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Stability of gravity-capillary solitary waves on shallow water based on the fifth-order
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Longitudinal and transverse instabilities of gravity-capillary solitary waves on shallow water are investigated
based on the numerical analysis of the fifth-order Kadomtsev-Petviashvili (KP) equation, which describes
the wave phenomena on shallow water where the relevant Bond number is less than and close to 1/3.
Two-dimensional (2D) depression gravity-capillary solitary waves are stable to longitudinal perturbations. 2D
elevation gravity-capillary solitary waves are unstable to longitudinal perturbations and finally evolve into 2D
depression gravity-capillary solitary waves. Three-dimensional (3D) finite-amplitude depression gravity-capillary
solitary waves are stable to longitudinal perturbations. 3D finite-amplitude elevation gravity-capillary solitary
waves are unstable to longitudinal perturbations and finally evolve into an oscillatory state between two different
3D finite-amplitude depression gravity-capillary solitary waves. 3D small-amplitude depression and elevation
gravity-capillary solitary waves are unstable to dilation-type longitudinal perturbations and eventually evolve
into an oscillatory state between two different 3D finite-amplitude depression gravity-capillary solitary waves.
3D small-amplitude depression and elevation gravity-capillary solitary waves are unstable to contraction-type
longitudinal perturbations and eventually become dispersed out toward still water surface. Finally, 2D depression
and elevation gravity-capillary solitary waves are unstable to transverse perturbations and eventually evolve
into 3D finite-amplitude depression gravity-capillary solitary waves. Therefore, the only stable gravity-capillary
solitary waves on shallow water are 3D finite-amplitude depression gravity-capillary solitary waves. In particular,
based on the linear stability analysis, a theoretical proof is presented for the long-wave transverse instability of
2D depression and elevation gravity-capillary solitary waves on shallow water.
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I. INTRODUCTION

When both the gravity and the surface tension are equally
important in water of a certain depth (h), the phase speed of
a linear gravity-capillary wave shows two different behav-
iors depending on the values of the relevant Bond number
(B = T/ρgh2), where g is the gravitational acceleration, T

the surface tension coefficient between air and water, and ρ

the density of water. When the Bond number is larger than
1/3 (B > 1/3), the phase speed features its minimum at zero
wave number and, with a phase speed below its minimum,
the Korteweg–de Vries (KdV) -type two-dimensional (2D)
and the Kadomtsev-Petviashvili (KP) -type three-dimensional
(3D) lump solitary waves can exist, which have been studied
extensively [1–5]. The KdV- and KP-type gravity-capillary
solitary waves are depression waves whose centers are de-
pressed relative to the still water surface. On the other hand,
when the Bond number is less than 1/3 (B < 1/3), the phase
speed features its minimum at a nonzero wave number and,
with a phase speed below its minimum, wave-packet-type
2D and 3D gravity-capillary solitary waves can exist. If the
Bond number is zero at finite water depth, i.e., if the surface
tension is neglected (pure gravity waves), the phase-speed
maximum occurs at a zero wave number. Compared to the
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case when B > 1/3, two kinds of gravity-capillary solitary
waves can theoretically exist when B < 1/3; elevation and
depression-type gravity-capillary solitary waves whose centers
are elevated and depressed, respectively, compared to the still
water surface [3,5–7]. Under the influence of a longitudinal
perturbation, 2D depression gravity-capillary solitary waves
are stable while 2D elevation gravity-capillary solitary waves
are unstable on shallow water (B ≈ 1/3 and B < 1/3) [8]
and deep water (B ≈ 0) [9,10]. In particular, as a result of a
longitudinal instability, 2D elevation gravity-capillary solitary
waves on deep water are shown to evolve into 2D depression
gravity-capillary solitary waves [9,10]. Similarly, under the
influence of a longitudinal perturbation, finite-amplitude 3D
depression gravity-capillary solitary waves are stable both
on shallow water [11] and on deep water [9,12], whereas
finite- and small-amplitude 3D elevation gravity-capillary
solitary waves on deep water are unstable and finally evolve
into finite-amplitude 3D depression gravity-capillary solitary
waves [9,12]; in these two instances, the energy (integral
of the wave elevation squared) features a minimum at a
critical speed (ccrit) near and less than the minimum phase
speed (cmin) while the maximum depth (wave amplitude)
of a gravity-capillary solitary wave increases as the wave-
propagation speed becomes farther away from the minimum
phase speed (cmin). Here, we refer to gravity-capillary solitary
waves with c > ccrit as “small-amplitude” gravity-capillary
solitary waves with a speed near the minimum phase speed
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(cmin). In the same vein, we refer to gravity-capillary solitary
waves with c < ccrit as “finite-amplitude” gravity-capillary
solitary waves. Furthermore, under the influence of a dilation-
type longitudinal perturbation, small-amplitude 3D depression
gravity-capillary solitary waves are unstable and eventually fall
into an oscillatory state between two different finite-amplitude
3D depression gravity-capillary solitary waves (focusing-type
instability). On the other hand, under the influence of a
contraction-type longitudinal perturbation, small-amplitude
3D depression gravity-capillary solitary waves are unstable
and will be dispersed out to become a still water surface
(defocusing-type instability). These instabilities are identified
both on shallow water [11] and on deep water [9,12,13].
Finally, under the influence of a transverse perturbation, 2D
depression gravity-capillary solitary waves are proved to be
unstable on deep water [9,10,14–16] and on the surface of a
finite-depth water [17]. As a result of this transverse instability,
2D depression gravity-capillary solitary waves are shown to
finally evolve into 3D finite-amplitude depression gravity-
capillary solitary waves on deep water [9,12,16].

As summarized in the aforementioned literature review,
most and complete works on the longitudinal instabilities of 2D
and 3D gravity-capillary solitary waves and on the transverse
instability of 2D gravity-capillary solitary waves have been
carried out in deep-water cases. Comparatively, corresponding
shallow-water studies are rather sparse. Therefore, the subject
of the present paper is on the longitudinal and transverse
instabilities of 2D and 3D gravity-capillary solitary waves
on shallow water. In the present work, following fifth-order
KP equation in terms of the wave elevation η(x, y, t ) in a
normalized form will be studied.

{ηt + 3(η2)x + 2ηxxx + ηxxxxx}x + ηyy = 0. (1)

Mathematically, Eq. (1) can be interpreted as the modified
conventional third-order KP equation with an additional fifth
derivative term. A rigorous derivation can be found in [18] and
a heuristic derivation based on the dispersion relation is shown
in the Appendix. The replacement of ∂/∂t with −iω, ∂/∂x

with ik, and ∂/∂y with il in the linear parts in Eq. (1) results
in the following dispersion relation and the phase speed.

ω = −2k3 + k5 + l2

k
, (2)

cp = ω

k
= −2k2 + k4 + l2

k2
, (3)

where k is the wave number in the main wave-propagation
direction (say,x), and l the wave number in the correspondingly
transverse direction (say, y). Then, the minimum of the phase
speed cmin = −1 occurs at (k, l) = (1, 0) and ω = −1. A
solitary wave exists when c < cmin. In the frame of reference
moving with a speed c(x ′ = x − ct ), Eq. (1) is rewritten as, by
dropping primes,

{ηt − cηx + 3(η2)x + 2ηxxx + ηxxxxx}x + ηyy = 0. (4)

For a steady-state solitary wave with a certain propagation
speed c < cmin, one drops the time-dependent term in Eq. (4).
For corresponding 2D unsteady and steady solitary waves,
one ignores the y-dependent term in Eq. (4). In the following

Sec. II, numerical methods solving 2D and 3D, unsteady and
steady Eq. (4) are described. Section III is on the longitudinal
instabilities of 2D and 3D gravity-capillary solitary waves on
shallow water. As mentioned above, the relevant theoretical
proofs for the longitudinal instabilities based on the fifth-order
KP equation were already given by Calvo et al. [8] for 2D
gravity-capillary solitary waves and Akylas and Cho [11] for
3D gravity-capillary solitary waves. Therefore, our focus will
be on the numerical validation of those results based on the
direct numerical simulations of the fifth-order KP equation
[Eq. (4)]. Section IV is on the transverse instability of 2D
gravity-capillary solitary waves on shallow water.

II. NUMERICAL METHODS

A. Steady solitary-wave solutions

By taking the spatial Fourier transform of Eq. (4) without
the time-dependent term,

η̂ = 3

{c + 2k2 − k4 − (l/k)2}FT{η2} ≡ D(k, l)FT{η2}, (5)

where FT{·} denotes the spatial Fourier transform. Equation
(5) is solved by the modified Petviashvili method using a
simple stabilizing factor in the spatial frequency domain [19].
For the iteration procedure, the initial guess would be D(k, l)
in Eq. (5) or any guessed function whose shape is expected
to resemble the final solitary-wave solution. The initial guess
D(k, l) leads to the primary solitary-wave solution to Eq. (5).
In the present case, the primary solitary-wave solution is a
depression gravity-capillary solitary wave. If the initial guess
is taken as the superposition of depression gravity-capillary
solitary-wave solutions with an appropriate relative spacing
between each other, the resulting solitary-wave solution is an
elevation gravity-capillary solitary wave. In real computations,
the Fast Fourier transform (FFT) is used, thus periodic bound-
ary conditions are implied, and the iteration is repeated until the
error between each iteration step is less than 10−10. Sufficiently
large domain size with �x = 0.37 and �y = 0.29 is used such
that the resultant solitary-wave solutions are locally confined
(Fig. 1, Figs. 3 –5, and Fig. 14).

B. Unsteady solitary-wave solutions

By taking the spatial Fourier transform of Eq. (4),

η̂t = ik

(
c + 2k2 − k4 − l2

k2

)
η̂ − 3ikFT{η̂2}. (6)

To solve Eq. (6) numerically, we adopt the leapfrog time
stepping as follows.

η̂(i+1) − η̂(i−1)

2�t
= ik

(
c + 2k2 − k4 − l2

k2

)
{θη̂(i−1)

+ (1 − 2θ )η̂(i) + θη̂(i+1)} − 3ikFT{η̂(i)2},
(7)

where the superscript means a time step and the parameter θ

is set to be 1/3. Then, the Fourier-transformed wave elevation
at a discretized time step, i + 1, can be obtained from those
at previous time steps i − 1 and i. In the initial calculation
for η̂(2), two previous values of η̂(0) and η̂(1) are required.
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FIG. 1. Two-dimensional gravity-capillary solitary waves with propagation speeds c = −1.01 and −2; depression types (left) and elevation
types (right).

The value η̂(1) is given as the Fourier-transformed value of the
perturbed 2D and 3D steady gravity-capillary wave solution.
Using the Euler time stepping, Eq. (4) can be discretized as
follows.

η̂(i) − η̂(i−1)

�t
= ik

(
c + 2k2 − k4 − l2

k2

)
η̂(i) − 3ikFT{η̂(i)2}.

(8)

Then, the unknown value η̂(0), which is the conceptually
previous to η̂(1), is obtained using the fourth-order Runge-
Kutta-type predictor-corrector scheme. In real computation,
the time step �t = 0.001 with spatial resolutions of �x =
0.37 and �y = 0.29 is used for a stable computation for a
long time (∼ t = 800). Also, sufficiently large domain size is
used such that reflections from the boundaries are minimized
(Fig. 2, Figs. 6 –13, Fig. 15, and Fig. 16).
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FIG. 2. Evolution of the initial two-dimensional elevation solitary wave with c = −2 in the frame of reference moving with speeds c = −2.
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FIG. 3. Three-dimensional gravity-capillary solitary waves. Left: depression types (c = −1.01 and −2). Right: elevation types (c = −1.01
and −1.1).

III. LONGITUDINAL INSTABILITIES OF 2D AND 3D
GRAVITY-CAPILLARY SOLITARY WAVES

ON SHALLOW WATER

A. Longitudinal instability of 2D gravity-capillary solitary
waves on shallow water

For a given wave-propagation speed c, steady-state 2D
depression and elevation gravity-capillary solitary-wave so-
lutions can be obtained by solving Eq. (4) without time-
dependent and y-dependent terms, using the modified Petvi-
ashvili method [19] described in Sec. II. Figure 1 shows
representative 2D depression and elevation gravity-capillary
solitary-wave solutions for wave-propagation speeds c =
−1.01 and −2. Very close to the minimum phase speed,
cmin = −1, 2D depression and elevation gravity-capillary soli-
tary waves are wave-packet types. As the magnitude of c

increases, the 2D depression and elevation gravity-capillary
solitary wave becomes more locally confined and its maximum
depth increases. Although both depression- and elevation-
type steady 2D gravity-capillary solitary waves are possible,
depression waves are stable and elevation waves are unstable
to longitudinal perturbations, which is theoretically proved by
Calvo et al. [8]. By assuming the solution to 2D Eq. (4) to be
decomposed as

η(x, t ) = η̄(x) + η′(x, t ) = η̄(x) + η̂(x)eλt ;
(9)

η̂ → 0 (x → ±∞),

where η̄ is a steady 2D depression and elevation gravity-
capillary solitary wave and η′(x, t ) is the perturbation term.
Then, the following eigenvalue problem is derived.

λη̂ − cη̂x + 6(η̄η̂)x + 2η̂xxx + η̂xxxxx = 0. (10)

By solving Eq. (10) numerically, they show that real parts
of the associated eigenvalues (growth rate: λ) are negative and
positive, respectively, for 2D depression and elevation gravity-
capillary solitary waves and thus prove that 2D depression

and elevation gravity-capillary solitary waves are, respectively,
longitudinally stable and unstable. In addition, they perform an
asymptotic analysis by introducing the following expansion.

η̂ = η̂(0) + λη̂(1) + λ2η̂(0) + · · · ; |λ| � 1. (11)

By substituting Eq. (11) into Eq. (10), they theoretically show
that 2D elevation gravity-capillary solitary waves are unstable
with a positive growth rate λ. On the other hand, no instability
is predicted for 2D depression gravity-capillary solitary waves
at least to leading order in the asymptotic analysis. We solve
the 2D unsteady evolution equation with an initial condition of
a longitudinally perturbed 2D depression or elevation gravity-
capillary solitary wave. Equivalently, we solve the 2D unsteady
evolution equation with an initial condition of the unperturbed
2D depression or elevation gravity-capillary solitary wave for a
sufficiently long time such that the accumulated numerical er-
ror plays as a longitudinal perturbation. 2D depression gravity-
capillary solitary waves in Fig. 1 maintain their shapes during
long-time simulations whether there are initial perturbations
or not, and, thus, are stable. On the other hand, 2D elevation
gravity-capillary solitary waves turn out to be unstable. For
example, Fig. 2 shows a long-time evolution of the initially
unperturbed 2D elevation solitary wave with a propagation
speed c = −2. The onset of the longitudinal instability can be
seen at t = 55 and, thereafter, the resultant formation of two
2D depression gravity-capillary solitary waves are observed,
which propagate stably with their own speeds.

B. Longitudinal instability of 3D gravity-capillary solitary
waves on shallow water

Similar to 2D cases, for a given c, steady-state 3D depres-
sion and elevation gravity-capillary solitary-wave solutions
can be obtained by solving Eq. (4) without the time-dependent
term, using the modified Petviashvili method [19] described
in Sec. II. Figure 3 shows representative 3D depression
gravity-capillary solitary waves with c = −1.01 and −2 and
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FIG. 4. E-c curves of 3D depression and elevation gravity-capillary solitary waves on shallow water and wave profiles at c = −1.001.
(a) E-c curves for −1.5 < c < −1; (b) magnified E-c curves near cmin = −1; and (c),(d) cross-sectional views for x = 0 (dashed) and y = 0
(solid) of 3D depression (c) and elevation (d) gravity-capillary solitary waves with c = −1.001.

elevation solitary waves with c = −1.01 and −1.1. Like
2D gravity-capillary solitary waves, very close to the mini-
mum phase speed, cmin = −1, 3D depression and elevation
gravity-capillary solitary waves are wave-packet types. As the
magnitude of c increases, the 3D depression and elevation
gravity-capillary solitary wave becomes more locally confined
and its maximum depth increases. The stability characteristics
of steady 3D elevation and depression gravity-capillary solitary
waves are more complex than their 2D counterparts. Compared
to the stability analysis for 2D depression and elevation gravity-

capillary solitary waves [8], similar stability analysis for 3D
depression gravity-capillary solitary waves is performed in
Akylas and Cho [11]. By assuming the solution to Eq. (4) to
be decomposed as

η(x, y, t ) = η̄(x, y) + η′(x, y, t ) = η̄(x, y) + η̂(x, y)eλt ;

η̂ → 0(x2 + y2 → ∞), (12)

where η̄ is a steady 3D depression gravity-capillary solitary
wave and η′(x, y, t ) is a perturbation term. Then, the following

FIG. 5. Numerically computed A0(X, Y ) and A(X, Y ) of BRDS equation system [Eqs. (19) and (20)]. (a) A0(X, Y ), (b) A(X, Y ).
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FIG. 6. Time history of the maximum depth of the initially
unperturbed finite-amplitude 3D elevation gravity-capillary solitary
wave with c = −1.1.

eigenvalue problem is derived.

{λη̂ − cη̂x + 6(η̄η̂)x + 2η̂xxx + η̂xxxxx}x + η̂yy = 0. (13)

By solving Eq. (13) numerically, they show that the associated
eigenvalue (growth rate: λ) is positive for −1.053 < c < −1
for 3D depression gravity-capillary solitary waves. They also
show that no instability is detected when c < −1.09. This sug-
gests that an exchange of stability takes place for −1.09 < c <

−1.053. To check this hypothesis, they perform an asymptotic
analysis by introducing the following expansion.

η̂ = η̂(0) + λη̂(1) + λ2η̂(0) + · · · ; |λ| � 1. (14)

By substituting Eq. (14) into Eq. (13), it is found that there
should be an existence of an energy minimum as a necessary
condition for an exchange of stability and it is numerically
confirmed that there exists an energy minimum at c = −1.06,
where the energy of a gravity-capillary solitary wave with a
propagation speed c can be defined as follows.

E =
∫ ∞

−∞

∫ ∞

−∞
η2(x, y; c)dx dy. (15)

The resultant E-c curves of 3D elevation and depression
gravity-capillary solitary waves on shallow water are shown
in Figs. 4(a) and 4(b) (dashed: depression waves; solid: ele-
vation waves). For readers’ information, 3D elevation gravity-
capillary solitary waves are not considered in Akylas and Cho
[11]. In both cases, there exists a minimum energy E at a
critical wave-propagation speed ccrit near the minimum phase
speed cmin = −1, i.e.,

∂E

∂c

∣∣∣∣
ccrit 	=cmin

= 0. (16)

For depression and elevation waves, the minimum E occurs
at ccrit = −1.06 and ccrit = −1.02, respectively [Fig. 4(a)].
Figure 4(b) shows the magnified version of Fig. 4(a) near
speed cmin = −1. As c approaches the minimum phase speed
cmin = −1, both energy curves of depression (dashed) and
elevation (solid) gravity-capillary solitary waves collapse onto
each other. The end point of the collapsed curve represents
the energy values, E = 2.867, of depression and elevation
gravity-capillary solitary waves with a speed c = −1.001
[Figs. 4(c) and 4(d)]. The “dot” in Fig. 4(b) represents the
energy value, E = 2.877, at c = cmin = −1. This value is nu-
merically computed by solving the so-called Benney-Roskes-
Davey-Stewartson equation (BRDS) system [20,21].

The BRDS equation system is derived from the asymptotic
analysis of the fifth-order KP equation, Eq. (4), in the small-
amplitude weakly nonlinear limit as follows.

c = −1 − ε2; 0 < ε � 1, (17)

η = ε

2
{A(X, Y )eix + c.c.} + ε2A0(X, Y )

+ ε2{A2(X, Y )e2ix + c.c.} + · · · , (18)

where X = εx, Y = εy are slow envelope variables and c.c.
denotes the complex conjugate. By substituting Eqs. (17) and
(18) into Eq. (4), then, by collecting zeroth, primary, and

FIG. 7. Evolution of the initially unperturbed finite-amplitude 3D elevation solitary wave with c = −1.1 in the frame of reference moving
with speeds c = −1.1.
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FIG. 8. Time histories of the maximum depth of the initially perturbed 3D small-amplitude depression solitary wave with c = −1.01. (a)
Initial dilation-type perturbation (10%). (b) Initial contraction-type perturbation (−10%).

secondary harmonic terms, one obtains the following BRDS
equation system.

A0,XX + A0,YY = − 3
2 (|A|2)XX, (19)

−A + 4AXX + AYY + 1
2A3 − 6A0A = 0, (20)

A2 = − 1
12A2. (21)

The BRDS equation system [Eqs. (19) and (20)] is numer-
ically solved by a modified Petviashvili method [19] and the
resultant solutions A0(X, Y ) and A(X, Y ) are shown in Fig. 5.
Then, from Eq. (18), the wave energy E is

E = ε2

4

∫ ∞

−∞

∫ ∞

−∞
2|A|2dx dy + ε4

∫ ∞

−∞

∫ ∞

−∞
A2

0dx dy

+ ε4
∫ ∞

−∞

∫ ∞

−∞
2|A2|2dx dy + · · ·

= 1

2

∫ ∞

−∞

∫ ∞

−∞
|A|2dX dY + ε2

(∫ ∞

−∞

∫ ∞

−∞
A2

0dX dY

+
∫ ∞

−∞

∫ ∞

−∞

1

72
|A|4dX dY

)
+ · · ·

= 2.877 + 1.926ε2 = 0.951 − 1.926c. (22)

According to Eq. (22), for the end point (c,E) =
(−1.001, 2.867) computed from Eq. (4) to be connected with
the point (cmin, E) = (−1, 2.877), there may be an energy
maximum in the extremely narrow region −1.001 < c < −1,
which, however, is not identified in Fig. 5(b) for the present
numerical resolution. In 3D cases, as c decreases the maxi-
mum depth or the wave amplitude monotonically increases.
Also, considering E-c curves (Fig. 4), we refer to gravity-
capillary solitary waves with c > ccrit as “small-amplitude”
gravity-capillary solitary waves. In the same vein, we refer
to gravity-capillary solitary waves with c < ccrit as “finite-
amplitude” gravity-capillary solitary waves. Small-amplitude
and finite-amplitude gravity-capillary solitary waves have
different stability characteristics to longitudinal perturbations.

In the next sections, it will be numerically shown that finite-
amplitude 3D depression gravity-capillary solitary waves are
stable, but small-amplitude 3D depression gravity-capillary
solitary waves are unstable to longitudinal perturbations. On
the other hand, both finite-amplitude and small-amplitude
3D elevation gravity-capillary solitary waves are unstable to
longitudinal perturbations. Overall, we solve the unsteady
evolution equation, Eq. (4), with an initial condition of a
longitudinally perturbed 3-D depression or elevation gravity-
capillary solitary wave. Equivalently, we solve Eq. (4) with the
initial condition of the unperturbed 3D depression or elevation
gravity-capillary solitary wave for sufficiently long time such
that the accumulated numerical error plays as a longitudinal
perturbation. In solving Eq. (4), spatially, the spectral method
is used with �x = 0.37 and �y = 0.29 and, temporally,
the predictor-corrector scheme is used with �t = 0.001, as
mentioned in Sec. II.

1. Longitudinal instability of 3D finite-amplitude gravity-capillary
solitary waves on shallow water

3D finite-amplitude depression gravity-capillary solitary
waves (c < ccrit = −1.06) in Fig. 3 maintain their shapes
during long-time simulations under the influence of longitu-
dinal perturbations and, thus, are stable. On the other hand,
3D finite-amplitude elevation gravity-capillary solitary waves
(c < ccrit = −1.02) turn out to be unstable to longitudinal
perturbations. For example, Fig. 6 shows the time history
of the maximum depth of the initially unperturbed 3D el-
evation gravity-capillary solitary wave with a propagation
speed c = −1.1. The onset of a longitudinal instability dur-
ing the numerical simulation can be seen at about t = 90.
Figure 7 shows the associated 3D snapshots showing the
resultant oscillatory state between two 3D finite-amplitude
depression gravity-capillary solitary waves after the onset of
instability.

2. Longitudinal instability of 3D small-amplitude gravity-capillary
solitary waves on shallow water

Compared to 3D finite-amplitude gravity-capillary solitary
waves (c < ccrit), longitudinal instability characteristics of 3D
small-amplitude gravity-capillary solitary waves (c > ccrit) are
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FIG. 9. Evolution of the initially perturbed 3D small-amplitude depression solitary wave with c = −1.01, corresponding to the dilation-type
perturbation case (10%) in Fig. 8(a).

more delicate depending on the sign of the perturbations.
If perturbed initial wave profiles (c > ccrit) are expressed as
η = (1 + δ)η̄, where η̄ is unperturbed 3D small-amplitude
depression and elevation gravity-capillary solitary wave pro-
files, then, under the influence of a dilation-type perturba-
tion (δ > 0) above a certain threshold value δ+, 3D small-
amplitude depression and elevation gravity-capillary solitary
waves cannot maintain their wave profiles and each final
state will be an oscillatory state between two 3D finite-
amplitude depression gravity-capillary solitary waves. Under
the influence of a contraction-type perturbation (δ < 0) below
a certain threshold δ−, initial 3D gravity-capillary solitary
waves will be dispersed out toward still water. These behaviors
are related to the already mentioned BRDS equation system.
The BRDS equation system predicts the focusing (finite-time
blowup) of the solution if the perturbation is a dilation type
and the defocusing (becoming dispersed out to be zero states)
of the solution if the perturbation is a contraction type. The
focusing and defocusing of the solution of the BRDS equation
system are related, respectively, to the oscillatory and zero
states (still water) in the fifth-order KP equation. Although
related to each other, no finite-time blowup can be seen in
the simulation of the fifth-order KP equation. In the present
numerical simulation, for δ− = −0.02 < δ < δ+ = 0.02, ini-
tially perturbed waves are stable. For δ > δ+ = 0.02, initially
perturbed waves become final states where oscillatory states
between two 3D finite-amplitude depression gravity-capillary
solitary waves. For δ < −0.02, initially perturbed waves be-
come dispersed out toward still water. For example, Figs. 8(a)
and 8(b) show the time histories of the maximum depth of
the initially perturbed 3D small-amplitude depression gravity-
capillary solitary waves with a propagation speed c = −1.01
for initial dilation-type (10%) and contraction-type (−10%)
perturbations, respectively. In other words, the initial wave
profiles are η = 1.1η̄ or η = 0.9η̄, where η̄ are unperturbed
3D small-amplitude depression gravity-capillary solitary wave
profiles with c = −1.01. Figures 9 and 10 show the associated
3D snapshots. Corresponding figures for 3D elevation solitary
waves with a propagation speed c = −1.01 are Figs. 11(a),
11(b), 12, and 13.

IV. TRANSVERSE INSTABILITY OF 2D
GRAVITY-CAPILLARY SOLITARY WAVES

ON SHALLOW WATER

From the stability results in Sec. III, we see that 2D
depression and elevation gravity-capillary solitary waves are
stable to longitudinal perturbations. Therefore, in 2D, the
remaining question on the stability is the stability of 2D
depression and elevation gravity-capillary solitary waves to
transverse perturbations. If they are unstable, we expect that 2D
depression and elevation gravity-capillary solitary waves will
be transformed into 3D finite-amplitude depression gravity-
capillary solitary waves, based on the results in Sec. III where
it is seen that 3D finite-amplitude depression gravity-capillary
solitary waves are stable to longitudinal perturbations. In the
next sections A and B, from the linear stability analysis and the
associated numerical simulations, respectively, we will show
that the 2D depression and elevation gravity-capillary solitary
waves are unstable to transverse perturbations. Although the
method of the analytical proof may be regarded as standard
(e.g., [17]), its application to the fifth-order KP equation is
new and is presented here.

A. Linear stability analysis

Let us consider the 3D unsteady evolution equation, Eq. (4),
which is written in the frame of reference moving with a speed
c in the x direction.

{ηt − cηx + 3(η2)x + 2ηxxx + ηxxxxx}x + ηyy = 0. (23)

Equation (23) admits both 2D and 3D solitary-wave solutions.
The 2D steady-state solitary-wave solution, η̄(x), satisfies the
following equation.

−cη̄x + 3(η̄2)x + 2η̄xxx + η̄xxxxx = 0. (24)

The transversely perturbed wave solution to Eq. (24) can be
written as follows.

η(x, y, t ) = η̄(x) + η′(x, y, t ); |η′/η̄| � 1,
(25)

η′ = ϕ(x)eλt+iβy, ϕ → 0 (x → ±∞),
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FIG. 10. Evolution of the initially perturbed 3D small-amplitude depression solitary wave with c = −1.01, corresponding to the contraction-
type perturbation case (−10%) in Fig. 8(b).

where λ is the temporal growth rate and β is the wave number in
the transverse direction and the function ϕ is locally confined.
By substituting Eq. (25) into Eq. (23) and by neglecting O(η′2)
or O(ϕ2) and higher,

λϕx − cϕxx + 6(η̄ϕ)xx + 2ϕxxxx + ϕxxxxxx − β2ϕ = 0.

(26)

In the long-wave perturbation limit (β � 1), upon expand-
ing ϕ and λ in the ascending power of β,

ϕ = ϕ(0) + βϕ(1) + β2ϕ(2) + · · · ,
(27)

λ = λ0 + βλ1 + β2λ2 + · · · ,

and substituting Eq. (27) into Eq. (26), one obtains a series of
equations according to the order of magnitudes O(1), O(β ),
O(β2), etc.

O(1) : −cϕ(0)
xx + 6(η̄ϕ(0) )xx + 2ϕ

(0)
4x + ϕ

(0)
6x = −λ0ϕ

(0)
x ;

λ0 = 0, ϕ(0) = η̄x . (28)

O(β ) : −cϕ(1)
x + 6(η̄ϕ(1) )x + 2ϕ(1)

xxx + ϕ(1)
xxxxx = −λ1ϕ

(0);

ϕ(1) = −λ1η̄c. (29)

O(β2) : −cϕ(2)
xx + 6(η̄ϕ(2) )xx + 2ϕ

(2)
4x + ϕ

(2)
6x

= ϕ(0) − λ1ϕ
(1)
x − λ2ϕ

(0)
x . (30)

By substituting Eqs. (28) and (29) into Eq. (30) and, further,
by integration with respect to x,

Lϕ(2) =
∫

x

η̄ dx + λ2
1

∫
x

η̄c dx − λ2η̄;

L = −c + 6η̄ + 2
∂2

∂x2
+ ∂4

∂x4
. (31)

The adjoint operator (LA) to L is L. Then, the relevant
homogeneous equation to Eq. (31) is

LAϕ
(2)
h = Lϕ

(2)
h = 0; ϕ

(2)
h = η̄x . (32)

Therefore, from the usual solvability argument, a solution to
the homogeneous equation should be orthogonal to the right-
hand side in Eq. (31) as follows.

∫ ∞

−∞

(∫
x

η̄ dx + λ2
1

∫
x

η̄c dx − λ2η̄

)
η̄x dx = 0. (33)

Using the fact that the wave profile (η̄) and its derivatives
are locally confined, Eq. (33) is finally reduced to the following
equation for the growth rate λ.

λ2
1 = −

∫ ∞
−∞ η̄2 dx

1
2

∂
∂c

∫ ∞
−∞ η̄2 dx

. (34)

The numerator in Eq. (34) is always positive. Therefore,
there is a transverse instability (λ is real) if the following
condition satisfies

∂

∂c

∫ ∞

−∞
η̄2 dx = ∂E

∂c
< 0. (35)
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FIG. 11. Time histories of the maximum depth of the initially perturbed 3D small-amplitude elevation solitary wave with c = −1.01. (a)
Dilation-type perturbation (10%). (b) Contraction-type (−10%) perturbation.
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FIG. 12. Evolution of the initially perturbed 3D small-amplitude elevation solitary wave with c = −1.01, corresponding to the dilation-type
perturbation case (10%) in Fig. 11(a).

Figures14(a) and 14(b) show that Eq. (35) is satisfied
both for the 2D depression and elevation gravity-capillary
solitary waves. Therefore, 2D depression and elevation gravity-
capillary solitary waves are unstable to transverse perturba-
tions.

B. Numerical simulations

In the previous Sec. III A, based on the linear stability
analysis, we proved the onset of the instability of 2D depression
and elevation gravity-capillary solitary waves under the influ-
ence of long-wave transverse perturbations. To understand the
associated nonlinear behavior, we perform a transient numer-
ical simulation of transversely perturbed initial 2D depression
and elevation gravity-capillary solitary waves with c = −2,
respectively. In the simulations, the range of the transverse
direction is −6π < y < 6π and the initial conditions are as
follows.

η(x, y, t = 0) = η̄(x) + η̄x cos
( y

12

)
, (36)

which has the form of Eq. (28), i.e., ϕ(0) = η̄x and β = 1/12 �
1. In Fig. 15, the transversely perturbed initial 2D depression
gravity-capillary solitary wave, which propagates with speed
c = −2 in the x direction, is finally transformed into two 3D
depression gravity-capillary solitary waves propagating in the
x direction. In Fig. 16, a transversely perturbed initial 2D ele-
vation gravity-capillary solitary wave, which propagates with
speed c = −2 in the x direction, is finally transformed into two
3D depression gravity-capillary solitary waves propagating in
the x direction and two 3D depression gravity-capillary solitary
waves propagating in the oblique directions.

V. SUMMARY AND DISCUSSION

We conducted a comprehensive theoretical and numerical
study on the longitudinal and transverse instabilities of 2D and
3D depression and elevation gravity-capillary solitary waves
on shallow water based on the fifth-order KP equation which
is derived from the condition that the relevant Bond number
is less than and close to 1/3. The fifth-order KP equation
features its phase speed minimum at a nonzero wave number.
Comparatively, if the Bond number is larger than 1/3, the phase
speed minimum occurs at a zero wave number and if the Bond
number is zero at finite water depth, i.e., if the surface tension
is neglected (pure gravity waves), the phase-speed maximum
occurs at a zero wave number. While the conventional third-
order KP equation (in 2D, KdV) is an integrable equation, the
present fifth-order KP equation is a nonintegrable one. Since no
exact analytical solutions are known, the present work mainly
focuses on the numerical study with regard to its solutions and
stabilities, with consideration of existing theoretical works on
the longitudinal stabilities on the solitary-wave solutions to the
fifth-order KP equation [8,11].

In 2D, in the weakly nonlinear small-amplitude limit, the
fifth-order KP equation is reduced to the integrable nonlinear
Schrödinger equation whose solution is stable to longitudinal
perturbations (the relevant eigenvalue or the growth rate is
purely imaginary). Therefore, one may be tempted to as-
sume that both 2D depression and elevation gravity-capillary
solitary-wave solutions to the fifth-order KP equation are
stable. However, direct numerical simulations of the fifth-order
KP equation reveal that only 2D depression gravity-capillary
solitary waves are stable to longitudinal perturbations. 2D

FIG. 13. Evolution of the initially perturbed 3D small-amplitude elevation solitary wave with c = −1.01, corresponding to the contraction-
type perturbation case (−10%) in Fig. 11(b).
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FIG. 14. E-c curves for 2D gravity-capillary solitary waves on shallow water (a) depression waves and (b) elevation waves.

elevation gravity-capillary solitary waves are unstable to lon-
gitudinal perturbations and finally evolve into 2D depression
gravity-capillary solitary waves. In 3D, in the weakly nonlinear
small-amplitude limit, the fifth-order KP equation is reduced
to a nonintegrable elliptic-elliptic BRDS equation system
whose solution is unstable to a longitudinal perturbation. If
the perturbation is a dilation type, the solution blows up to
infinity in a finite time. If the perturbation is a contraction
type, the solution disperses out to be zero. However, direct nu-
merical simulations of the fifth-order KP equation show more
complex results which cannot be predicted by the BRDS equa-
tion system. 3D finite-amplitude depression gravity-capillary
solitary waves are stable to longitudinal perturbations. 3D
finite-amplitude elevation gravity-capillary solitary waves are
unstable to longitudinal perturbations and finally evolve into an
oscillatory state between two 3D finite-amplitude depression
gravity-capillary solitary waves. 3D small-amplitude depres-
sion and elevation gravity-capillary solitary waves are unstable
to dilation-type longitudinal perturbations and finally evolve
into an oscillatory state between two 3D finite-amplitude de-
pression gravity-capillary solitary waves. 3D small-amplitude
depression and elevation gravity-capillary solitary waves are
unstable to contraction-type longitudinal perturbations and

finally become dispersed out toward calm water. All these
longitudinal stability results for 3D gravity-capillary solitary
waves are related to the existence of an energy minimum which
is a necessary condition for a change of stability. Finally,
2D depression and elevation gravity-capillary solitary waves
are unstable to transverse perturbations and eventually evolve
into 3D finite-amplitude depression gravity-capillary solitary
waves. In particular, based on the linear stability analysis, we
present a theoretical proof for a long-wave transverse insta-
bility of 2D depression and elevation gravity-capillary solitary
waves on shallow water. Although the method of the proof
may be regarded as standard, its application to the fifth-order
KP equation is new. In summary, the only stable ones are 3D
finite-amplitude depression gravity-capillary solitary waves.

The present stability results of gravity-capillary solitary
waves on shallow water are very similar to those of gravity-
capillary solitary waves on deep water, although they have
overall different wave profiles; shallow-water gravity-capillary
solitary waves are more wrinkled (wave-packet-shaped) than
deep-water ones. What is common between shallow-water
(B < 1/3 and B ≈ 1/3) and deep-water (B ≈ 0) gravity-
capillary solitary waves is the dispersion relation which fea-
tures a minimum phase speed at a finite wavelength. The

FIG. 15. Transverse instability of a 2D depression gravity-capillary solitary wave η̄(x ) with a speed c = −2 and the resultant formation of
3D depression gravity-capillary solitary waves on shallow water. The initial condition is η(x, y, t = 0) = η̄(x ) + η̄x cos(y/12).

012213-11



YEUNWOO CHO PHYSICAL REVIEW E 98, 012213 (2018)

FIG. 16. Transverse instability of a 2D elevation gravity-capillary solitary wave η̄(x ) with a speed c = −2 and the resultant formation of
3D depression gravity-capillary solitary waves on shallow water. The initial condition is η(x, y, t = 0) = η̄(x ) + η̄x cos(y/12).

minimum phase speed of linear gravity-capillary waves on
deep water is 23 cm/s at finite wavelength 1.71 cm. The
minimum phase speed of linear gravity-capillary waves on
shallow water depends on the Bond number B or the water
depth. Therefore, apart from water waves, we may extend
the present stability results to other wave systems where the
dispersion relation features a minimum at a nonzero wave
number or a finite wavelength. One such example is ice waves
or flexural-gravity waves on the surface of deep water. In this
instance, the flexural rigidity plays a role of the surface tension,
thus, the resultant dispersion relation features a minimum at a
nonzero wave number [22,23].
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APPENDIX: HEURISTIC DERIVATION OF THE
FIFTH-ORDER KP EQUATION

The linear dispersion relation of two-dimensional (plane)
gravity-capillary waves in water of a finite depth h is as follows.

ω2 =
(

gk + T k3

ρ

)
tanh kh, (A1)

whereω is the angular velocity,g the gravitational acceleration,
T the surface tension, ρ the water density, and k the wave
number. In a dimensionless form, using h as a length scale
and

√
h/g as a timescale, Eq. (A1) becomes the following

dimensionless form.

ω′2 = (k′ + Bk′3) tanh k′, (A2)

where k′ = kh, ω′ = ω/
√

g/h, and B = T/ρgh2(Bond num-
ber). Then, dropping primes, the square of the phase

speed (c2
p) is

c2
p = ω2

k2
=

(
1

k
+ Bk

)
tanh k, (A3)

which features a minimum at k = 0 for B > 1/3 and at a
nonzero wave number (k 	= 0) for B < 1/3. For dimensionless
wavelengths, 0 < k < π/2, using the following equality.

tanh k = k − 1
3k3 + 2

15k5 − 17
315k7 + · · · . (A4)

Then, Eq. (A2) becomes

ω2 = (k + Bk3)

(
k − 1

3
k3 + 2

15
k5 · · ·

)

= k2

{
1 +

(
B − 1

3

)
k2 +

(
2

15
− B

3

)
k4 + · · ·

}
. (A5)

Then, the following polynomial relationship between ω and k

holds for B ≈ 1/3 and 0 < k � 1.

ω = k

{
1 +

(
B − 1

3

)
k2 + 1

45
k4 + · · ·

}1/2

≈ k

[
1 + 1

2

(
B − 1

3

)
k2 + 1

90
k4 + · · ·

]
. (A6)

Extending to the 3D case by replacing k with κ ,

κ =
√

k2 + l2, (A7)

where k is the wave number in one direction (say, x), and l the
wave number in the correspondingly transverse direction (say,
y). Then, Eq. (A6) becomes

ω −
√

k2 + l2 − 1
2

(
B − 1

3

)
(k2 + l2)3/2

− 1
90 (k2 + l2)5/2 + · · · = 0. (A8)
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Then, assuming the almost unidirectional wave propagation
in x such that

√
k2 + l2 = k

(
1 + l2

k2

)1/2

≈ k

(
1 + l2

2k2

)
= k + l2

2k
, (A9)

Eq. (A8) can be written as follows, taking into account the
leading order effect of the transverse variation.

ω − k − 1

2

(
B − 1

3

)
k3 − 1

90
k5 − l2

2k
· · · = 0. (A10)

By replacing ω with −i∂/∂t , k with i∂/∂x, and l with i∂/∂y,
the following fifth-order linear wave equation in terms of the
wave elevation (η) can be derived.

{ηt + ηx − 1
2

(
B − 1

3

)
ηxxx + 1

90ηxxxxx}x + 1
2ηyy = 0. (A11)

Then, in the moving frame (x ′ = x − t), combined with a
KdV-type quadratic nonlinearity and, after dropping primes,
the following nonlinear wave equation is obtained.

{ηt + β(η2)x − 1
2

(
B − 1

3

)
ηxxx + 1

90ηxxxxx}x + 1
2ηyy = 0.

(A12)

By rescaling the above equation using η = aη̃, t = bt̃ , x =
dx̃, and y = eỹ, where

a = 1

30β

[
− 2

(B − 1/3)45

]2

, (A13a)

b = 90

[
− 2

(B − 1/3)45

]5/2

, (A13b)

d =
[
− 2

(B − 1/3)45

]1/2

, (A13c)

e = 3
√

5

[
− 2

(B − 1/3)45

]3/2

, (A13d)

and dropping tildes, the following fifth-order KP equation in a
normalized form can be obtained.

{ηt + 3(η2)x + 2ηxxx + ηxxxxx}x + ηyy = 0. (A14)

Finally, in the frame of reference moving with a speed
c (x ′ = x − ct ), Eq. (A14) is rewritten as, by dropping
primes,

{ηt − cηx + 3(η2)x + 2ηxxx + ηxxxxx}x + ηyy = 0. (A15)
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