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Statistics of vector Manakov rogue waves
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We present a statistical analysis based on the height and return-time probabilities of high-amplitude wave events
in both focusing and defocusing Manakov systems. We find that analytical rational or semirational solutions,
associated with extreme, rogue wave (RW) structures, are the leading high-amplitude events in this system.
We define the thresholds for classifying an extreme wave event as a RW. Our results indicate that there is a
strong relationship between the type of RW and the mechanism which is responsible for its creation. Initially,
high-amplitude events originate from modulation instability. Upon subsequent evolution, the interaction among
these events prevails as the mechanism for RW creation. We suggest a strategy for confirming the basic properties
of different extreme events. This involves the definition of proper statistical measures at each stage of the RW
dynamics. Our results point to the need for redefining criteria for identifying RW events.
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I. INTRODUCTION

The emergence, dynamics, and prediction of rogue waves
(RWs), also referred to as freak waves or extreme events,
have been the focus of interest in diverse fields of science
(oceanography, physics of fluids, optics, matter waves physics,
sociology, biosciences, etc.) over the past 15 years [1–4].
However, there are still more open questions than answers
concerning the definition, genesis, dynamics, predictability,
and controllability of RW phenomena [5,6]. This RW debate
has stimulated the comparison of predictions and observations
among distinct topical areas, in particular between optics and
hydrodynamics [7,8].

Peregrine solitons [9] and Akhmediev breathers [10] are
well-known RW candidates: They represent solutions of the
scalar one-dimensional self-focusing nonlinear Schrödinger
equation (NLSE), the Peregrine solitons with the property of
being localized in both the transverse and evolution coordinates
and the Akhmediev breathers being periodic in the transverse
coordinate and localized in the evolution dimension. The
Peregrine-type solitons are unique also in a mathematical
sense, since they are written in terms of rational functions of
coordinates, in contrast to most of the other known solutions of
the NLSE, which are purely exponential. Recent experiments
have provided a path for generating Peregrine solitons in
optical fibers with standard telecommunication equipment [5],
as well as in water-wave tanks [11,12]. To the contrary, in the
scalar case the defocusing nonlinear regime does not allow for
RW solutions, even of a dark nature.

Recently, progress has been made by extending the search
for RW solutions to coupled-wave systems. Indeed, numer-
ous physical phenomena require models with two or more
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components in order to account for different modes, frequen-
cies, or polarizations. In those cases, the focusing regime is
not a prerequisite for the existence of RW solutions. When
compared with scalar dynamical systems, vector systems may
allow for energy transfer between the coupled waves, which
may yield new families of vector RW solutions (bright-bright
and bright-dark type), with relatively complex dynamics. Such
types of RWs have recently been found as solutions of, e.g.,
the focusing vector NLSE [6,13–15], the three-wave resonant
interaction equations [16,17], the coupled Hirota equations
[18], and the long-wave–short-wave resonance [19]. It is
crucial to add that new RW families can be created in the
defocusing nonlinear regime too. This was shown theoretically
and experimentally in [13,20–23]: it was proved that, in
the defocusing regime of the Manakov system, the range of
existence of rational solutions of different types (bright-dark
and dark-dark types), which are the most serious candidates
for RW, overlaps with the region of baseband modulation
instability (MI). Moreover, it was demonstrated that MI is a
necessary but not sufficient condition for the existence of RWs.
It is generally recognized that MI is one of the mechanisms for
the RW generation, and recent observations of higher-order MI
on the water surface have been reported [24].

However, a basic question arises regarding the statistical
description of high-amplitude events in the course of nonlinear
wave propagation. It should be considered that under realistic
circumstances the propagation medium exhibits fluctuations
of its parameters, hence of the background continuous-wave
solutions. To describe both bright and dark structures on a
background, the term high-amplitude wave is used in the
sense that it denotes either high-amplitude peaks or dips on
a background. In addition, it is important to develop a global
understanding of RW emergence in a turbulent environment,
which connects with the broad topic of wave turbulence in
integrable systems [25]. In this respect, we may distinguish

2470-0045/2018/98(1)/012209(10) 012209-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.012209&domain=pdf&date_stamp=2018-07-13
https://doi.org/10.1103/PhysRevE.98.012209


A. MANČIĆ et al. PHYSICAL REVIEW E 98, 012209 (2018)

two ways of seeding MIs. The first mechanism is associated
with noise-driven MI. It refers to the amplification of initial
noise superposed on a plane-wave solution, which leads to
spontaneous pattern formation from stochastic input wave
fluctuations. The second mechanism is that of coherently
driven MI, which refers to the preferential amplification of
a specific perturbation (thus leading to a particular breather
solution) with respect to broadband noise. It was shown that
breather wave dynamics is subject to competitive interactions
of the two types of seeding of MIs [25]. Nevertheless, a
complete physical picture of these various phenomena is still
lacking.

Moreover, outside the context of discrete systems and
numerical studies of supercontinuum generation [26], the
statistical analysis has not yet found a leading role in the studies
of RWs, although RWs are statistically determined entities.
In our research, we will provide insight into the origin and
dynamics of multiparametric vector RW solutions, by adopting
a statistical approach. A similar study was very recently applied
to characterize vector RW generation in highly birefringent
optical fibers [27]. In that case, a key role in the RW generation
mechanism is played by the presence of group-velocity walk-
off between the two polarization components, and third order
dispersion.

In this paper we statistically investigate the behavior of
high-amplitude events in the integrable Manakov system. For
this end, we numerically model the (light or matter) wave
propagation in the nonlinear media (photonic or Bose-Einstein
condensate), in the simplest case of a two-component system.
Physically this corresponds to the case of two orthogonal
polarization states of light or two different atomic states in
Bose-Einstein condensate (BEC) [28]. The initial conditions
of the wave system represent a crucial issue in our study.
In order to simulate fluctuations in the properties of a real
system, we will consider the injection of plane waves with
additive white noise in the system. The long-time numerical
simulations will be performed by means of the pseudospectral
Fourier method in order to obtain a proper statistical ensemble
of high-amplitude events. Note that the term time will be used
as a synonym of the propagation length in the following. A
brief description of applied numerical and statistical methods
is presented in Sec. II. The results and their interpretation with
respect to different types of RW candidates, different mecha-
nisms of high-amplitude event creation, and their statistical and
dynamical properties are considered in detail in Sec. III. All
results lead us to conclude that different criteria for identifying
high-amplitude events are necessary (Sec. IV). A summary,
conclusions, and discussion are given in Sec. V.

II. MODEL EQUATIONS

The vector nonlinear Schrödinger equations, i.e., the
Manakov system, can be written in dimensionless form as

i
∂u(1)

∂z
+ ∂2u(1)

∂t2
− 2s(|u(1)|2 + |u(2)|2)u(1) = 0,

(1)

i
∂u(2)

∂z
+ ∂2u(2)

∂t2
− 2s(|u(1)|2 + |u(2)|2)u(2) = 0,

FIG. 1. Localized patterns in the focusing Manakov system for
a1(0) = a2(0) = 1 and (a) q1 = q2 = 0 and q = 0 [|u(1)(t,z)|] and
(b) and (c) q2 = −q1 = 1 and q = 1 [plots of two components
|u(1)(t,z)| and |u(2)(t,z)| are shown separately]. The absolute values
of the corresponding amplitudes are shown in the color bar in (c) and
it is mutual for all plots in the figure. Initial small uniform random
and periodic perturbations are added to the plane-wave background,
which is amplitude modulated by a super Gaussian.

where u(1)(t,z) and u(2)(t,z) represent the wave envelopes,
z is the evolution variable, and t is a second independent
variable. The meaning of variables depends on the particular
applicative context (e.g., fluid dynamics, plasma physics, BEC,
nonlinear optics, and finance). The parameter s = −1 refers to
the focusing (or anomalous dispersion) regime, while s = 1
refers to the defocusing (or normal dispersion) regime of wave
propagation in the nonlinear medium. The model equation (1)
is fully integrable and it can be solved by applying the Darboux
dressing technique [13,20]. Being focused on high-amplitude
events, we mention briefly the rational or semirational local-
ized solutions of Eq. (1), which are considered one of the
most promising candidates for RW events in the literature
[13,20].

In the focusing case, such rational solutions can be ex-
pressed in the form of different bright-dark breather composites
[13], e.g., a boomeron-type soliton with a time-dependent
velocity, a breatherlike wave resulting from the interference
between the dark and bright contributions, and more complex
structures resulting from the merging of Peregrine and breather
solutions. The last case provides evidence of an attractive
interaction between the dark-bright wave and the Peregrine
soliton solutions. In Fig. 1 we present numerically obtained
examples of localized wave structures in the focusing case,
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FIG. 2. Localized patterns [|u(1)(t,z)| and |u(2)(t,z)|] in the de-
focusing Manakov system for (a) and (b) a1(0) = a2(0) = 0.8,
q2 = −q1 = 1, and q = 1 (region of existence of rational solitons).
(c) The case outside the region of the rational RW existence reported
in [20] is presented, with a1 = a2 = 1 and q = 0 [|u(1)(t,z)|]. The
absolute values of the corresponding amplitudes are shown in the
color bar in (c) and it is mutual for all plots in the figure. Initially small
cosine and uniform random perturbations are added to the plane-wave
background, amplitude modulated by a super Gaussian.

which are initialized by a plane wave in the form

u
(j )
0 = aj e

i(qj t−νj z), νj = q2
j + 2

(
a2

1 + a2
2

)
, j = 1,2, (2)

with simultaneously added small periodic and random pertur-
bations. The aj parameters represent the initial amplitudes of
component waves in the system, while qj are the initial phases.
The difference of phase factors q1 − q2 = 2q will be used to
present our numerical results in the following sections.

On the other hand, in the defocusing case the rational or
semirational solutions were explicitly derived in [20]. They
can be generated both analytically and numerically by starting
from a plane-wave solution (2). It was analytically shown [20]
that the region of rational wave existence, which is related to
the domain of RW existence, is determined by the expression

(
a2

1 + a2
2

)3 − 12
(
a4

1 − 7a2
1a

2
2 + a4

2

)
q2 + 48

(
a2

1 + a2
2

)
q4

− 64q6 > 0. (3)

In particular, the inequality (3) implies that the background
amplitudes have to be sufficiently large, for a fixed q, in order
to allow for the rational wave formation (see Fig. 2). Here
we prefer not to use the term RW for high-amplitude rational
solutions, since a unique definition of RWs does not exist.
Indeed, the findings presented in the following will sustain our

terminology. Examples of these rational or semirational solu-
tions of the defocusing nonlinear Manakov system are shown
in Figs. 2(a) and 2(b). By adding to the finite background small
regular (periodic) and random perturbations in the parameter
regimes associated with the presence of MI, we confirm the
analytical predictions and previous numerical results from the
literature [20]. The preparation of initial conditions includes
the presence of a super-Gaussian amplitude modulation of the
background. This is done in order to ensure conditions that
would isolate the MI mechanism from the possible presence
of numerical artifacts (e.g., boundary reflections).

The next step was to prepare initial conditions that can
ensure the generation of a huge ensemble of localized high-
amplitude events, which is necessary for the statistical analysis.
We analyzed the results of numerical simulations with different
initial conditions, namely, a plane wave (uniform background)
with random perturbations (white noise or Gaussian noise),
with a small periodic (coherent) perturbation, and with a
combination of both small random and periodic perturbations.
In all cases, qualitatively, the same behavior was obtained.
Therefore, we decided to perform numerical simulations by
injecting a noise-seeded plane-wave field into the model
equations (1). We applied the standard split-step numerical
procedure for solving the evolution equations [29]. In order
to obtain a qualitative confirmation of our numerical findings,
we applied, in parallel, the symplectic variants of the split-step
method: SABA2 and SBAB2 algorithms [30]. Qualitatively,
the same results and conclusions were obtained.

Amplitude noise is numerically modeled as a uniform
random process with zero mean. In order to have sufficient
data for the statistical analysis, the long-term evolution of the
field was numerically simulated. The optimal width of the
calculation window was estimated in each particular case by
repeated numerical tests.

III. STATISTICS OF MANAKOV ROGUE WAVES

The purpose of this study is the statistical analysis of
the emergent peaks (dips) in the numerical solutions of the
Manakov system. Such extreme amplitude wave events are
usually referred to as RWs, whenever the significant height
criterion is satisfied [31,32]. Here the difference between the
maximum value of the finite background elevation in between
two zero crossings and the minimum value of the background
elevation in the adjacent (next or previous) zero-crossing
interval is called the wave height (Fig. 3). In scalar models
of water-wave propagation, the significant height hs is defined
traditionally as the average height of one-third of the highest
waves in the height distribution and the RW threshold is
estimated to be hth � 2.2hs (also, in the literature on ocean
rogue waves, waves with height bigger than 2hs qualify to be
in this category [33]).

In the preparatory phase of our study, we searched for proper
RW classifiers. Recently, a two-dimensional equivalent of the
significant wave height was defined as a classifier in vector
models [34]. In the framework of the complex RW patterns that
are observed in our model, this does not seem an appropriate
criterion to declare that an event is of the RW type. Defining a
new proper classifier(s) remains a challenge for future studies.
Here the significant height criterion is slightly modified: We
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FIG. 3. Schematic illustration of determination of the wave
height. The quantity η(z) = |u(z)| − |u(0)| is the wave amplitude
elevation [7].

introduce a vector ĥs , where each of its components measures
the significant height of the respective field component h

(j )
s

(j = 1,2),

ĥs = (
h(1)

s h(2)
s

)T
. (4)

In this expression, the abbreviation T indicates the transpose
operation. Thus, the height threshold ĥth is a vector quantity
consisting of the height thresholds with respect to two spinor
components h

(j )
th (j = 1,2). Finally, if the height of at least

one of the components reaches the corresponding threshold
height, the event is declared a RW. Let us note that the threshold
criterion for each particular component is the same as the usual
one for the one-dimensional case: h

(j )
th = 2.2 h

(j )
s (j = 1,2).

However, the proper definition of the height criterion for a RW
in multicomponent system remains an open issue. For the sake
of simplicity, the vector abbreviations for significant height
and threshold height will be omitted in the following (ĥs = hs

and ĥth = hth).
We calculated different statistical measures which have

been developed in the literature on extreme events and consid-
ered their relevance for expressing the dynamical properties of
high-amplitude events in the Manakov system. It was shown
that the most adequate statistical measure for our system is that
based on the height and return time, namely, the probability
density of the wave height Ph, or height probability density
(HPD) [27,35], coupled with the probability distribution of the
return time among successive RW events, i.e., Pr , [36].

In the following, we will discuss the shape of the Ph curves
(associated with the corresponding moments) as a function of
hs , along with the probability of RW occurrence Pee, which
can be derived from Ph. The tails of the HPD are related to the
presence of extreme events. The probability of RW occurrence
is defined as Pee = Ph (h > hth = 2.2hs) (with respect to both
vector components) and it is obtained by integration of the
normalized Ph from h = hth up to infinity.

For deeper insight into the time statistics of RWs, the
probability distribution of the return time (time is a synonym
of propagation length or duration) Pr of these (vectorial)
events was also calculated. The return time r is defined as
the time interval between the appearance at a given position
of two successive events with amplitudes above a certain
predetermined height threshold hr . Details on the calculation
of the return-time probability distribution are given in [36].

Briefly, the return time is registered as the time interval between
two successive events with a height (i.e., heights of both field
components) above a certain threshold value, which appears
at the same given lattice location. We follow this procedure
repeatedly up to the end of our simulations, or inside the
selected time window, and construct histograms of return times
for different system parameters. All return times are scaled
by the average return time R in each particular simulation.
Therefore, the second set of statistical measures consists of
the mean return time R, the slope of the return-time probability
function Pr , and moments derived from them.

IV. RESULTS AND DISCUSSION

The first step was to generate numerically rational solutions
which can be classified as RWs. The existence of these solu-
tions had been related, at least initially, with the development of
MI [13,20], which is by itself threshold determined. Intensive
numerical checking has shown that the rational solutions of
the types presented in [13,20] (see also Figs. 1 and 2) can be
obtained from both coherently and noise-driven MI [25] and
represent short-lived or transient wave structures. It should be
noted that the exact choice of the initial excitation is crucial for
the generation of rational solutions in the defocusing case. In
this respect, the structures which were analytically derived in
[20] from eigenvalues of the Manakov system have only been
observed in the initial phase of the development of baseband
MI development, in the presence of a periodically perturbed
plane-wave background, additionally modulated by a super
Gaussian.

Regardless of the initial perturbations, the long-term dy-
namics of high-amplitude events in the Manakov system,
observed in the presence of MI, shows similar tendencies.
This is the case for both types of nonlinearity, that is, either
focusing or defocusing. Therefore, statistical ensembles were
obtained from long-term numerical simulations involving a
noise-seeded plane-wave field as an input condition for the
Manakov system (1). As discussed in the next section, the width
of the calculation window was adapted in each case in order to
include all relevant regimes of high-amplitude events.

A. High-amplitude events in the focusing case

The evolution of wave amplitudes for two different initial
conditions, corresponding to parameters above the MI thresh-
old, is presented in Fig. 4. Two different regimes can be dis-
tinguished on these plots: an initial transient phase and a long-
term (long-propagation-length) phase. The transient phase
is characterized by the existence of distinct high-amplitude
localized patterns, which can be associated with localized
bright and dark rational structures on a finite background.
The latter phase has a highly irregular (turbulent) appearance.
These qualitative differences are reflected in the respective
statistical measures in that they exhibit a different dependence
on the width of the temporal calculation window.

On the basis of numerical simulations, we can distinguish
between an initial, transient, and subsequent long-term dy-
namical regime for the ensemble of the high-amplitude events.
Inside the transient regime, MI is expected to be the governing
mechanism for the creation of localized waves, including the
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FIG. 4. Amplitude evolution plots for the focusing Manakov
system with initial plane-wave parameters (a) a1 = a2 = 1 and q = 0
(q1 = q2 = 0) and (b) a1 = a2 = 1 and q = 1 (q2 = −q1 = 1). Both
sets of parameters belong to the MI development region. Two regions
in these plots can be distinguished with respect to the presence of
isolated localized patterns: the region up to z ≈ 30 and above z ≈ 50
(indicated by dashed lines). Since the purpose of this figure is to
provide a general picture of the dynamics of the system, we only plot
the amplitudes of the first component of the vector fields, for the sake
of simplicity. The maximum wave amplitude is (a) 4.5 and (b) 4.

rational solutions. These extreme waves appear and disappear
and interact among themselves and the noisy background
upon the propagation. This behavior relatively quickly evolves
into a turbulentlike, i.e., irregular-looking, long-term regime.
Interestingly, this kind of dynamical behavior starts to prevail
sooner or later in time, depending on the specific system
parameters, but it is always the final state of the system. In
order to exclude the numerical uncertainty as a reason for such
system behavior, we repeated our simulations with symplectic
variants of the split-step numerical procedure. Qualitatively,
the same results and conclusions were always obtained.

Now concerning the statistical measures, the HPD curves
(i.e., Ph vs wave component height) for the sets of parameters
corresponding to Fig. 4 are presented in Figs. 5(a) and 5(b) on a
linear scale and in Figs. 5(c) and 5(d) on a log-linear scale. The
statistical distributions are obtained for different intervals of
the evolution coordinate z, as indicated in the legend of Fig. 5.
As far as the overall behavior of these curves is concerned, we
may observe that the Ph curves that characterize the statistics of
extreme waves in the initial phase (black squares) differ from
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FIG. 5. The Ph vs h in (a) and (b) linear and (c) and (d)
semilogarithmic scales for initial plane-wave parameters (a) and (c)
a1 = a2 = 1 and q = 0 and (b) and (d) a1 = a2 = 1 and q = 1 (q2 =
−q1 = 1). Different curves correspond to the height distributions of
events belonging to different z ranges: black squares, z = 10−40;
blue circles, z = 10−80; red triangle, z = 40−80. In (c) and (d),
solid lines present GGD fits of the corresponding Ph curves.

those obtained for the irregular phase (red triangles). Also, the
Ph curves associated with the entire system dynamics (i.e.,
both initial and irregular phases), which are represented by
blue circles, almost coincide with the curves for the long-term
phase. One more feature that is evident is that the maximum of
the Ph curves shifts towards bigger heights as the calculation
window “moves” in time. This leads to the conclusion that
extreme events occurring in the later, turbulent phase dominate
the tail distribution associated with RW generation.

In addition, we searched for the best-fitting function for the
HPDs, following the ideas already presented in the literature
[26,27]. As expected, the observed HPD deviates from a
Gaussian probability distribution (this is a known feature of
RW statistics). Alternatively, it is possible to model the HPD
by means of a generalized � distribution (GGD) [27]. The
GGD is often used in statistics for describing extreme events
and it reads

P (x; a,β,m) = a

β�(m)

(
x

β

)am−1

e−(x/β)a , (5)

where a and m are shape parameters and β is a scale parameter.
In order to account for the normalization of our HPDs, the
GGD was multiplied by a parameter c (0 < c < 1). From
Figs. 5(c) and 5(d) it is obvious that the HPDs associated with
the long-term phase (blue circles) and the irregular phase (red
triangles) are better fitted with the GGD than the distribution
corresponding to the initial phase (black squares), where the
discrepancy is most pronounced in the tail sections. Also, it
is evident that the agreement is better for the second set of
parameters [Fig. 5(d)]. However, although the GGD appears to
be the function of choice in the interaction region, still it does
not reduce to any of the special functions (e.g., log-normal,
Weibull, etc.). The reason for this could be found in the
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TABLE I. The GGD fitting parameters for plots in Figs. 5 and 8.
The shape parameter values for certain standard distributions are the
� distribution a = 1, the exponential distribution a = 1 and m = 1,
the Rayleigh a = 2 and m = 1, the Weibull distribution m = 1, and
the log-normal distribution m → ∞.

z a m β

Fig. 5(a)

10–40 0.430 5.926 0.003
10–80 1.145 1.381 0.294
40–80 1.082 2.047 0.211

Fig. 5(b)

10–40 0.908 2.060 0.088
10–80 1.264 1.380 0.270
10–40 1.217 1.799 0.234

Fig. 8(a)

5–20 1.246 1.148 0.019
10–40 0.443 5.473 0.002
10–80 1.163 1.077 0.343
40–80 0.741 3.234 0.072

Fig. 8(b)

10–40 0.770 3.420 0.041
10–80 0.715 3.765 0.037
40–80 0.735 3.633 0.044
80–160 1.143 1.924 0.179
160–200 1.278 1.657 0.229

complexity of the processes governing the system behavior.
The values of the optimal fitting parameters a, m, and β are
listed in Table I.

The corresponding values of the significant height, thresh-
old height, and Pee are listed in Table II. All of these quantities
were derived from the Ph distribution. The values of hs and
hth are of the same order in both selected parameter cases and
calculation windows. The values of Pee in the transient and
long-term regimes are similar and very small, of the order of
0.001, i.e., 0.1%. Depending on the values of the parameters
(amplitudes and phases of initial plane-wave excitation), and
therefore on the position of the MI borderline, the value of Pee

has a slight tendency to increase in the transient regime up to
1%. The plateau (indicated by an arrow in Fig. 5) in the shape
of the corresponding Ph curves at medium heights, which are
observed in certain parameter areas close to the mentioned
border, could be associated with a zero or small value of the
initial phase difference between the wave components of the
plane wave q (see Fig. 5).

On the other hand, in the presence of nonzero q, the trans-
versely moving localized transient modes can be excited via the
MI mechanism. In addition, for small heights, the growth rate
of Ph with h is larger for simulations involving the long-term
evolution, when compared with the corresponding growth rate
in the early regions where the localized amplitude patterns
are clearly visible. In general, this leads to smaller values of
Ph in the early regime of evolution. Qualitative differences
of the Ph curves corresponding to different calculation win-
dows undoubtedly show that different types of high-amplitude
events govern the system behavior in the course of the vector
wave propagation. On the other hand, the observed negligible

TABLE II. Values of different parameters derived from Ph and Pr

for focusing and defocusing cases.

a1 = a2 = 1, q = 0

Focusing z = 10–40 z = 10–80 z = 40–80

hs 0.549 0.673 0.697
hth 1.210 1.480 1.530
Pee 0.006 0.013 9.96e−4

R1 0.011 0.009 0.009
R2 0.026 0.021 0.019
R3 2.019 8.279 8.399

a1 = a2 = 1, q = 1
Focusing z = 10–40z = 10–80 z = 40–80
hs 0.397 0.592 0.631
hth 0.836 1.302 1.349
Pee 0.008 0.002 0.002
R1 0.015 0.011 0.009
R2 0.039 0.024 0.019
R3 2.803 4.566 6.600

a1 = a2 = 1, q = 0

Defocusingz = 10–40 z = 10–80 z = 40–80
hs 0.506 0.651 0.666
hth 1.110 1.430 1.465
Pee 0.011 0.002 0.001
R1 0.011 0.010 0.009
R2 0.027 0.023 0.021
R3 0.744 8.292 8.068

a1 = a2 = 0.8, q = 1

Defocusingz = 10–40z = 10–80z = 40–80z = 80–160z = 160–200
hs 0.411 0.466 0.498 0.534 0.553
hth 0.904 1.025 1.096 1.175 1.217
Pee 0.003 0.002 0.002 9.6e−4 7.7e−4

R1 0.011 0.011 0.011 0.009 0.009
R2 0.023 0.023 0.023 0.018 0.018
R3 1.013 4.221 2.779 10.444 7.663

quantitative differences in the Pee indicate the necessity to
search for suitable quantifiers of the types of RWs and their
dynamics. Once again, this presents the question whether the
criterion for RWs based on the significant height is a necessary
and a sufficient one.

An additional set of statistical measures for the RWs was
derived from the statistics of the return-time probability Pr ,
as shown in Fig. 6. The Pr curves for two different initial
conditions and with respect to (two) different thresholds hr

are presented for comparison in this figure. The shape of
the Pr curves changes with the position of the calculation
window and its width, as well as with the amplitude thresholds.
For lower thresholds, the Pr curves corresponding to either
transient or transient plus long-term evolution phases exhibit a
similar behavior, except for the region corresponding to short
return times [see Figs. 6(a) and 6(c)]. The last finding can be
associated with the higher influence of the MI mechanism in the
transient regime, i.e., the short-lived high-amplitude structures
are more significant here.

Additionally, for certain initial conditions, one can observe
a turning point, i.e., a plateau, in the region of moderate
values of the return time. By moving the calculation window
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FIG. 6. The Pr vs r/R for (a) and (b) a1 = a2 = 1 and q = 0
and (c) and (d) a1 = a2 = 1 and q = 1 (q2 = −q1 = 1), with respect
to different threshold amplitudes hr . Three curves are obtained
for (a) and (c) hr = 0.7hs and (b) and (d) hr = 2.2hs . Different
curves correspond to different calculation windows, as in Fig. 5.
The amplitude threshold values are summarized in Table II for
completeness.

from the early transient regime into the long-term limit,
the slope of the Pr curves changes and it becomes steeper.
However, the tails of all these curves are power-law-like. In
the long-term regime, a plateau is no longer present on the
Pr curves. All of this indicates the more frequent appearance
of high-amplitude events in the transient phase than in the
long-term situation. The distinction between the Pr curves
obtained in different evolution windows is lost with respect to
highest-amplitude events, which are associated here with the
condition hr = 2.2hs [see Figs. 6(b) and 6(d)]. In summary,
the MI leads to a transient system behavior, whereas the
interactions between moving “space-time” localized structures
become more significant as the system evolution progresses
further. Depending on the system parameters, the length (i.e.,
the duration) of the transient phase will change. Note that the
complexity of the dynamics in the transient region, by itself,
stems from the possibility to excite different types of localized
rational or exponentially localized solutions.

B. High-amplitude events in the defocusing case

The same approach of the preceding section can also be
applied to study RW statistics in the defocusing Manakov
system. The particularity of this case is the strict dependence
of the wave dynamics on the initial conditions, as already
mentioned in Sec. II. The preparation of initial conditions
in our numerical experiments differs from that presented in
[20], where the presence of baseband MI was declared as a
sufficient condition for the creation of rational or semirational
solutions. In order to extract any hidden correlation within
our findings, we present the results for two set of parameters
(a1 = a2 = 1,q = 0) and (a1 = a2 = 0.8,q2 = −q1 = 1,q =
1), which are outside and inside the baseband MI region,

FIG. 7. Amplitude evolution plots in the defocusing Manakov
system with initial plane-wave parameters (a) a1 = a2 = 1 and q = 0
and (b) a1 = a2 = 0.8 and q = 1 (q2 = −q1 = 1). The first set of
parameters is outside the baseband MI region, while the second is
inside of it. The maximum amplitude is (a) 4 and (b) 3.

according to Eq. (3), respectively. It should be noted that
the properties and values of statistical measures can strongly
depend on the system parameters, which are directly related to
the position of the border of baseband MI and the value of its
growth rate.

The amplitude plots for both representative parameter sets
are presented in Fig. 7. A clear distinction between two
evolution phases, which was apparent in the focusing case,
is absent in the defocusing regime. However, as we will see
below, the statistical study still shows that, in general, a com-
petition exists between two different mechanisms for creating
the high-amplitude events, namely, the competition between
baseband MI and wave interactions, as well as the prevalence
of the second mechanism in the long-term evolution.

In Fig. 8 we present the wave height probability Ph curves
together with their GGD fits for a set of parameters that are
either outside [i.e., a1 = a2 = 1 and q = 0; see Figs. 7(a) and
7(c)] or inside [i.e., a1 = a2 = 0.8 and q = 1; see Figs. 7(b)
and 7(d)] the range of existence of baseband MI, respectively.
We may note here the same qualitative behavior for the shape
of Ph as previously observed in the focusing case. Once again,
the peak of the Ph curves shifts towards larger heights as
the computation window progresses to include longer-term
evolutions. The large dip on the Ph curves in the region of
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FIG. 8. The Ph vs h in (a) and (b) linear and (c) and (d)
semilogarithmic scales for initial plane-wave parameters (a) and (c)
a1 = a2 = 1 andq = 0 and (b) and (d)a1 = a2 = 0.8 andq = 1 (q2 =
−q1 = 1). Different curves corresponding to the height distributions
of events belonging to regions of z are explicitly reported in the plots.
In (c) and (d) solid lines represent GGD fits of the corresponding Ph

curves.

medium h for q = 0, i.e., outside the baseband MI range,
is lost in the long-term calculation windows. A similar dip
was previously observed in the focusing case, where it was
associated with the absence of an initial transverse kick or
phase difference between the components of the weak initial
wave perturbation. In the defocusing case, this feature can also
be related to the absence of baseband MI [20].

In contrast, Fig. 8 shows that the Ph behavior for calculation
windows in the long-term range is statistically the same in
both selected parameter cases, namely, either outside or inside
the region for baseband MI. Therefore, based on our results,
one cannot claim that rational solutions, which have been
reported to be a main candidate for RWs in the region of
baseband MI, provide the only source of statistically significant
high-amplitude events in the case a1 = a2 = 0.8 and q = 1
(i.e., inside MI region). In Fig. 8 the shapes of Ph curves
as well as the values of hs (see Table II) and Pee do not
show a notable dependence upon the size and position of the
calculation window. In general, the values of hs and Pee follow
the same scenario as they did in the focusing case. The Pee

values are very small, of the order 0.1%–1%, in all parameter
regions which are related to the existence of high-amplitude
events (rational solitons). Modeling the HPD curves with the
GGD gave similar results as in the focusing case [Figs. 7(c) and
7(d)]. The agreement between the GGD and HPD is better for
the case of initial parameters inside the baseband MI region,
especially in the long-term limit. Moreover, in this region, one
can notice that the HPDs have a similar shape for both sets of
initial parameters. The values of GGD parameters are given in
Table I.

On the other hand, the return probability Pr behavior
is illustrated in Fig. 9. For higher values of the threshold
amplitude (hr = 2.2hs), the Pr curves show the same tendency
with respect to the position of the calculation window for
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FIG. 9. The Pr vs r/R for (a) and (b) a1 = a2 = 1 and q = 0 and
(c) and (d) a1 = a2 = 0.8 and q = 1 (q2 = −q1 = 1), with respect
to different threshold amplitudes hr . Three curves are obtained for
(a) and (c) hr = 0.7hs and (b) and (d) hr = 2.2hs . Different curves
correspond to different calculation windows, as in Fig. 8.

both sets of parameters. By moving the calculation windows
towards the long-term region, the slopes of the Pr curves for
lower threshold (hr = 0.7hs) increase, whereas the shape of the
Pr curves does not change with further changes in the position
or (width) of the calculation window.

A similar tendency regarding the shape of the Pr curves
can be recognized for higher threshold values. By comparing
the return times of high-amplitude events for the two selected
thresholds, we can conclude that the return time of the highest-
amplitude events is smaller than for the rest of the selected
events. This is in accord with the values of R which are
presented in Table II. Note that this is the case for both sets
of parameters, i.e., either outside or inside the baseband MI
region. On the other hand, the differences in Pr and related
quantities for calculations windows in the transient phase are
obvious and can be related to different types of RWs with
respect to those in the latter phases of the system evolution.
In general, for smaller thresholds, the slopes of the Pr curves
change in a way similar to that observed in the focusing regime,
namely, the slope of the curve in the long-term (turbulent)
regime is steeper than in the transient phase. This correlates
with the mechanism responsible for exciting high-amplitude
events. In the first case, the RW generation is associated
with MI, whereas in the second case it is associated with
interactions between different high-amplitude modes. Note
that the Pr for both vector field components were calcu-
lated and we confirmed that they obey the same statistical
scenario.

V. CONCLUSION

Let us summarize the results of our study of high-amplitude
events in the Manakov system by pointing out the main
findings. In both the focusing and defocusing nonlinearity
regimes, it was shown that the type of initial perturbation of the
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plane-wave background did not have a significant influence on
the long-term evolution of high-amplitude events. On the other
hand, we found that the properties of the long-term evolution
can be associated with the presence of MI in the Manakov
system. In latter stages of the evolution of the high-amplitude
modes, their interactions drive the dynamics of high-amplitude
events and potentially affect the properties and the behavior of
RWs. This conclusion does not depend on the character of
nonlinearity in the Manakov system.

We decided to use the term high-amplitude events instead
of RWs on the basis of the unclear indications about the
criteria for extracting RWs from a statistical analysis based
on the height and return-time probabilities. We have found
that the statistics of heights of high-amplitude events can be
described very well by the generalized� distribution in both the
focusing and the defocusing regime, especially in the long-term
propagation limit, i.e., in a regime where interactions between
the high-amplitude events are shown to be the most prominent
contributors to the RW generation. In contrast, we have shown
that, in order to identify a high-amplitude event as a RW, differ-
ent criteria are necessary, at least in multicomponent systems.
The significant height vector equivalent of the corresponding
scalar quantity is not sensitive enough to clearly identify

the RW as well as to distinguish between different types of
RWs.

Data derived from the return-time probability mostly con-
firm previous statements and show that the return-time-based
quantities can be promising candidates for good classifiers of
different types of RWs. The significance of the initial system
preparation, width, and position of the calculation window
on the values of the threshold amplitudes has been pointed
out. Therefore, the main contribution of this study is the
suggestion and development of a strategy for confirming the
basic properties of different RW events in multicomponent
nonlinear wave systems.
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