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Using the machine learning approach known as reservoir computing, it is possible to train one dynamical system
to emulate another. We show that such trained reservoir computers reproduce the properties of the attractor of the
chaotic system sufficiently well to exhibit chaos synchronization. That is, the trained reservoir computer, weakly
driven by the chaotic system, will synchronize with the chaotic system. Conversely, the chaotic system, weakly
driven by a trained reservoir computer, will synchronize with the reservoir computer. We illustrate this behavior
on the Mackey-Glass and Lorenz systems. We then show that trained reservoir computers can be used to crack
chaos based cryptography and illustrate this on a chaos cryptosystem based on the Mackey-Glass system. We
conclude by discussing why reservoir computers are so good at emulating chaotic systems.
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I. INTRODUCTION

Can one train a nonlinear dynamical system to emulate a
different nonlinear chaotic dynamical system? This question
has been answered positively in Refs. [1–5] in the context of
the machine learning technique known as reservoir computing.
But much remains to be learned concerning the quality of this
emulation.

Reservoir computing (RC) [1,6–8], on which this approach
is based, is a machine learning technique in which a nonlinear
dynamical system with a large number of internal nodes
(called the reservoir) is driven by a time dependent signal.
The connections between the internal variables are chosen at
random and then kept fixed (except, possibly, for a few global
parameters that may be adjusted). In many implementations,
the reservoir is a recurrent neural network with fixed connec-
tions. The output of the reservoir computer is a single node
whose state is given by a linear combination of the states of the
internal variables. The weights of this linear combination are
trained to match the output as closely as possible to a desired
target. Although conceptually simple, reservoir computing is
powerful enough to equal other algorithms on hard tasks such
as channel equalization, phoneme recognition, and others (see
[9,10] for reviews).

The theory of reservoir computing is not very advanced (the
situation being similar to many machine learning approaches
which work well in practice but lack formal explanations
for their performance). One of the most useful theoretical
concepts is that of the linear and nonlinear memory capacity
of reservoirs; see [11–14]. It was also shown recently that a
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variant of the reservoir computer is universal in the category
of fading memory filters [15].

Reservoir computing has also been implemented experi-
mentally with performance comparable to digital implemen-
tations [16–18] with photonic implementations presenting
particularly high speeds [19–21], see [22] for a review.

In the case where one wants the reservoir computer to
emulate a dynamical system, the reservoir is first driven by
the state of the dynamical system, and trained to predict this
state one time step in the future. After training one closes
the loop and feeds the output of the reservoir back into itself,
whereupon it will develop autonomous dynamics that are—one
hopes—close to those of the original dynamical system.

This approach was originally introduced to forecast the
trajectories of chaotic dynamical systems, where it reached
record forecasting horizons [1]. These results were improved
recently in Ref. [15]. In addition this method was used
numerically in Ref. [3] to infer the values of hidden degrees
of freedom of the dynamical system, in Ref. [4] to estimate its
Lyapunov exponents, and in Ref. [5] to predict spatiotemporal
chaos. It was also implemented in an optoelectronic system [2]
where it was shown that the experimental reservoir could be
trained to have similar dynamics to the original system (similar
spectrum, Lyapunov exponents, etc.). From these works it is
clear that a reservoir computer trained as described above
can emulate another, a priori completely different (possibly
chaotic) dynamical system. However much remains to be
understood about the quality and accuracy of the method, as
well as its potential limitations. Here we show how trained
reservoir computers can be used to replace dynamical systems
in two other applications: chaos synchronization and cracking
chaos-based cryptography.

One of the most surprising aspects of chaos theory is the
synchronization of two identical chaotic systems. Although
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the dynamics of each system separately is unpredictable, if one
system is driven by the other, the two systems will synchronize
[23,24]. This phenomenon has been extensively studied; see,
e.g., the review [25].

In the first part of this work, we show that a reservoir
computer, trained to emulate a chaotic system as described
above, if driven by the original system, will synchronize with it.
This demonstrates that not only is the dynamics of the reservoir
computer emulator superficially similar to that of the original
system, but that its chaotic attractor has similar properties. That
is, it captures a large part of the characteristics of the dynamics
of the original system. We illustrate this in two examples: the
Lorenz [26] and Mackey-Glass systems [27].

After the discovery of chaos synchronization, considerable
effort was devoted to trying to use this effect and the unpre-
dictability of chaotic systems to hide secret messages; see,
e.g., [28–30]. A series of experimental demonstrations were
realized [31–33]. However, it was later shown that chaos-based
cryptography is fundamentally insecure, as there are efficient
ways for an eavesdropper to find the parameters of the chaotic
system (which play the role of secret key), at least using plain
text attack. This was first demonstrated on a series of examples,
see, e.g., [34–40], and then in full generality [41].

As an application of our results on chaos synchronization
we consider using the reservoir computer to crack chaos-based
cryptography. We will study a cryptosystem based on the
Mack-Glass equations previously studied from the point of
view of encryption and cryptanalysis in Refs. [34,40]. This
is an “open loop” configuration of the type widely used in
experiments because of its robustness. Our attack based on
reservoir computing performs similarly to the parameter search
studied in Ref. [34].

We conclude this article with a general discussion of why
reservoir computers are able to crack chaos-based cryptosys-
tems. This should be viewed as a general discussion which
shows the plausibility of this kind of attack, but without
any claim to mathematical rigor or an understanding of the
efficiency of such attacks.

II. RESERVOIR COMPUTING

A. Basic principles

The reservoir computer used in this work is a discrete-time
echo state network, as introduced in Refs. [1,6]. The reservoir
states vector x, consisting of N neurons, is updated following
the equation

x(n) = (1 − Ca)x(n − 1)

+C tanh [winu(n) + Wx(n − 1) + wbackd(n − 1)],

(1)

where n ∈ Z is the discrete time, C is a time-scale constant, a

is the leak rate, W is a N × N matrix of internal connection
weights, wback is the N -size weight vector for feedback
connections from the output to the reservoir, win is a N -size
vector, and u is a constant. Together, C and a realize a low-pass
filter with adjustable properties.

The elements of win, W , and wback are chosen from a
uniform distribution over the interval [−1,+1]. A reservoir
computer must be not too far from the edge of chaos to exhibit

good performance. To this end the matrix W is then rescaled to
adapt its spectral radius. The vectors win and wback are possibly
also rescaled to adapt the strength of the input and feedback.
Throughout this work the input bias is fixed to u = 0.2. To
fix the other parameters of the reservoir computer, such as
C, a, spectral radius of W , and scaling of win and wback, we
took inspiration from [6]. When the parameter values were
not available for a specific task, suitable values were chosen
heuristically, but without carrying out a systematic search over
all possible values. The chosen values of parameters are given
in the text below.

The output equation of a single-output network is given by
a dot product

y(n) = wout[x(n),u(n)], (2)

where [x(n),u(n)] is the concatenation of the reservoir states
vector x(n) with the input u(n), and wout are N + 1 output
weights (also known as the output mask).

During training we adjust the weights wout so that the output
y(n) is as close as possible to the desired output ỹ(n). To this
end we minimize the normalized mean square error (NMSE),
given by

NMSE = 〈(y(n) − ỹ(n))2〉
〈(ỹ(n) − 〈ỹ(n)〉)2〉 . (3)

The NMSE indicates how far the time series y(n) generated
by the reservoir deviates from the target time series ỹ(n).
The resulting value is straightforward to interpret: NMSE = 0
means that the two series match, while NMSE = 1 indicates
no similarity at all. Minimizing the NMSE with respect to the
readout weights gives rise to a system of linear equations that
is readily solved. We do not use ridge regression [42] (except
in the Lorenz task; see below) as there is enough training data
to avoid overfitting.

After training we evaluate the performance of the reservoir
on a new data set. When we report NMSE values, it is the
values evaluated on the test sequence.

In the present work, the reservoir computer must predict or
process continuous time signals u(t). To pass from continuous
to discrete time, we sample the continuous time input as

u(n) = u(t + n�), (4)

where � is the sampling interval. For the different applications,
we quote the sampling interval used.

B. Training to crack chaotic cryptography

When training to crack chaotic cryptography, we operate the
reservoir as described above. We set wback = 0. We consider a
plain text attack in which Eve has access to the signal sent by
Alice to Bob, and to the message that we encrypted by Alice.
For training we take u(n) to be the signal intercepted by Eve.
We take ỹ(n) = m(n) to be the message encoded by Alice.
During the training phase the weights wout are thus adjusted
so that the reservoir outputs the encrypted message. Eve’s
reservoir computer is then ready to decrypt new encrypted
messages.

012215-2



USING A RESERVOIR COMPUTER TO LEARN CHAOTIC … PHYSICAL REVIEW E 98, 012215 (2018)

C. Training to emulate chaotic systems

When training the reservoir to emulate a chaotic system,
for instance, for chaos synchronization, we proceed as follows.
Denote by s(n) the time series of the chaotic system we wish
to emulate.

We set the input to a constant

u(n) = 0.2. (5)

During training Eqs. (1)–(3) and (5) are supplemented by

d(n) = s(n) (during training),

ỹ(n) = s(n) (during training). (6)

That is, the training phase is used to optimize the readout
weights wout so that the reservoir predicts the next point s(n)
in the input chaotic time series, given the previous points
s(n − 1),s(n − 2), . . ..

After the training, the readout weights wout are fixed and
the teacher signal d(n) is replaced by the output signal y(n),
so that the reservoir becomes autonomous. The evolution of
the reservoir computer during the autonomous run is given by
Eqs. (1), (2), and (5) supplemented by

d(n) = y(n) (during autonomous run). (7)

The reservoir now uses its estimates of the previous points in
the time series to estimate the next point.

III. TRAINING ON THE MACKEY-GLASS
AND LORENZ SYSTEMS

For illustrative purposes in this work, we use the one-
dimensional Mackey-Glass (MG) delay equation and the
tridimensional Lorenz system. The prediction of the MG and
Lorenz systems time series using echo state networks and
variants thereof has been investigated previously in a number
of works; see [1–5,43,44].

The Mackey-Glass delay differential equation

dx

dt
= β

x(t − τ )

1 + xn(t − τ )
− γ x (8)

with τ , γ , β, n > 0 was introduced to illustrate the appearance
of complex dynamics in physiological control systems [27]. To
obtain chaotic dynamics, we set the parameters as in Ref. [1]:
β = 0.2, γ = 0.1, τ = 17, and n = 10. With these settings,
the highest Lyapunov exponent is λ = 0.006 [1].

Equation (8) was integrated using MATLAB’s dde23 solver
with the initial condition x(t � 0) = 0.5 and integration step
of 0.5 for 7000 time steps. The first 1000 transient values were
discarded and the remaining data were split into 3000 training
and 3000 test inputs.

For the MG task, we used a reservoir with N = 1500
neurons, the matrix W was rescaled to a spectral radius of
0.79, while the vectors win, wback were not rescaled, and we
set � = 1, C = 0.44, a = 0.9.

At the training stage we obtained an error of NMSE =
3 × 10−9. During the free run, the error gradually increases,
as the reservoir output signal slowly deviates from the target
trajectory on the Mackey-Glass attractor. Nevertheless, the
system manages to generate the desired output for several
hundreds of time steps with reasonable precision.

The Lorenz equations, a system of three ordinary differen-
tial equations

dx

dt
= σ (y − x), (9a)

dy

dt
= −xz + rx − y, (9b)

dz

dt
= xy − bz, (9c)

with σ,r,b > 0, were introduced as a simple model for atmo-
spheric convection [26]. The system exhibits chaotic behavior
for σ = 10, b = 8/3, and r = 28 [45], that we used in this
study. This yields a chaotic attractor with the highest Lyapunov
exponent of λ = 0.906 [1].

The Lorenz equations (9) were integrated using MATLAB’s
ode45 routine with an integration step of 0.02 for 10 000 time
steps. We only used the x coordinate of the chaotic system,
which was rescaled by a factor of 0.01, as in Ref. [1]. The first
1000 transient values were discarded and the remaining data
were split into 6000 training and 3000 test inputs.

For the Lorenz task, we used a reservoir of size N = 1500.
We set the spectral radius of the weight matrix W to 0.97, the
input and feedback weights win and wback were rescaled to the
interval [−0.5,0.5], and we set � = 1, C = 0.44, and a = 0.9.
To obtain better results we used a form of ridge regression
for this task, namely we added noise drawn from the uniform
distribution over [−10−6,10−6] in the argument of the tanh in
Eq. (1).

We obtained a training error of NMSE = 3 × 10−8. The
error is one order of magnitude higher here than in the Mackey-
Glass case. This may be due to the fact that the Lorenz system
has a higher positive Lyapunov exponent and thus exhibits
stronger chaoticity than the Mackey-Glass system, and/or to
the fact that the reservoir computer is expected to emulate
the dynamics of a three-dimensional system given only one
dimension (the x coordinate), which is more challenging than
the reconstruction of the scalar Mackey-Glass system.

Note: We use here the traditional notation for echo state
networks, MG and Lorenz systems, which means that different
meanings are given to the same letters. When it is not clear from
the context, we use a subscript xRC,xMG,xL to differentiate
them.

IV. SYNCHRONIZING TRAINED RESERVOIR
COMPUTERS WITH THE MACKEY-GLASS

AND LORENZ SYSTEMS

Let s(n) be the time series of the chaotic system with which
one wishes to synchronize, with n the discretized time used to
integrate Eqs. (8) and (9). We first train the reservoir to predict
the next sample in the time series, as described above. Next
we start an autonomous run in which the reservoir follows its
own dynamics, given by Eqs. (1), (2), and (7). At time n = n0,
we start weakly driving the reservoir with the chaotic time
series s(n). That is, its dynamics is given by Eqs. (1) and (2),
supplemented by

d(n) = (1 − q)y(n) + qs(n) (when locked) (10)

with 0 � q � 1.
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FIG. 1. Synchronization of a trained reservoir computer on the Mackey-Glass system, integrated from the initial condition xMG(t � 0) = 0.2.
The reservoir computer is trained from t = −3000 to t = 0, whereupon it become autonomous until t = 500. At t = 500, we set the coupling
to q = 0.25 and remove it (q = 0) at t = 1500. Plot (a) depicts only the region of interest around t = 500, where the reservoir (solid line)
synchronizes with the chaotic system (dotted line). Plot (b) shows the evolution of the NMSE, averaged over 100-time-step intervals, for the
entire duration of the simulation, showing the decrease of the NMSE when the synchronization is turned on, the saturation of the NMSE to a
low value (NMSE = 1.5 × 10−4) after synchronization, and the increase of the NMSE when the synchronization is turned back off. Plot (c)
illustrates the same scenario with different coupling strengths. For q = 0.5, the synchronization is quicker, as can be seen from the steeper slope,
and the resulting NMSE is lower (NMSE = 7.1 × 10−6). Lower values of q lead to slower synchronization, with a higher error. At q = 0.001,
the systems no longer synchronize.

Figures 1 and 2 illustrate how the trained reservoir can
lock onto the MG and Lorenz systems. It should be noted that
during the synchronization phase, the NMSE decreases until
a minimum value and then stays constant. On the other hand,
if we were to synchronize two identical MG or Lorenz sys-
tems, the NMSE would decrease until it reached the machine
precision. The difference arises because the trained reservoir
does not exactly reproduce the dynamics of the MG or Lorenz
system.

Taking q = 0.25, we obtained synchronization errors of
NMSEMG-RC = 1.5 × 10−4 and NMSELZ-RC = 2.3 × 10−7.
Note that the first subscript corresponds to the primary system,
and the seconds indicates the secondary system that is being
driven by the primary. Results for other values of q are given
in the last panels of Figs. 1 and 2.

We also tested the inverse scenario, in which a chaotic
system (MG or Lorenz) is synchronized on a trained reservoir
computer. Let yRC be the output of the trained reservoir. In the
case of MG, we let Eq. (8) evolve autonomously until t = 500.
At this time, we change the right hand side of Eq. (8), replacing
x(t) by

x(t) → qyRC(t) + (1 − q)x(t). (11)

In the case of Lorenz, we let Eqs. (9) evolve autonomously
until t = 20, when we change the right hand side of Eqs. (9),
replacing x(t) by Eq. (11). In both cases we took q = 0.25.
The results are plotted in Fig. 3. We obtained synchronization
errors of NMSERC-MG = 1.5 × 10−3 and NMSERC-LZ = 1.5 ×
10−1. Note that the NMSEs are higher than when the RC
synchronizes onto the MG or LZ systems. This may be due
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FIG. 2. Synchronization of a trained reservoir computer on the Lorenz system, integrated from (x0,y0,z0)LZ = (10,0,0). The reservoir
computer is trained from t = −3000 to t = 0, whereupon it becomes autonomous until t = 20. At t = 20, we set the coupling to q = 0.25
and remove it (q = 0) at t = 80. Plot (a) depicts only the region of interest around t = 20, where the reservoir (solid line) synchronizes with
the chaotic system (dotted line). Plot (b) shows the evolution of the NMSE, averaged over 100-time-step intervals, for the entire duration
of the simulation, showing the decrease of the NMSE when the synchronization is turned on, the saturation of the NMSE to a low value
(NMSE = 2.3 × 10−7) after synchronization, and the increase of the NMSE when the synchronization is turned back off. Plot (c) illustrates the
same scenario with different coupling strengths. Again, higher coupling (q = 0.5) leads to a lower synchronization error (NMSE = 5.1 × 10−8).
Decreasing q leads to a system that tries to synchronize but fails (q = 0.1). At q = 0.05, the systems do not synchronize at all.
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FIG. 3. Inverse scenario: synchronization of (a) Mackey-Glass and (b) Lorenz chaotic systems on a trained reservoir computer. The left
panel depicts the region of interest around t = 500, where the Mackey-Glass system (solid lines) synchronizes onto the reservoir computer
(dotted lines). The synchronization is quite efficient in this case. For the Lorenz system, a close view of the region of interest around t = 20 does
not show any interesting dynamics, since the synchronization error stays quite significant. For this reason, we plot the full time trace instead
(right panel) that shows that the synchronized Lorenz system (solid line) accurately follows the switches between the lobes of the Lorenz
attractor, emulated by the reservoir computer (dotted lines). The resulting error is much higher in this experiment, but the synchronization
phenomenon can still be observed. At t = 40 we stopped the synchronization (q = 0) and the two systems immediately desynchronized.

to the fact that the reservoir produces outputs at discrete times
separated by the sampling rate �, and that this induces a form
of noise on the driving signal. We did not investigate in detail
the origin of this difference.

V. CHAOS-BASED CRYPTOGRAPHY

Chaos-based cryptography is based on the two ideas that
(1) the unpredictable nature of chaotic systems can be used
to mask a message and (2) that chaos synchronization can be
used by the receiver to faithfully recover the message. Unfortu-
nately this nice idea has not survived systematic cryptanalysis,
basically because the key space (i.e., the parameters describing
the chaotic system) is too small, and efficient search methods
to recover the key can be developed; see [41] and references
therein.

The fact that reservoir computers can be trained to emulate
chaotic systems to the extent that the trained reservoir will
synchronize with the original chaotic system (as demonstrated
in the previous section) suggests that reservoir computing
could form the basis for an alternative, conceptually different,
approach to cracking chaos based cryptography.

Here, we demonstrate this on a specific example of how
a reservoir computer can be used to crack a chaos based
cryptosystem. We then give some heuristic arguments on why
reservoir based approaches could systematically crack chaos
based cryptography. For definiteness, we focus on a scheme
previously studied in Ref. [40] and referred to as the III/1
scheme. This scheme is of interest because it is similar to many
of the systems used in experimental chaos based cryptography
that often use delay dynamical systems as chaotic systems;
see, e.g., [32,33]. It has already been cracked in Ref. [40],
using time-delay system reconstruction method to recover the
unknown parameters of the transmitter. In this work, we use a
reservoir computer as an alternative approach. Its advantage
over the method in Ref. [40] is that the knowledge of the

governing equation of the transmitter [see Eq. (12) below] is not
required.

We recall the scheme III/1 of [40], wherein Alice and Bob
exchange secret messages, while Eve is eavesdropping. To
encode her message, Alice uses a delay dynamical system in
which she injects her message m(t). Her dynamical system
obeys the equation

εẋ(t) = −x(t) + f [x(t − τ )] + m(t), (12)

where τ is the delay and ε characterizes the inertial properties
of the system. Alice sends x(t) to Bob.

We suppose that x(t) is subject to noise during transmission,
so that what is received by Bob is

x ′(t) = x(t) + ν(t), (13)

where ν(t) is white noise whose amplitude is given below [i.e.,
for each successive time point t , ν(t) is independently drawn
from the uniform distribution over [−ν,ν]].

To decrypt the message, Bob uses the same delay system,
but in an open loop configuration to obtain the variable y(t)
given by

εẏ(t) = −y(t) + f [x ′(t − τ )]. (14)

Then, Bob computes

z′(t) = x ′(t) − y(t) (15)

and obtains an approximate message m′(t) as follows:

m′(t) = εż′(t) + z′(t). (16)

This allows Bob to recover the message m(t), typically cor-
rupted by some high frequency noise. Passing m′(t) through
a passband filter centered on the frequency band occupied by
m(t) allows Bob to recover a good approximation of m(t).

In order to crack this system, we suppose that Eve has access
to a plain text attack, i.e., she has access to both x ′(t) and m(t)
during some time interval. Thus, she can train her reservoir
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FIG. 4. Temporal signals obtained during encryption and decryption of the frequency-modulated sine message Eq. (17). (a) Encrypted
signal x(t) (chaotic carrier + low-amplitude message, solid line) sent by Alice to Bob. The message m(t) (dotted line) is plotted for scale. Note
that a small amount of white noise is added to the message during transmission. (b) Message decrypted by Bob (grey) compared to the original
message (black). Despite the high-frequency noise, Bob accurately recovers the frequency modulation of the sine wave. (c) Message obtained
by Eve (black) using a trained reservoir computer. Despite slight amplitude variations of the recovered message, Eve accurately recovers the
frequency modulation (grey), and with less high-frequency noise than Bob.

computer to produce m(t) given x ′(t) as input. To this end she
uses the scheme described in Sec. II B, in which the input to
the reservoir u(t) is taken to be the signal x ′(t) sent by Alice to
Bob, and the output of the reservoir [y(t) in Eq. (3)] is trained
to be as close as possible to m(t).

To illustrate this, we used the MG system Eq. (8) with the
same parameters used elsewhere in this work (β = 0.2, γ =
0.1, τ = 17, and n = 10) (which are identical to the parameters
used in [40] except for τ ).

We first investigate the case where the message is a
frequency-modulated harmonic signal of the form

m(t) = A sin [2πfct − B cos(2πfmt)], (17)

where fc = 5 × 10−3 is the central frequency of the power
spectrum of the signal, B = 3 is the frequency modulation
index, fm = 5 × 10−5 is the modulation frequency, and A =
0.01 is the amplitude of the message, chosen to ensure that
the information signal comprises 1% of the amplitude of the
chaotic carrier. The message and the values of the parameters
are identical to those used in Ref. [40]. We take the amplitude
of the noise ν(t) to be ν = 10−1A where A is the maximum
amplitude of the message m(t), corresponding to a signal-to-
noise (SN) ratio of 1.5 × 105.

To crack the system, Eve used a reservoir computer with
N = 250 internal nodes and trained on a plain text message
comprising 12 000 time steps. The spectral radius of the weight
matrix W was set to 0.79, the input weights win were rescaled
with a global coefficient of 0.9, the feedback was switched off
wback = 0, and we set � = 0.5, C = 0.05, and a = 0.9. We
obtained a training error of NMSE = 3.8 × 10−2.

Using this trained RC, Eve can now try to recover an
unknown message sent by Alice. The results are presented
in Fig. 4 (temporal signals) and Fig. 5 (frequency spectra),
where we compare decryption by Bob and Eve. Bob manages
to accurately retrieve the frequency modulation, but his result
is corrupted by high-frequency noise. Therefore, his receiver
would benefit from a low-pass filter to get rid of this noise.
Eve’s reservoir, on the other hand, incorporates a band-pass
filter [the coefficients a and C in Eq. (1)] that was adjusted to

match the frequency band of the message sent by Alice. As
a consequence Eve obtains a much cleaner signal. Note that
there remain some amplitude variations of Eve’s output signal,
which may be due to the passband ripples of the low-pass filter
of the reservoir computer. However, these ripples do not hinder
the retrieval of the frequency modulation. Note that if we set
the noise during communication ν to zero, then Bob’s message
is of higher quality than Eve’s (figures not shown), which is
expected since in this case Bob is carrying out exactly the
inverse operation as Alice.

We next investigate a more realistic scenario in which
frequency modulation of the sine wave is used to transmit
a stream of bits b(k) (with k ∈ Z) by assigning a higher
frequency ω1 for a “1” and a lower ω0 for a “0.” In this
case, the expression of the encoded message [Eq. (17)]
becomes

m(t) = A sin[ωb(k)t], t ∈ [kT ,k(T + 1)[, (18)

where T = 2π/ω0 is the duration of one bit. We take A = 0.02,
ω0 = 0.02π , and ω1 = 0.04π . These frequencies are chosen
so that the message spectrum is centered on the frequencies
where the Mackey-Glass system has largest spectral amplitude,
making the system, in principle, harder to crack than the previ-
ous example. The amplitude of the noise during transmission
is taken to be ν = 10−1A, corresponding to a SN ratio of
3.8 × 104.

Eve uses a reservoir computer with N = 250 internal nodes
and trained on a plain text message comprising 7000 time steps.
The spectral radius of the weight matrix W was set to 0.79, the
input weights win were not rescaled, the feedback was switched
off wback = 0, and we set � = 0.1, C = 0.22, and a = 0.9. We
obtained a training error of NMSE = 2 × 10−1.

Figure 6 displays the original message (black) and the signal
obtained by Eve, using a reservoir computer (grey). Although
the recovered signal is not perfect, with significant distortion
and noise, one can still accurately recover the encrypted bit
message.
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FIG. 5. Frequency spectra of signals obtained during encryption and decryption of the frequency-modulated sine message Eq. (17).
(a) Mackey-Glass signal x(t). (b) Zoom on the part of the spectrum of the Mackey-Glass signal x(t) which overlaps with the spectrum of
the message [the frequency-modulated sine Eq. (17), highlighted for clarity]. Note that the message is well hidden by the chaotic signal x(t).
(c) Message decrypted by Bob: the frequency modulation is recovered accurately, while the right hand side of the spectrum (flat, nonzero)
corresponds to the high-frequency noise, observed in Fig. 4(b). (d) Message cracked by Eve: the frequency modulation has been recovered
accurately, with a lower level of high-frequency noise.

VI. DISCUSSION: WHY CAN RESERVOIR COMPUTERS
EMULATE CHAOTIC DYNAMICAL SYSTEMS AND

CRACK CHAOS BASED CRYPTOGRAPHY?

The works [1–5] and the present results show that reser-
voir computers can be trained to emulate chaotic dynamical
systems. Here we try to sketch why this is possible.

The key theoretical concept to understand reservoir com-
puters seems to be the notion of fading memory function [46];
see [12–15]. Consider a time series u(n) with n integer. We
denote by u−∞(n) = (u(n),u(n − 1),u(n − 2), . . .) the set of
all values up to and including time n. Consider a real valued
function acting on this left infinite time series F [u−∞(n)]. It
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FIG. 6. Decryption of a stream of bits encoded using frequency modulation [Eq. (18)], plotted in (a) time and (b) frequency domains.
The sine wave was modulated with frequencies 0.02π and 0.04π for bits “0” and “1,” respectively, with a duration of one and two periods,
respectively. The cracked signal is not perfectly recovered, but the frequency-coded message can be easily retrieved.
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has the fading memory property if F depends less and less
on u(n) as n → −∞. More precisely, if there is a family of
functions Fm(u(n),u(n − 1), . . . ,u(n − m)) such that Fm →
F as m → ∞, i.e., we can approximate F by functions of only
the last m terms in the time series.

If a reservoir computer obeying the echo state property
is driven by a time series u(n), then its internal variables
xi(n) are fading memory functions of the input time series
xi(n) = Xi[u−∞(n)], and hence the output y(n) of the reservoir
computer is also a fading memory function.

In Ref. [15] it was shown that there exists a variant of
reservoir computer (based on a polynomial recurrence) that has
the following universality property: as the size of the reservoir
grows, it can approximate any fading memory function to
arbitrary accuracy. This universality property may also hold
for reservoirs of the form of Eq. (1), although this has not
been proven. Assuming this hypothesis to be true, given a
fading memory function F [u−∞(n)], a reservoir computer can
approximate F to arbitrary accuracy. That is, the reservoir
implements a function y(n) = F ′[u−∞(n)] which is arbitrarily
close to F , |F ′ − F | � ε (for an appropriate metric on the
space of fading memory functions), where ε can be made
arbitrarily small by taking the number of variables of the
reservoir N sufficiently large.

Chaotic dynamical systems are also closely linked to the
fading memory property. Indeed many chaotic dynamical
systems can be expressed as a recurrence of the form

d(n) = D[d−∞(n − 1)], (19)

where D has the fading memory property. This is obviously
the case for the logistic map, or for the Mackey-Glass system
(upon discretizing the time variable), and probably is also true
for the Lorenz system (although we have not proven it).

Therefore, if a reservoir computer is driven by such a chaotic
time series d(n), it can learn an arbitrarily good approximation
D′ of the chaotic recurrence. Upon closing the reservoir upon
itself, it will obey the recurrence

d(n) = D′[d−∞(n − 1)], (20)

with |D′ − D| � δ, where δ can be made arbitrarily small by
taking the number of variables of the reservoir N sufficiently
large. One can thus expect that many properties of the original
dynamical system will be inherited by the reservoir’s emula-
tion. This is confirmed by the numerical studies carried out so
far. The above suggests that this could be extended to a formal
proof.

We now turn to chaos cryptography. In such a system, Alice
sends Bob a times series s(n) in which her message m(n) is
hidden. In most such cryptography systems, if not all, Bob’s
decoding operation will consist of passing the time series s(n)
through a fading memory function M ′ to obtain an approx-
imation m′(n) of the original message m′(n) = M ′[s−∞(n)]
where |m′ − m| < η for some metric on time series. The fading
memory nature of the decoder seems necessary, as it implies
that the decoder can act locally on the time series, and does
not depend on the values of the time series arbitrarily far in
the past. Furthermore, in experimental implementations, the
decoding operation must be robust to imperfections. That is, if

M ′′ is another fading memory function that is sufficiently close
to M ′ (i.e., |M ′′ − M ′| < ρ), then the corresponding decoded
messagem′′(n) = M ′′[s−∞(n)] will also be close to the original
message if ρ is sufficiently small.

But this means that given a plain text attack in which
the eavesdropper knows the time series s(n) and the cor-
responding message m(n), she can train a reservoir com-
puter to approximate the fading memory function M ′. Given
the above-mentioned necessary robustness of the crypto-
graphic scheme, if Eve’s approximation is good enough, her
trained reservoir will now be able to recover the unknown
messages.

The above arguments show the plausibility of reservoir
computers being able to emulate chaotic systems and to
crack chaos-based cryptography. These arguments however
say nothing about the efficiency of this approach. Numerical
investigations so far suggest that reservoir computers are
remarkably good at such emulation tasks. Presumably this is
because the reservoir computing approach generates fading
memory functions xi which are in some sense close to the kind
of functions produced by natural systems. But of course any
other approach that can generate a dense set of fading memory
functions (such as, for instance, Volterra series) will also work,
although possibly less efficiently.

VII. CONCLUSION

Time series forecasting has been investigated with several
different machine learning techniques, in addition to reservoir
computing. These include support vector machines [47,48],
and autoregressive models and neural networks [49]. It would
of course be very interesting to compare reservoir computing
with other machine learning approaches for the above tasks of
emulating chaotic systems, learning their parameters, chaos
synchronization, cracking chaos cryptography, etc. Such a
comparison goes however beyond the present work. We expect
that reservoir computing will probably report favorably in
such a comparison. Indeed as noted above to the best of our
knowledge reservoir computers hold the record for predicting
the future trajectory of chaotic systems. (Most likely this
is because reservoir computers, being recurrent dynamical
systems themselves, already encode much of the structure
which needed for such a task.) An advantage of reservoir
computers is that they are particularly easy to train, using only
a linear regression.

The present work builds on previous works which showed
that reservoir computers with output feedback can emu-
late chaotic dynamical systems. Previous works focused on
forecasting trajectories [1,15] and predicting spatiotemporal
chaos [5], inferring hidden degrees of freedom [3], esti-
mating Lyapunov exponents [4]. Here we show that trained
reservoir computers can synchronize with another chaotic
system, thereby demonstrating that the trained reservoir com-
puter has an attractor with similar geometry and stabil-
ity properties as the original system. We then show how
a reservoir computer can be used to crack chaos based
cryptography.

It is interesting to note that cracking chaos based cryptog-
raphy seems comparatively easy for the reservoir computer.
Indeed, while for the time series prediction task (Sec. III) we
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used reservoirs with N = 1500 neurons, for the cryptography
application we only used N = 250 neurons. In addition, in
the presence of noise in the transmission line the reservoir
computer in fact performed better than the system used by
Bob. This is in part because the reservoir computer we used
comprises a low-pass filter.

As noted above, reservoir computers can be implemented in
hardware implementations, with good performance and high
speed [19–21]. The present numerical results suggest that such
experimental systems would be good candidates for cracking
physically implemented chaos cryptography.
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