growth of the commutator is bounded by the
Lieb-Robinson bound [25–28], which gives a fundamen-
tal limit on the spread of information: ‖[Âx (t ), B̂ y(0)]‖ �
c‖Â‖ ‖B̂‖e−(|x− y|−vt )/ξ . Here Â and B̂ are local operators
inserted at positions x and y, respectively; ‖ · ‖ represents
the operator norm; and c, v, and ξ are some constants that
depend on the Hamiltonian, Â, and B̂. In contrast to the
growth rate v/ξ in the Lieb-Robinson bound, the conjectured
bound for λ in Eq. (1) depends on the state of the quantum
system, and the state dependence of the bound appears only
through the thermodynamic temperature (the relation between
the Lieb-Robinson bound and the quantum butterfly effect was
discussed in Refs. [13,29,30]). Thus the bound (1) constitutes
a novel fundamental limit on information spreading in general
quantum systems.

A compelling argument was given in Ref. [3] to establish the
conjecture (1). The original derivation uses analytic properties
of F (z) [analytic continuation of F (t ) to complex time z], and
assumes a factorization of a time-ordered correlation functions

Tr[ρ̂
1
2 Â(t )B̂(0)ρ̂

1
2 B̂(0)Â(t )] � Tr[ρ̂

1
2 Â(t )ρ̂

1
2 Â(t )]

× Tr[ρ̂
1
2 B̂(0)ρ̂

1
2 B̂(0)]

+ ε, (∀t � t0), (5)

with a small constant ε and time t0. Note that ε is different
from the expansion parameter ε for F (t ). The factorization
(5) has not been proved but used as a physical input [3]. We
remark that the assumption (5) is a bit too strong for the present
purpose since (5) requires the factorization for all the time
after t0 whereas the exponential growth of our interest occurs
only up to a finite scrambling time. There is also a subtle
issue concerning the Poincaré recurrence that may invalidate
the factorization (5) at very long time [3]. It is desirable that
one avoid assuming the factorization and make the argument
restricted to within a finite time.

The purpose of the present work is to rigorously prove
without assuming the factorization (5) that the inequality
(1) holds true if the OTOC shows a transient exponential
growth over a certain range of time irrespective of the way
to regularize the squared commutator. There are not only F (t )
in Eq. (2) and F0(t ) in Eq. (4), but in fact, infinitely many
other possible ways to regularize 〈[Â(t ), B̂(0)]

2〉. Here we
introduce a one-parameter family of OTOCs Fγ (t ) (0 � γ �
1) [see Eq. (6)] that interpolates between F0(t ) = Fγ=0(t ) =
Fγ=1(t ) and F (t ) = Fγ= 1

2
(t ). We show that Fγ (t ) has as good

properties as F (t ) in Eq. (2) and F0(t ) in Eq. (4) as a regu-
larization of the out-of-time-ordered part of 〈[Â(t ), B̂(0)]

2〉. If
the exponential growth of the OTOC is physically meaningful

(or universal), it should not depend on the choice of the
regularization. Hence it is reasonable to require that all the
members in the one-parameter family of the OTOCsFγ (t ) (0 �
γ � 1) grow exponentially in time. Under this requirement,
we rigorously prove the existence of the bound (1) on the
exponential growth rate of the OTOCs.

The rest of the paper is organized as follows. In Sec. II, we
introduce a one-parameter family of OTOCs that make as much
sense as F (t ) in Eq. (2) and F0(t ) in Eq. (4) as a regularization
of the out-of-time-ordered part of the squared commutator.
In Sec. III, we describe the statement of the main theorem
in this paper that claims the existence of the bound on the
exponential growth rate of OTOCs, and prove it. In Sec. IV,
we generalize the theorem for the bound on the exponential
growth rate to higher-order OTOCs. In Sec. V, we discuss
various issues related to the theorem and its proof. In Sec. VI,
we summarize the paper.

II. ONE-PARAMETER FAMILY OF OTOCS

We introduce a one-parameter family of OTOCs

Fγ (t ) ≡ 1

2
Tr[ρ̂

1−γ

2 Â(t )ρ̂
γ

2 B̂(0)ρ̂
1−γ

2 Â(t )ρ̂
γ

2 B̂(0)]

+ 1

2
Tr[ρ̂

1−γ

2 B̂(0)ρ̂
γ

2 Â(t )ρ̂
1−γ

2 B̂(0)ρ̂
γ

2 Â(t )] (6)

for 0 � γ � 1. We note that Fγ (t ) is symmetric around γ = 1
2

[i.e., Fγ (t ) = F1−γ (t )], and agrees with F0(t ) (4) at γ = 0, 1
and F (t ) (2) at γ = 1

2 . This form of the OTOC appears in the
study of the out-of-time-order fluctuation-dissipation theorem
[23]. If one defines

C
γ

[A,B]α1 [A,B]α2
(t, 0)

≡ Tr[ρ̂
1−γ

2 (Â(t )ρ̂
γ

2 B̂(0) + α1B̂(0)ρ̂
γ

2 Â(t ))

× ρ̂
1−γ

2 (Â(t )ρ̂
γ

2 B̂(0) + α2B̂(0)ρ̂
γ

2 Â(t ))], (7)

where α1, α2 = ± and [, ]−(+) = [, ] ({, }) is the
(anti)commutator, then 4Fγ (t ) = C

γ

{A,B}2 (t, 0) + C
γ

[A,B]2 (t, 0)
coincides with the inverse Fourier transform of the left-hand
side of the out-of-time-order fluctuation-dissipation theorem
[23]

C
γ

{A,B}2 (ω) + C
γ

[A,B]2 (ω)

= 2 coth

(
(1 − 2γ )

βh̄ω

4

)
C

γ

{A,B}[A,B](ω). (8)

Here C
γ

[A,B]α1 [A,B]α2
(ω) ≡ ∫ ∞

−∞ dt eiωtC
γ

[A,B]α1 [A,B]α2
(t, 0) is

the Fourier transform of Eq. (7). In other words, Fγ (t ) corre-
sponds to the “fluctuation” part of the fluctuation-dissipation
relation.

Each term in the OTOCs can be represented as a contour-
ordered function

1

Z
Tr[TCe− i

h̄

∫
C dzĤ (z)Â(z1)B̂(z2)Â(z3)B̂(z4)], (zi ∈ C),

(9)

where the contour C has double-folded branches [3,31–33]
in the complex time domain as depicted in Fig. 1, and TC is
the contour-ordering operator defined along C. The positions
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−i /2

−i

t(a)

0

−i /4

−3i /4

t(b)

0
−i /2

−i (1+ )/2

t(c)

z

FIG. 1. Positions of the operators Â(z) [B̂(z)] inserted along
the contour C in the complex time domain represented by red dots
on Re(z) = t [blue dots on Re(z) = 0] for (a) the bipartite OTOC
F0(t ), (b) the symmetric OTOC F (t ) = F 1

2
(t ), and (c) the generalized

OTOC Fγ (t ) (0 � γ � 1).

of the operators inserted along the contour C are shown for
F0(t ), F (t ) = F 1

2
(t ), and Fγ (t ) in Figs. 1(a), 1(b), and 1(c),

respectively.
The one-parameter family of the OTOC Fγ (t ) (0 � γ � 1)

(6) has as good properties as F (t ) as a regularization of the
out-of-time-ordered part of 〈[Â(t ), B̂(0)]

2〉. First, Fγ (t ) is real
if Â and B̂ are Hermitian. Hence it makes sense to discuss
the sign of the variation of Fγ (t ), which plays an important
role below. Second, Fγ (t ) smoothly interpolates between F0(t )
in Eq. (4) and F (t ) = F 1

2
(t ) in Eq. (2), corresponding to the

continuous shift of the positions of the operators inserted on
the imaginary-time axis from Figs. 1(a) to 1(b) through 1(c).
Third, Fγ (t ) is the out-of-time-ordered (ABAB and BABA)
part of 1

2C
γ

[A,B]2 (t, 0), which is a generalization of the squared
commutator. If one defines a generalized commutator as

[Â, B̂]γ ≡ Âρ̂
γ

2 B̂ − B̂ρ̂
γ

2 Â, (0 � γ � 1), (10)

then the bracket [·, ·]γ satisfies the bilinearity
[aÂ + bB̂, Ĉ]γ = a[Â, Ĉ]γ + b[B̂, Ĉ]γ and [Ĉ, aÂ +
bB̂]γ = a[Ĉ, Â]γ + b[Ĉ, B̂]γ (a, b ∈ C), the alternativity
[Â, Â]γ = 0, and the Jacobi identity [Â, [B̂, Ĉ]γ ]

γ
+

[B̂, [Ĉ, Â]γ ]
γ

+ [Ĉ, [Â, B̂]γ ]
γ

= 0. Hence the bracket [·, ·]γ
satisfies the axiom of the commutator (or the Lie algebra).
If Â and B̂ are Hermitian, then the generalized commutator

[Â, B̂]γ is skew-Hermitian, i.e., ([Â, B̂]γ )
† = −[Â, B̂]γ . We

note that C
γ

[A,B]2 (t, 0) can be expressed as C
γ

[A,B]2 (t, 0) =

Tr(ρ̂
1−γ

2 [Â(t ), B̂(0)]γ ρ̂
1−γ

2 [Â(t ), B̂(0)]γ ), which contains two
generalized commutators. Since C

γ

[A,B]2 (t, 0) can be viewed
as the trace of the square of the skew-Hermitian operator,
it is negative semidefinite, C

γ

[A,B]2 (t, 0) � 0, as is the case

for the squared commutator 〈[Â(t ), B̂(0)]
2〉. Therefore, if

C
γ

[A,B]2 (t, 0) grows exponentially in such a manner that the
initial-perturbation sensitivity increases, it should grow to
the negative direction. Since the exponential growth of our
interest arises from the out-of-time-ordered (ABAB and
BABA) part [3], Fγ (t ) in Eq. (6) should also grow to the
negative direction. This is why we require that Fγ (t ) =
c0(γ ) − εc1(γ )eλ(γ )t + O(ε2) with c1(γ ) � 0 for 0 � γ � 1.

There is a heuristic argument that supports the bound (1)
from the out-of-time-order fluctuation-dissipation theorem (8).
If F0(t ) in Eq. (4) grows exponentially as F0(t ) = c0 − εc1e

λt ,
then it follows from the relation (8) that C

γ

{A,B}[A,B](t, 0) =
2i tan ( βh̄

4 ∂t )F0(t ) = −2iεc1 tan ( βh̄λ

4 )eλt . In Ref. [23], we
showed that C

γ

{A,B}[A,B](t, 0) corresponds to a certain non-

linear response function, C
γ

{A,B}[A,B](t, 0) ∼ i
2L

(3)
(AB )2 (t ) (up

to the difference of the skew information). This implies that
L

(3)
(AB )2 (t ) ∼ −4εc1 tan ( βh̄λ

4 )eλt . Here we notice that should λ

exceed the bound 2π
βh̄

, something strange would happen: The

sign of the response function L
(3)
(AB )2 (t ) changes. Usually, we

expect that response functions have definite signs (e.g., spins
align under a magnetic field in a definite direction, or current
flows under a dc electric field in a definite direction). Here the
direction of the exponential sensitivity against perturbations
would be reversed, which is unlikely to happen. Although this
argument is not rigorous, it serves as a hint to focus on the sign
of the exponential growth of OTOCs, which turns out to be a
key to our proof.

III. BOUND ON THE EXPONENTIAL GROWTH RATE
OF OTOCS

Now we describe the statement of the main theorem that
gives a rigorous bound on the exponential growth rate for the
OTOCs, and prove it in two ways: One is to use a differential
equation, and the other is to use analytic continuation.

Theorem. If the one-parameter family of the OTOC Fγ (t )
(0 � γ � 1) in Eq. (6) for Hermitian operators Â and B̂ has a
uniform asymptotic expansion of

Fγ (t ) = c0(γ ) − εc1(γ )eλ(γ )t + O(ε2) (11)

in the region D = {(t, γ ) | 0 < t1 � t � t2 (t1 
= t2), 0 � γ �
1} with c1(γ ) � 0 and λ(γ ) > 0 (0 � γ � 1), and if c1(γ )
is nonzero at least at one γ in 0 � γ � 1, then the following
properties hold.

(i) The exponent λ(γ ) is independent of γ [hence we write
λ(γ ) = λ].

(ii) The coefficient c1(γ ) is fully determined as

c1(γ ) = c̃1 cos

(
(1 − 2γ )

βh̄λ

4

)
, (0 � γ � 1), (12)

with c̃1 > 0.
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(iii) The exponent λ satisfies the inequality

λ � 2π

βh̄
= 2πkBT

h̄
. (13)

Some technical remarks are in order here. In the theorem,
we assume not only that Fγ (t ) has an asymptotic expansion of
the form of Eq. (11), but also that the asymptotic expansion is
uniform, that is, the speed of the convergence of the expansion
depends on neither t nor γ in D. More precisely, Fγ (t )
converges to c0(γ ) uniformly in D in the limit of ε → 0, and
[Fγ (t ) − c0(γ )]/ε converges to −c1(γ )eλ(γ )t uniformly in D

in the limit of ε → 0. The assumption of uniform convergence
is physically natural since there is no a priori reason that the
convergence slows down at certain t and γ in the finite region
D. When c1(γ ) vanishes for all γ in 0 � γ � 1, Fγ (t ) does not
show an exponential growth at all. In this case, the MSS bound
is obviously satisfied (λ = 0). Therefore, we only consider the
case in which c1(γ ) is nonzero at least at one γ in 0 � γ � 1
in the theorem.

Another remark is that in the theorem we assume that the
expansion parameter ε and h̄ are independent of each other.
In the context of large N theories, this is indeed the case.
However, it is not the case for semiclassical approximations
where ε is taken to be h̄2. In order for the theorem to make
sense in this case, one should understand Eq. (11) as an
asymptotic expansion with respect to ε with βh̄ being fixed.
Note that h̄ always appears together with β in the theorem.

Proof. Let us write

Fγ (t ) = 1

2
Tr

[
ρ̂

1
4 Â

(
t − i

(
γ − 1

2

)
βh̄

2

)
ρ̂

1
4 B̂(0)

× ρ̂
1
4 Â

(
t − i

(
γ − 1

2

)
βh̄

2

)
ρ̂

1
4 B̂(0)

]
+ 1

2
Tr

[
ρ̂

1
4 Â

(
t + i

(
γ − 1

2

)
βh̄

2

)
ρ̂

1
4 B̂(0)

× ρ̂
1
4 Â

(
t + i

(
γ − 1

2

)
βh̄

2

)
ρ̂

1
4 B̂(0)

]
= 1

2
F

(
t − i

(
γ − 1

2

)
βh̄

2

) + 1

2
F

(
t + i

(
γ − 1

2

)
βh̄

2

)
. (14)

If we denote z = t + i(γ − 1
2 ) βh̄

2 , then Fγ (t ) can be expressed
as

Fγ (t ) = 1

2
F (z) + 1

2
F (z̄). (15)

Since F (z̄) is the complex conjugate of F (z) [i.e., F (z̄) =
F (z)], Fγ (t ) is the real part of the complex function F (z). Let
us define c0 ≡ c0( 1

2 ), c̃1 ≡ c1( 1
2 ) � 0, and λ ≡ λ( 1

2 ) > 0 [later
it turns out that c0(γ ) and λ(γ ) do not depend on γ , so that we
use the same notations for c0 and λ at γ = 1

2 ]. At γ = 1
2 , we

have

F 1
2
(t ) = F (t ) = c0 − εc̃1e

λt + O(ε2), (t1 � t � t2). (16)

It has been shown in Ref. [3] that F (z) is analytic in
the strip region − βh̄

4 � Im z � βh̄

4 (except at z = ±i
βh̄

4 ) [34],
and especially in the region of � ≡ {z ∈ C | 0 < t1 � Re z �
t2,− βh̄

4 � Im z � βh̄

4 }. Hence F (t ) is infinitely differentiable,
and can be Taylor expanded around t with the convergence
radius of βh̄

4 . This allows us to rewrite Eq. (14) in the form of

0
2

3
2

2 5
2

3 7
2

4 9
2

5
0

1
2

4

FIG. 2. Regions (shaded in gray) of c1(γ ) � 0.

the following differential equation:

Fγ (t ) = 1

2
e− βh̄

2 (γ− 1
2 )i∂t F (t ) + 1

2
e

βh̄

2 (γ− 1
2 )i∂t F (t )

= cos

(
(1 − 2γ )

βh̄

4
∂t

)
F (t ). (17)

If F (t ) has the uniform asymptotic expansion (16) in t1 � t �
t2, arbitrary-order derivatives ofF (t ) also have uniform asymp-
totic expansions in t1 � t � t2 since F (z) is holomorphic in
�. Therefore, we can exchange the order of the derivative ∂t

and the limit ε → 0 in Eq. (17), obtaining

Fγ (t ) = c0 − εc̃1 cos

(
(1 − 2γ )

βh̄λ

4

)
eλt + O(ε2). (18)

This completely determines the γ dependencies of c0(γ ),
c1(γ ), and λ(γ ). Especially, λ(γ ) = λ (independent of γ ) and
c1(γ ) = c̃1 cos [(1 − 2γ ) βh̄λ

4 ]. If c̃1 = 0, c1(γ ) vanishes for
all γ in 0 � γ � 1, which contradicts the assumption of the
theorem. Hence c̃1 > 0, and the statements (i) and (ii) of the
theorem follow.

It is straightforward to prove the statement (iii) from the
condition c1(γ ) � 0, which is equivalent to

cos

(
(1 − 2γ )

βh̄λ

4

)
� 0 (19)

for 0 � γ � 1. Since the condition (19) is symmetric around
γ = 1

2 , it is sufficient to restrict ourselves to 0 � γ � 1
2 . The

allowed region of (λ, γ ) is depicted in Fig. 2. The condition
(19) means that cos θ � 0 for − βh̄λ

4 � θ � βh̄λ

4 . Therefore the
interval [− βh̄λ

4 ,
βh̄λ

4 ] must be included in the interval [−π
2 , π

2 ],
which is satisfied if and only if βh̄λ

4 � π
2 . This proves the

inequality (13). �
Alternative proof. There is another way to show the state-

ments (i) and (ii) of the theorem by using analytic continuation.
As we have seen above, F (z) is analytic in the region of �, and
on the real axis (z = t ∈ � ∩ R) F (z) is given by Eq. (16). If
(a) there exists an asymptotic expansion of F (z) with respect
to ε up to O(ε2), and if (b) each term in the expansion is
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also analytic in the region of �, then due to the uniqueness of
analytic continuation we obtain

F (z) = c0 − εc̃1e
λz + O(ε2) (20)

for ∀z ∈ �. Substituting Eq. (20) in Eq. (15) gives

Fγ (t ) = c0 − εc̃1Re
[
eλ(t+i(γ− 1

2 ) βh̄

2 )
] + O(ε2)

= c0 − εc̃1 cos

(
(1 − 2γ )

βh̄λ

4

)
eλt + O(ε2), (21)

which is equivalent to (i) and (ii).
The remaining task is to show that the assumptions (a) and

(b) made in the above argument are true. To this end, we first
need to show that limε→0 F (z) exists and that limε→0 F (z) is
holomorphic [note that F (z) itself is holomorphic in � for
each fixed ε]. Let us recall that the real part of F (z) is Fγ (t ),
which converges uniformly in the region � in the limit of ε →
0. Since F (z) = Fγ (t ) for Im z = 0, F (z) converges in the
limit of ε → 0 for z ∈ � ∩ R. Now we invoke the following
mathematical fact in complex analysis [35]: Suppose that fn(z)
(n = 1, 2, 3, . . . ) is holomorphic in the region �, un(z) is the
real part of fn(z), {un(z)} converges uniformly on any compact
subset of �, and {fn(z)} converges for at least one z ∈ �. Then
{fn(z)} converges uniformly on any compact subset of �. From
this fact, it follows that F (z) converges uniformly in the region
� in the limit of ε → 0. Uniform convergence guarantees that
limε→0 F (z) is holomorphic in �. By analytic continuation,
we obtain limε→0 F (z) = c0 for z ∈ �. We repeat the same
argument with F (z) replaced by [F (z) − c0]/ε, showing that
[F (z) − c0]/ε converges uniformly in � in the limit of ε → 0
and that limε→0[F (z) − c0]/ε is holomorphic in �. Thus the
assumptions (a) and (b) are shown to be true, and the proof of
the theorem is completed. �

IV. GENERALIZATION OF THE MSS BOUND
TO HIGHER-ORDER OTOCS

The theorem derived in the previous section can be general-
ized to higher even-order OTOCs. We define the higher-order
generalization of the one-parameter family of the OTOCsFγ (t )
(6) as

Fn
γ (t ) ≡ 1

2
Tr([ρ̂

1−γ

2n Â(t )ρ̂
γ

2n B̂(0)]2n)

+ 1

2
Tr([ρ̂

1−γ

2n B̂(0)ρ̂
γ

2n Â(t )]2n), (22)

with 0 � γ � 1 and n = 1, 2, 3, . . .. We note that Fn
γ (t ) =

Fγ (t ) for n = 1, Fn
γ (t ) is real for arbitrary n and γ , and Fn

γ (t ) is

the (AB )2n + (BA)2n part of the regularized 〈[Â(t ), B̂(0)]
2n〉.

Again Fn
γ (t ) has appeared in the left-hand side (“fluctua-

tion” part) of the 2nth-order out-of-time-order fluctuation-
dissipation theorem [23]

α1α2···α2n=+∑
α1,α2,...,α2n=±

C
γ

[A,B]α1 [A,B]α2 ···[A,B]α2n
(ω)

= coth

(
(1 − 2γ )

βh̄ω

4n

) α1α2···α2n=−∑
α1,α2,...,α2n=±

×C
γ

[A,B]α1 [A,B]α2 ···[A,B]α2n
(ω), (23)

where C
γ

[A,B]α1 [A,B]α2 ···[A,B]α2n
(ω) is the Fourier transform of

C
γ

[A,B]α1 [A,B]α2 ···[A,B]α2n
(t, 0)

≡ Tr

(
2n∏
i=1

[ρ̂
1−γ

2n Â(t )ρ̂
γ

2n B̂(0) + αiρ̂
1−γ

2n B̂(0)ρ̂
γ

2n Â(t )]

)

(24)

with αi = ±. Fn
γ (t ) is related to the left-hand side of Eq. (23)

via

Fn
γ (t ) = 1

22n

α1α2···α2n=+∑
α1,α2,...,α2n=±

C
γ

[A,B]α1 [A,B]α2 ···[A,B]α2n
(t, 0). (25)

Since (−1)n〈[Â(t ), B̂(0)]
2n〉 is positive semidefinite, it is

reasonable to expect that Fn
γ (t ) grows exponentially (if it does)

to the positive (negative) direction for even (odd) n. Thus we
assume that Fn

γ (t ) has a uniform asymptotic expansion of

Fn
γ (t ) = c0,n(γ ) + (−1)nεc1,n(γ )eλn(γ )t + O(ε2) (26)

in the region D = {(t, γ )|t1 � t � t2 (t1 
= t2), 0 � γ � 1}
with c1,n(γ ) � 0 and λn(γ ) > 0 for 0 � γ � 1. If c1,n(γ )
is nonzero at least at one γ in 0 � γ � 1, then, due to the
same argument as in Sec. III, we can prove that λn(γ ) does
not depend on γ (hence we write λn(γ ) = λn) and the γ

dependence of c1,n(γ ) is determined as

c1,n(γ ) = c̃1,n cos

(
(1 − 2γ )

βh̄λn

4n

)
(27)

with a positive constant c̃1,n. In order for the coefficient c1,n(γ )
to be positive semidefinite for 0 � γ � 1, λn must satisfy the
inequality

λn � 2nπ

βh̄
= 2nπkBT

h̄
. (28)

This is a generalization of the MSS bound to the higher-order
OTOCs Fn

γ (t ). If the bound (28) is saturated, the dominant

exponential growth of the regularized 〈[Â(t ), B̂(0)]
2n〉 is given

by exp ( 2nπ
βh̄

t ) = [exp ( 2π
βh̄

t )]
n
. This is natural since the fastest

exponential growth of the regularized 〈[Â(t ), B̂(0)]
2〉 is given

by exp ( 2π
βh̄

t ).

V. DISCUSSIONS

In this section, we discuss various issues on the theorem
and its proof given in Sec. III.

The assumption about the form of Fγ (t ) in Eq. (11) for all
γ in 0 � γ � 1 is too strong for the purpose of showing (i) and
(ii). As we have seen above, Fγ (t ) is uniquely determined from
F 1

2
(t ). In fact, to prove (i) and (ii), it is sufficient to adopt a

weaker assumption that Eq. (11) holds for γ = 1
2 and that there

exists a uniform asymptotic expansion of Fγ (t ) in D. If one
further assumes c1(γ ) � 0 for 0 � γ � 1, then (iii) follows.
Also, the assumption of the uniformity of the asymptotic
expansion seems to be rather technical. Instead of uniformity,
it is sufficient to assume (a) and (b) from the beginning to prove
the statements (i), (ii), and (iii) of the theorem in the alternative
proof.
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Let us emphasize that in proving the theorem we cannot use
the mathematical result employed in Ref. [3]: If f (t + iτ ) is
analytic in the half strip {(t, τ )|t > 0,− βh̄

4 � τ � βh̄

4 }, f (t )
is real for τ = 0, and |f (t + iτ )| � 1 in the entire half strip,
then it follows that

1

1 − f

∣∣∣∣dfdt

∣∣∣∣ � 2π

βh̄
+ O(e−4πt/βh̄). (29)

It is argued in Ref. [3] that the appropriately normalized
OTOC f satisfies the assumptions of the above statement if
one assumes a factorization of certain time-ordered functions.
From the inequality (29), one can see that the exponential
growth rate of f is bounded by 2π/βh̄. Here we cannot
use this mathematical result simply because the theorem
does not assume anything about the behavior of Fγ (t ) out
of the region D = {(t, γ )|t1 � t � t2, 0 � γ � 1}. Thus it is
impossible to bound |Fγ (t )| in an entire region of a certain
half strip such as {(t, γ )|t � t1, 0 � γ � 1} in our case. Since
we restrict ourselves to the finite-time range (t1 � t � t2), we
do not suffer from Poincaré recurrences (if the time range is
shorter than the recurrence time), which would invalidate the
factorization [3].

If λ were to exceed the bound 2π/βh̄, something strange
would happen. From the theorem, one can see that there
exists some γ in 0 � γ � 1 such that c1(γ ) < 0. This means
that there exists an OTOC Fγ (t ) in the one-parameter family
that grows exponentially in the direction opposite to the
one in which the initial-perturbation sensitivity grows. That
is, the direction of the exponential growth depends on the
choice of the regularization of 〈[Â(t ), B̂(0)]

2〉. Although
such a case is not excluded by the theorem, the exponential
growth of the OTOC becomes regularization dependent, and
it is no longer universal. As long as the exponential growth
is universal, the growth rate must be bounded from the
theorem.

The theorem can be extended to cases in which there is a
subleading correction to the exponential growth in the O(ε)
term in Eq. (11):

Fγ (t ) = c0(γ ) − ε[c1(γ )eλ(γ )t + fγ (t )] + O(ε2). (30)

Here fγ (t ) represents a subleading correction such as
c2(γ )eλ′(γ )t with λ′(γ ) < λ(γ ) for 0 � γ � 1. By applying
the same argument as in the proof of the theorem, one obtains

Fγ (t ) = c0 − ε

[
c̃1 cos

(
(1 − 2γ )

βh̄λ

4

)
eλt

+ fγ (t )

]
+ O(ε2). (31)

As long as one requires the positivity of the coefficient of
the leading exponentially growing term [i.e., c1(γ ) � 0], the
exponent λ in the leading term is bounded as in Eq. (13).
Adding a subleading correction to the O(ε0) term is also
possible with the results unchanged.

The theorem does not exclude the growth of the OTOC
faster than the exponential such as eλt2

. Originally, it has been

conjectured [3] that

d

dt
[Fd − F (t )] � 2π

βh̄
[Fd − F (t )], (32)

where Fd is a constant which F (t ) approaches after the
dissipation time. This is stronger than our statement that
assumes an exponential growth from the beginning. However,
our argument in the proof of the theorem can be used to strongly
constrain rapid growth of the OTOC. For example, if F (t ) takes
the form of

F (t ) = c0 − εc̃1e
λt2 + O(ε2) (33)

for t1 � t � t2, then a similar argument shows that

Fγ (t ) = c0 − εc1(γ, t )eλt2 + O(ε2) (34)

with

c1(γ, t ) = c̃1e
−λ(1−2γ )2 ( βh̄

4 )2
cos

(
(1 − 2γ )

βh̄λ

2
t

)
. (35)

That is, Fγ (t ) not only grows as eλt2
but also oscillates with t .

If the duration of the growth t2 − t1 is sufficiently large (i.e.,
t2 − t1 > 2π

βh̄λ
), the O(ε1) term of some of Fγ (t ) in 0 � γ � 1

must change its sign. Thus it is impossible that all the members
of the OTOCs in the one-parameter family grows as eλt2

to the “correct” direction (such that the initial perturbation-
sensitivity grows) for a sufficiently long-time duration. The
extension of the argument to other cases including eλtn (n � 3)
is straightforward.

Finally, let us comment on the zero-temperature limit (i.e.,
βh̄ → ∞) in the case of ε = h̄2 (semiclassical approxima-
tions), where the theorem suggests that λ must be zero. Does
this mean that there is no chaotic behavior at zero temperature?
There is a subtle ambiguity which arises when we consider the
two limits of h̄ → 0 and β → ∞ simultaneously. Depending
on the precise definition of the limits, we have two possibilities:
either (i) the semiclassical approximation itself breaks down,
or (ii) the semiclassical approximation retains its validity as
the temperature goes to zero. In the former case, the basis of
the theorem [i.e., the presence of the asymptotic expansion
(11)] does not hold, so that the theorem cannot be applied.
In the latter case, the system approaches the lowest-energy
state (i.e., the stable fixed point) of the classical Hamiltonian
H (qi, pi ), around which the Hamiltonian can be approximated
by quadratic terms in qi and pi (see, e.g., Ref. [36]). Thus the
system becomes nearly integrable, and the chaotic behavior is
suppressed at low temperature.

VI. SUMMARY

To summarize, we prove the inequality (1) for the growth
rate of the OTOCs under the assumption that all the OTOCs
in the one-parameter family [Fγ (t ) with 0 � γ � 1] show
a transient exponential growth in the uniform asymptotic
expansion by using only the analytic properties of the OTOCs.
We do not exclude the possibility that some of the OTOCs in the
one-parameter family might violate the MSS bound. However,
in this case the sign of the exponentially growing part depends
on the regularization parameter, which makes the exponential
growth of the OTOC nonuniversal. Our argument places a

012216-6



BOUND ON THE EXPONENTIAL GROWTH RATE OF OUT- … PHYSICAL REVIEW E 98, 012216 (2018)

strong constraint on the faster-than-exponential growth of the
OTOC. The obtained results are independent of the choice of
the operators Â and B̂ and any details of the system, and ap-
plicable to arbitrary quantum systems in thermal equilibrium,
including quantum black holes and strongly interacting many-
body systems. The theorem is further generalized to higher-
order OTOCs (22), for which we derive a novel universal bound
given by Eq. (28).
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