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Enhancing master-slave synchronization: The effect of using a dynamic coupling
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This paper introduces a modified master-slave synchronization scheme for dynamical systems. In contrast to
the standard configuration, the slave system does not receive any driving signal from the master, but rather the
interaction is through a linear dynamical system. The key feature of the proposed coupling scheme is that it induces
synchronization in certain systems that cannot be synchronized when using the classical static interconnection.
Likewise, the dynamic coupling achieves synchronization for arbitrarily large coupling strength values in certain
systems for which the classical configuration is applicable only within a narrow interval of coupling strength
values. The performance of the synchronization scheme is illustrated in pairs of identical chaotic and mechanical
oscillators.
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I. INTRODUCTION

An intriguing phenomenon occurring in dynamical systems
is synchronization. In particular, when two or more systems are
allowed to interact, it may happen that they show “sympathy”
for each other, i.e., they can adjust their rhythms.

One of the key elements for synchronization—perhaps the
most important—is that there exists a communication channel,
called coupling, through which the systems “communicate” in
order to adjust their rhythms. In particular, in the literature of
chaotic systems, there is a large collection of coupling schemes,
such as, for example, the celebrated Pecora and Carroll
configuration [1], the well-known master-slave configuration
[2], diffusive coupling [3], mutual coupling [4], environmental
coupling [5], dynamic coupling [6], transient uncoupling [7],
just to mention a few.

Among these schemes, we want to draw attention to the
standard master-slave configuration, described by [2]

ẋm = F(xm), (1)

ẋs = F(xs) + kC(xm − xs), (2)

where xm and xs aren-dimensional state vectors corresponding
to the master and slave system, respectively, function F is, in
general, a smooth and nonlinear function, k is the coupling
strength, and C is a suitably chosen coupling matrix.

This configuration has been extensively studied and used for
inducing synchronization in a large class of dynamical systems,
cf. Refs. [8–10]. In fact, if the systems are semipassive and
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convergent, synchronization will be achieved for “sufficiently
large” coupling strength [11].

However, for certain systems, e.g., the Rössler system, this
coupling scheme has the following well-known limitations:
for certain coupling matrices C, it is either impossible to
induce synchronization or synchronization is observed only
in a narrow interval of coupling strength values, cf. Ref. [12].

In a recent letter, it has been shown that the limitations on
the values of coupling strength can be removed by transiently
uncoupling the slave from the master system [7]. However,
switching off the coupling at the wrong instant may result in
loss of synchrony.

This paper presents a modified master-slave configuration
in which the master and slave systems have an indirect inter-
action, i.e., they are not connected through common signals.
Instead, the slave system receives a coupling signal, which is
dynamically generated by a second order linear system.

It is demonstrated that by using a dynamic interconnection
it is possible to induce synchronization in certain systems
for which the classical master-slave scheme with static cou-
pling may not be able to induce synchronization. Likewise,
the proposed coupling scheme enforces synchronization for
arbitrarily large coupling strength values in certain systems
for which the static master-slave coupling has an upper bound
on the value of coupling strength.

The stability of the synchronous solution in the coupled
systems is investigated by using the master stability function
approach [13]. In particular, a suitable variational equation is
derived, and the corresponding largest transverse Lyapunov
exponent is computed in order to obtain necessary conditions
for the local stability of the synchronous solution. Likewise,
the Lyapunov stability theory is used in order to tune the
parameters in the dynamic coupling.

In the analysis, we consider as particular cases, a harmonic
oscillator and several chaotic systems, including: the chaotic
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FIG. 1. Proposed dynamic master-slave configuration.

Rössler system, Chua’s system, the Hindmarsh-Rose neuronal
model, and the forced Duffing and van der Pol equations.

The results presented in this paper suggest that the onset of
synchronization in the master-slave scheme is enhanced when
the static coupling is replaced by a dynamic coupling.

The rest of the paper is organized as follows. Section II
introduces the proposed synchronization scheme and the corre-
sponding stability analysis. Then, some application examples
are presented in Sec. III. Finally, a discussion and some
conclusions are provided in Sec. IV.

II. PROPOSED SYNCHRONIZATION SCHEME

The proposed coupling scheme, see Fig. 1, is described by
the set of equations,

ẋm = F(xm), (3)

ẋs = F(xs) − B1h, (4)

ḣ = Gh − kB2(xm − xs), (5)

where xm, xs ∈ Rn denote the state vectors of the master and
slave, respectively, h = (h1,h2)T with hi ∈ R, i = 1,2 are the
state variables of the dynamic coupling, the vector field F is
assumed to be sufficiently smooth, it can be either linear or
nonlinear, and k is the coupling strength.

On the other hand, B1 ∈ Rn×2 and B2 ∈ R2×n are the
coupling matrices. In this paper, it will be assumed that only
one of the entries of matrix Bj , j = 1,2 is equal to 1 and the
remaining elements are 0.

The assumption for B2 indicates that only one element
of the master is coupled to one element of the slave, see
Eq. (5), whereas the assumption for B1 reveals that the dynamic
coupling is applied to only one equation of the slave system,
see Eq. (4).

The matrix G of the dynamic coupling given in Eq. (5), is
defined by

G =
[−α 1
−γ1 −γ2

]
, (6)

where γ1, γ2, and α are positive constants to be chosen.
Furthermore, note that the solutions of the dynamic cou-
pling Eq. (5) vanish asymptotically when synchronization is
achieved, i.e., when xm = xs .

The design of the coupling system, see Eqs. (5) and (6), has
been inspired in the so-called Huygens’ coupling, which in its
simplest form, can be seen as a mass-spring-damper oscillator
[14,15]. Note that, for α = k = 0, systems (5) and (6) are
indeed the dynamics of a mass-spring-damper system with
stiffness coefficient γ1 and damping coefficient γ2. We have

also added the parameter α in (6), which allows for having
more freedom in choosing γ1 and γ2.

A. Stability analysis based on the master stability function

Next, we introduce the tools, which are necessary for
studying the onset of (stable) synchronous solutions in the
proposed configuration described by Eqs. (3)–(5). These tools
are based on the well-known master stability function approach
[13].

First, it should be noted that the variational equation
governing the behavior around the synchronous solution
ξ := xm − xs = 0 and h = 0 is[

ξ̇

ḣ

]
=

[
DF(xm) B1

−kB2 G

]
︸ ︷︷ ︸

˜DF(xm)

[
ξ

h

]
, (7)

where DF = ∂xm
F is the Jacobian of the vector function F

evaluated on a (bounded) trajectory xm of the master system.
The stability of the synchronous solution e := (ξ ,h) = 0

can be investigated by looking at the largest (transverse)
Lyapunov exponent λ⊥

max [16],

λ⊥
max = lim

t→∞
ln |e(t)| − ln |e(0)|

t
, (8)

which is determined from Eq. (7).
If λ⊥

max < 0, then the synchronous solution is (locally)
stable, i.e., small disturbances will vanish. On the other hand,
if λ⊥

max > 0, the synchronous solution is unstable [16].

B. Tuning the dynamic master-slave coupling

The proposed coupling scheme requires tuning three pa-
rameters, namely, α,γ1,γ2, see Eqs. (5) and (6). The first
requirement for these parameters is that they should be positive.
In this way, it is guaranteed that matrix G in Eq. (6) is Hurwitz
and, consequently, when xm = xs the coupling signal h(t), see
Eq. (5), vanishes.

A second requirement that should be fulfilled when choos-
ing the parameters of the dynamic coupling is the following.
Assume that function F(xi) for i = m,s can be separated into a
linear and a nonlinear part, i.e., F(xi) = Exi + f (xi), where
E ∈ Rn×n is a constant matrix and f (xi) ∈ Rn is a nonlinear
vector. Under this assumption and defining the synchronization
error ep := (xm − xs ,h)T , the error dynamics for the proposed
configuration, see Eqs. (3)–(5), is given by

ėp = Apep + gp(t,ep), (9)

where

Ap =
[

E B1

−kB2 G

]
, gp(·) =

[
f (xm) − f (xs)

O

]
, (10)

and O = (0,0)T .
Furthermore, the “perturbation” term gp(t,ep) is a vanish-

ing perturbation [17] because on the synchronization manifold
where xm = xs it holds that gp(t,0) = 0 and ‖gp(t,ep)‖ �
γ ‖ep‖ for certain γ ∈ R+ where the notation ‖ · ‖ denotes a
norm.

Then, using the stability theory for perturbed systems, see,
e.g., Ref. [17], it follows that the parameters α, γ1, and γ2 in
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Eq. (6) should be chosen such that matrix Ap in (9) is Hurwitz.
Furthermore, this choice guarantees that system (9) is locally
stable.

III. APPLICATION EXAMPLES

In this section, the proposed synchronization scheme pre-
sented in Eqs. (3)–(5) is used to synchronize pairs of identical
oscillators for which the classical master-slave configuration,
see Eqs. (1) and (2), either cannot induce synchronization or
achieves synchronization in a very narrow interval of coupling
strength values.

A. Example 1: Synchronization of “nonsynchronizable”
mechanical oscillators

A simple but illuminating example showing the advantages
of the the proposed coupling scheme over the traditional one
is the harmonic oscillator. For this system, it is impossible
to achieve synchronization by using the classical master-
slave scheme. To show this, consider the classical configura-
tion (1) and (2) with xi =: (x1i ,x2i)T for i = m,s, F(xi) =
Axi , where A is a constant square matrix given by A :=
[(0,1),(−ω2,0)] and ω ∈ R+ is the natural frequency of the
uncoupled oscillators. The variables x1i and x2i denote the
position and velocity of oscillator i for i = m,s, respectively.
Furthermore, assuming that the coupling between the master
and the slave oscillators is through the position variable,
the corresponding coupling matrix C ∈ R2×2, see Eq. (2), is
defined as follows: C ij = 1 for i = 2, j = 1, and C ij = 0
otherwise.

Then, the pair of harmonic oscillators, interacting via the
classical (static) master-slave scheme (1) and (2) can be written
in the form

Master:

{
ẋ1m = x2m,

ẋ2m = −ω2x1m,
(11)

Slave:

{
ẋ1s = x2s ,

ẋ2s = −ω2x1s + k(x1m − x1s).
(12)

The global stability properties of the synchronous solution
xm = xs can be easily determined by using the theory of
linear systems, see, e.g., Ref. [18]. As a first step, the follow-
ing synchronization errors are defined: e1 = x1m − x1s , e2 =
x2m − x2s . The resulting error dynamics is then described by

ė = Aee, (13)

where e = (e1,e2)T and

Ae =
[

0 1
−(ω2 + k) 0

]
. (14)

Next, the stability properties of the error dynamics are deter-
mined from the location of the eigenvalues of matrix Ae, which
are λ1 = −λ2 =

√
−(ω2 + k). Depending on the value of k, we

will have the following three scenarios:
(a) For k > −ω2, the eigenvalues of Ae are complex

conjugated (with zero real parts) and, consequently, the error
dynamics is oscillatory,

(b) for k = −ω2, the eigenvalues of Ae are both zero, which
indicates that the error dynamics is constant, and

(c) for k < −ω2, the eigenvalues of Ae are real, one
positive and one negative, which shows that for this k the error
dynamics is unstable.

In conclusion, it is impossible to find any value of k ∈R
such that the error dynamics are globally asymptotically
stable. Therefore, the classical master-slave coupling fails to
synchronize the oscillators.

On the other hand, the proposed dynamic coupling suc-
cessfully induces synchronization in the coupled harmonic
oscillators. To show this, consider Eqs. (3)–(5) with xi and
F(xi) as defined above. Furthermore, the coupling matrices
B1 and B2 in (4) and (5) are chosen as follows:

B1 =
[

0 0
0 1

]
and B2 =

[
0 0
1 0

]
. (15)

The choice of B2 follows from the assumption that only the
position variable of the master and slave systems is used for
driving the dynamic coupling (5). On the other hand, the choice
of B2 indicates that the dynamic coupling signal h2 is applied
to the second equation of the slave system.

Then, the pair of harmonic oscillators interacting via the
proposed dynamic master-slave scheme (3)–(5) takes the form

Master:

{
ẋ1m = x2m,

ẋ2m = −ω2x1m,
(16)

Slave:

{
ẋ1s = x2s ,

ẋ2s = −ω2x1s − h2,
(17)

Dynamic
coupling:

{
ḣ1 = −αh1 + h2,

ḣ2 = −γ1h1 − γ2h2 − k(x1m − x1s).
(18)

By defining the synchronization errors e1 = x1m − x1s ,

e2 = x2m − x2s , h1 = 0, and h2 = 0, the stability of the syn-
chronous solution can be determined from the error dynamics
ėp = Apep, see Eq. (9), where ep = (e1,e2,h1,h2)T and

Ap =

⎡
⎢⎣

0 1 0 0
−ω2 0 0 1

0 0 −α 1
−k 0 −γ1 −γ2

⎤
⎥⎦. (19)

The characteristic polynomial of Ap is given by

p(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0, (20)

where a3 = α + γ2, a2 = γ1 + ω + αγ2, a1 = k + ω(α + γ2),
and a0 = αk + ω(γ1 + αγ2). Hence, the synchronous solution
will be globally asymptotically stable if and only if the
following conditions are satisfied:

a3,a0 > 0, l = 0,

(α + γ2)(γ1 + αγ2) − k > 0,

(γ1 − ω)(α + γ2) − α2γ2 − α3 − k > 0. (21)

If, for example, we take α = 0, γ1 = 2k + ω, and γ2 = 1,
then the above conditions are satisfied for all k > 0, i.e., the
synchronous solution is globally asymptotically stable for any
(positive) coupling strength value.

This simple but illustrative example has shown that if the
coupling is dynamic rather than static, then the master and
slave oscillators can possibly achieve synchronization.
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B. Example 2: Synchronization of nonsynchronizable
chaotic systems

This section presents another example for which the
classical master-slave configuration fails to synchronize a
pair of chaotic systems. For this, consider a pair of iden-
tical Rössler oscillators [19] coupled via the traditional
master-slave configuration, i.e., Eqs. (1) and (2), with xm =:
(x1m,x2m,x3m)T , xs =: (x1s ,x2s ,x3s)T , and the nonlinear func-
tions F(xi) = ((−yi − zi),(xi + ayi),(b + (xi − c)zi))T for
i = m,s. Moreover, consider the case where the coupling is
through only one component of the master and one component
of the slave, namely x2m and x2s , respectively. Likewise,
consider the scenario when the coupling term is applied to the
first equation of the slave system. Then, the coupling matrix
C ∈ R3×3 is defined by C ij = 1 for i = 1, j = 2, and C ij = 0
otherwise.

Then, the pair of identical Rössler systems interacting via
the classical master-slave configuration (1) and (2) is described
by

Master:

⎧⎨
⎩

ẋ1m = −x2m − x3m,

ẋ2m = x1m + ax2m,

ẋ3m = b + x1mx3m − cx3m,

(22)

Slave:

⎧⎨
⎩

ẋ1s = −x2s − x3s + k(x2m − x2s),
ẋ2s = x1s + ax2s ,

ẋ3s = b + x1sx3s − cx3s ,

(23)

In Ref. [12], it is demonstrated that it is impossible to achieve
synchronization in the coupled Rössler oscillators (22) and
(23).

In contrast, the dynamic master-slave configuration for the
pair of Rössler systems can be written in the form of Eqs. (3)–
(5) by defining the state vectors xm,xs and the nonlinear
functions F(xi), i = m,s as above. The coupling matrices B1

and B2 are chosen as follows:

B1 =
⎡
⎣0 1

0 0
0 0

⎤
⎦ and B2 =

[
0 0 0
0 1 0

]
. (24)

The choice of B1 indicates that the dynamic coupling signal h2

will be applied to the first equation of the slave Rössler system
and the choice of B2 follows from the assumption that only
the variables x2m and x2s are measured.

Then, the equations describing a pair of identical Rössler
systems interacting via the proposed master-slave configura-
tion with dynamic coupling take the form

Master:

⎧⎨
⎩

ẋ1m = −x2m − x3m,

ẋ2m = x1m + ax2m,

ẋ3m = b + x1mx3m − cx3m,

(25)

Slave:

⎧⎨
⎩

ẋ1s = −x2s − x3s − h2,

ẋ2s = x1s + ax2s ,

ẋ3s = b + x1sx3s − cx3s ,

(26)

Dynamic
coupling:

{
ḣ1 = −αh1 + h2,

ḣ2 = −γ1h1 − γ2h2 − k(x2m − x2s).
(27)

Let the synchronization errors be defined by ej = xjm − xjs,

j = 1–3, and e4 = h1, e5 = h2. Then, the error dynamics is

given by
ė1 = −(e2 + e3) + e5,

ė2 = e1 + ae2,

ė3 = x1mx3m − x1sx3s − ce3, (28)

ė4 = −αe4 + e5,

ė5 = −γ1e4 − γ2e5 − ke2.

Note that Eq. (28) can be written in the form of Eq. (9) with

Ap =

⎡
⎢⎢⎢⎣

0 −1 −1 0 1
1 a 0 0 0
0 0 −c 0 0
0 0 0 −α 1
0 −k 0 −γ1 −γ2

⎤
⎥⎥⎥⎦, (29)

and g(t,ep) = (0 0 x1mx3m − x1sx3s 0 0)T .
The characteristic polynomial of Eq. (29) is given by

p(λ) := det(λI − A)

= (λ + c)(λ4 + a3λ
3 + a2λ

2 + a1λ + a0) = 0, (30)

where

a3 = α − a + γ2,

a2 = γ1 − aα − aγ2 + αg2 + 1,

a1 = (α + γ2 + k − aγ1 − aαγ2),

a0 = γ1 + αγ2 + αk.

According to the Ruth-Hurwitz stability test, cf. Ref. [20], the
characteristic polynomial Eq. (30) is stable, i.e., all its roots
have negative real parts if and only if the following conditions
are satisfied:

a0,a3 > 0,

a3a2 − a4a1 > 0,

a3a2a1 − a4a
2
1 − a2

3a0 > 0.

If we choose

α = a, γ1 = k, γ2 = k, (31)

then the above conditions reduce to

k2 + (a − 1)k − a > 0, (32)

b3k
3 + b2k

2 + b1k + b0 > 0, (33)

where b3 = 1 − a2 − 3a, b2 = 4a − a3 − 2, b1 = (a3 +
2a2 − 3a), b0 = −a2.

Consequently, if the parameter values in the dynamic
coupling are chosen as in Eq. (31) and the coupling strength k

is chosen such that conditions (32) and (33) are satisfied, then
matrix Ap in (29) is Hurwitz. Note, however, that choice (31)
is not unique. Obviously, there exist other possible choices.

Next, the (local) stability of the synchronous solution xm =
xs in the coupled Rössler systems (25)–(27) is investigated—as
a function of the coupling strength k—by looking at the largest
transverse Lyapunov exponent λ⊥

max.
For the case of the proposed configuration, λ⊥

max is deter-
mined from Eq. (7), whereas for the traditional master-slave
configuration, λ⊥

max is computed from ξ̇ = [DF(xm) − kC]ξ ,
see e.g., Ref. [13]. As mentioned before, the synchronous solu-
tion is (locally) stable for λ⊥

max < 0 and unstable for λ⊥
max > 0.
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FIG. 2. The largest transverse Lyapunov exponent λ⊥
max computed

as a function of the coupling strength k. The solid line indicates λ⊥
max

for the proposed coupling scheme, whereas the dashed line shows
λ⊥

max for the standard master-slave configuration. Clearly, the proposed
configuration induces synchronization in the slave system for k > 8.4,
whereas for the standard configuration λ⊥

max stays positive for all k > 0
and consequently, the synchronous solution is always unstable.

The obtained results for both configurations are shown in
Fig. 2. The solid line shows λ⊥

max for the proposed coupling
scheme, whereas the dashed line shows λ⊥

max for the tradi-
tional master-slave configuration. The figure clearly shows
that the proposed coupling scheme induces synchronization
for k > 8.4. This is in clear contrast to the standard config-
uration for which λ⊥

max stays always positive, and therefore,
the synchronous solution is unstable. In the computations, a
modified version of the algorithm of Wolf et al. [21] has been
used, and the following parameter values have been considered
[19]: a = 0.2, b = 0.2, c = 5.7, and α, γ1, and γ2 as given
in (31).

The above example illustrates the point: By letting the mas-
ter and slave systems interact through a dynamic coupling, it
is possible to synchronize systems that are nonsynchronizable
when using the standard master-slave configuration.

Additionally, we illustrate how the proposed coupling
removes another limitation of the traditional master-slave
scheme. Consider again the Rössler system discussed before,
but now assume that the coupling matrix C of the standard
configuration, see Eqs. (1) and (2), is defined by C ij = 1 for
i = j = 1 and C ij = 0 otherwise. In this case, as shown in
Ref. [12], it is possible to induce synchronization in the coupled
Rössler systems but only within the narrow interval of coupling
strength values satisfying 0.19 < k < 4.84 as illustrated in
Fig. 3 (dashed line).

On the other hand, consider the proposed coupling scheme
(3)–(5) with the coupling matrices,

B1 =
⎡
⎣0 1

0 0
0 0

⎤
⎦, B2 =

[
0 0 0
1 0 0

]
, (34)

and take the gains α, γ1, and γ2 as given in (31).
Then, synchronization is observed for k > 0.45 as shown

in Fig. 3 (solid line). This result clearly shows that, if the
interaction between the master and the slave is dynamic, then
the value of the coupling strength k can be arbitrarily large.

The results presented in Fig. 3 can be further explained by
looking at the synchronization error dynamics. For the case of
the classical master slave configuration, the synchronization

FIG. 3. λ⊥
max computed as a function of the coupling strength k

(on the logarithmic scale). The proposed configuration successfully
extends the onset of synchronization beyond the narrow interval of
the standard configuration. The solid and dashed lines have the same
meaning as in Fig. 2.

error dynamics can be written in the form of Eq. (9) with

Ap =
⎡
⎣−k −1 −1

1 a 0
0 0 −c

⎤
⎦, (35)

and gp(t,ep) = f (xm) − f (xs). The matrix given in Eq. (35)
has the characteristic polynomial,

pc(λ) : = (λI − Ap)

= (λ + c)[λ2 + (k − a)λ − ak + 1]. (36)

Since c is a positive parameter, a sufficient and necessary
condition for the stability of (36)—in terms of the coupling
strength—is

a < k < 1/a. (37)

In contrast, for the proposed master-slave configuration, the
obtained Ap matrix of the error dynamics, see Eq. (10), is
given by

Ap =

⎡
⎢⎢⎢⎣

0 −1 −1 0 1
1 a 0 0 0
0 0 −c 0 0
0 0 0 −α 1

−k 0 0 −γ1 −γ2

⎤
⎥⎥⎥⎦. (38)

The characteristic polynomial of this matrix is

p(λ) := det(λI − Ap)

= (λ + c)(a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0) = 0, (39)

where a4 = 1, a3 = α − a + γ2, a2 = γ1 + k − αa + αγ2 −
aγ2 + 1, a1 = α + γ2 + αk − aγ1 − ak − αaγ2, and a0 =
γ1 + αγ2 − αak. If the parameters α, γ1, and γ2 are chosen as
in Eq. (31), then the characteristic polynomial given in Eq. (39)
is stable, i.e., all its roots have negative real parts if and only
if the following conditions are satisfied:

k2 + 1

2
(a2 + 1)k + a

2
(a − 1) > 0, (40)

b3k
3 + b2k

2 + b1k + b0 > 0, (41)

where b3 = −2a2 − 4a + 3, b2 = (a + 2)(1 − a3 − a), b1 =
−a(−2a3 − a2 + 5a − 2), b0 = −a4 + 3a2 − 2a.
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FIG. 4. Representative time series for two coupled Rössler
systems for different coupling strengths. Left: Proposed coupling
scheme. Right: Classical master-slave configuration. For (a) and (b):
k = 5. For (c) and (d): k = 1000. The proposed coupling scheme
induces synchronization, whereas the classical master-slave approach
fails to synchronize them. x1m: solid; x1s : dashed.

From a quick comparison between condition (37) for the
classical scheme and conditions (40) and (41) for the proposed
scheme, it is possible to reach to the following conclusion:
In the classical scheme, the matrix Ap of the error dynamics
can be converted into a Hurwitz matrix in a narrow interval
of coupling strength values as shown in Eq. (37). On the
other hand, for the proposed scheme, the corresponding Ap

matrix is converted into a Hurwitz matrix for sufficiently large
coupling strength values as clearly seen from conditions (40)
and (41).

This argument is further supported by replacing the value of
a = 0.2 as used in Fig. 3 into conditions (37), (40), and (41).
For the aforementioned value of parameter a, which indeed
is an intrinsic parameter of the Rössler system, condition (37)
becomes 0.2 < k < 5. In contrast, for the proposed scheme,
conditions (40) and (41) reduce to k > 0.37. These bounds are
in good agreement with the bounds observed in Fig. 3.

Additionally, some representative time series are presented
in Fig. 4. The figure shows the time series of two coupled
Rössler systems with coupling matrices as given in (34), pa-
rameter values as used before, and different values of coupling
strength. In particular, the plots on the left show the obtained
results with the proposed dynamic master-slave configuration,
whereas the plots on the right correspond to the traditional
master-slave coupling. In plots (a) and (b) the coupling strength
has been set to k = 5, whereas for plots (c) and (d), the
coupling strength has been set to k = 1000. For both values of
k, the proposed dynamic master-slave configuration achieves
synchronization.

On the other hand, for the considered values of k, the
classical configuration fails to synchronize the slave and
moreover, for k = 1000, the trajectories of the slave system
diverge.

At this point, it is important to mention that in the previous
analysis, we have considered h2 as the coupling signal. How-
ever, similar results can be obtained if instead, the coupling
signal h1 is used to synchronize the slave to the master.

FIG. 5. Largest transverse Lyapunov exponent λ⊥
max as a function

of the coupling strength k. The dashed line: λ⊥
max when h1 is used as

the coupling signal. The solid line: λ⊥
max when the coupling signal is

h2. In both cases, synchronization is achieved for large k. However, a
smaller coupling strength is required when the coupling signal h2 is
used.

In this case, the coupling matrix B1 given in (34) should be
modified to

B1 =
⎡
⎣1 0

0 0
0 0

⎤
⎦. (42)

Again, the onset of stable synchronous motion when h1 is used
as the coupling variable can be investigated as a function of
the coupling strength k by looking at the largest (transverse)
Lyapunov exponent computed from the variational equation (7)
with B1 as given in (42). In the computations, the parameter
values are exactly the same as those used in the previous
analysis— where h2 was used as the coupling signal. The
obtained results are shown in Fig. 5. The dashed line shows
λ⊥

max for the case when the coupling signal is h1. For the sake
of easy comparison, Fig. 5 also shows λ⊥

max for the case when
h2 is used as the coupling signal (solid line) as already shown in
Fig. 2. It can easily be seen that both coupling signals, either h1

or h2, extend the onset of synchronization beyond the interval
obtained with the classical static master-slave configuration.
However, there is a notorious difference, namely, that the
threshold value of coupling strength is larger for the case when
h1 is considered as a coupling signal. Specifically, when h1

is used, the slave system synchronizes to the master system
for k > 2, whereas for the case when h2 is used, the systems
synchronize for k > 0.45. These results suggest that h2 is “the
best choice” (at least for the parameter settings considered
here) in the sense that a smaller coupling strength is required
to synchronize the systems. However, we want to stress the fact
that both coupling signals have a very similar performance for
large coupling strengths.

A final comment. The previous results have been obtained
for a particular choice of γ1 and γ2, see Eq. (31). However,
as mentioned before, this choice is not unique. Many different
choices are possible as long as λ⊥

max stays negative. This is
illustrated in Fig. 6 where the largest (transverse) Lyapunov
exponent is computed as a function of the coupling strength k

and parameter γ1. For the computation, the variational equation
(7) is used with coupling matrices B1 and B2 as given in (24).
The parameter values are the same as those used to in the
analysis presented in Fig. 2, and γ2 is as given in (31). From
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FIG. 6. Largest transverse Lyapunov exponent on the (γ1,k)
plane. There exist several values of γ1 for which synchronization can
be observed besides the choice given in Eq. (31).

Fig. 6 it is clear that there exists a large region on the (k,γ1)
plane where λ⊥

max < 0.

C. Example 3: Application to typical chaotic systems

In this section, the proposed coupling scheme is applied to
different chaotic systems for which a traditional master-slave
configuration induces synchronization only within a narrow
interval of coupling strength values. Specifically, the following
chaotic systems are considered: Chua’s circuit, the Hindmarsh-
Rose neuronal model, and the forced van der Pol and Duffing
systems. The parameter values for each system are chosen such
that chaotic behavior is observed. Moreover, for the case of the
traditional master-slave configuration, these systems have been
already discussed in Ref. [12].

Table I presents the model for each system, the coupling and
Jacobian matrices for each configuration, and the parameter
values used in the analysis. For each case, the coupling matrix
C, corresponding to the traditional master-slave configuration,
has been obtained from Ref. [12] where it has been shown
that, for this choice of C, synchronization is only achieved in
a narrow interval of coupling strength values.

The local stability of the synchronous solution is in-
vestigated by looking at the largest transverse Lyapunov
exponent—denoted by λT

max—which is computed from the
corresponding variational equation. For the case of the classical
master-slave configuration, the variational equation is given
by ξ̇ = [DF(xm) − kC]ξ , whereas for the proposed coupling
scheme, the variational equation is given in Eq. (7). For each
system, the Jacobian matrices corresponding to the traditional
and the proposed coupling configurations are given in the
middle and right columns, respectively, of Table I.

Figure 7 shows the largest transverse Lyapunov exponent
λ⊥

max, computed as a function of the coupling strength, for
different systems: (a) Chua’s circuit, (b) The Hindmarsh-Rose
model, (c) the forced van der Pol system, and (d) the forced

Duffing equation. The details for each system are summarized
in Table I.

The obtained results reveal that the proposed master-slave
configuration with dynamic interaction may induce synchro-
nization in several chaotic systems for arbitrarily large cou-
pling strength values. These results are in clear contrast to the
classical master-slave configuration where synchronization is
observed in a limited interval of coupling strength values.

D. The dimension of the dynamic interconnection
influences the onset of synchronization

So far, the obtained results suggest that a second order dy-
namic interconnection enhances the onset of synchronization
with respect to a static coupling. A natural question at this point
is: Does the order or dimension of the dynamic interconnection
have an influence on the onset of synchronization?

To elaborate on this question, we will compare the results
obtained above, which correspond to a second order dynamic
coupling, to the results obtained when using the first order
dynamic interconnection,

ẋm = F(xm), (43)

ẋs = F(xs) − b1η, (44)

η̇ = −γ η − kb2(xm − xs), (45)

where xm, xs , and F are as defined before, η ∈ R is the
scalar coupling signal, γ ∈ R+ is a constant parameter, and
the vectors b1 ∈ Rn and b2 ∈ R1×n are the coupling vectors.

In particular, the examples presented in Secs. III A and III B
are revisited. The final aim is to compare the performance of the
first order configuration (43)–(45) to the performance obtained
when using the second order scheme (3)–(6).

Example 1 revisited

Consider again Example III A, i.e., a pair of harmonic
oscillators. Following the assumptions made for deriving the
coupling matrices (15), we obtain the coupling vectors,

b1 =
[

0
1

]
, b2 = [1 0]. (46)

Consequently, the coupled harmonic oscillators, interacting
via the first order dynamic configuration (43)–(45) are written
in the form

Master:

{
ẋ1m = x2m,

ẋ2m = −ω2x1m,
(47)

Slave:

{
ẋ1s = x2s ,

ẋ2s = −ω2x1s − η,
(48)

Dynamic
coupling:

{
η̇ = −γ η − k(x1m − x1s). (49)

The stability of the synchronous solution in the coupled
systems (48) and (49) is determined from the error dy-
namics ėp = Apep, where ep = (e1,e2,η)T , e1 = x1m − x1s ,
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TABLE I. Classical vs proposed master-slave scheme for different dynamical systems.

System Classical master-slave coupling Proposed coupling

Chua’s system [22]: Jacobian matrix: Jacobian matrix:

ẋ = σ [y − x − φ(x)],
ẏ = x − y + z,

ż = −βy,

with φ(x) = bx + 1
2 (a − b)(|x + 1| − |x − 1|),

[DF(xm) − kC] =
(

−σ − σp(x) σ 0
1 −1 1
0 −β −k

)
, ˜DF(xm) =

⎛
⎜⎝

−σ − σp(x) σ 0 0 0
1 −1 1 0 0
0 −β 0 1 0
0 0 0 −α 1
0 0 −k −γ1 −γ2

⎞
⎟⎠,

p(x) = 1
2 (b sign(|x| − 1) + b) − 1

2 (a sign(|x| − 1) − a), α = 1, γ1 = k, γ2 = k

5 .

Parameter values: Coupling matrix: Coupling matrices:

σ = 10, β = 14.87, a = −1.27, b = −0.68 , C =
[

0 0 0
0 0 0
0 0 1

]
, B1 =

[
0 0
0 0
1 0

]
, B2 = BT

1 .

Hindmarsh-Rose (neuron) model [23]: Jacobian matrix: Jacobian matrix:

ẋ = y + 3x2 − x3 − z + I,

ẏ = 1 − 5x2 − y,

ż = −rz + rs(x + p),
[DF(xm) − kC] =

[
6x − 3x2 1 − k −1

−10x −1 0
rs 0 −r

]
, ˜DF(xm) =

⎡
⎢⎣

6x − 3x2 1 −1 0 1
−10x −1 0 0 0

rs 0 −r 0 0
0 0 0 −α 1
0 −k 0 −γ1 −γ2

⎤
⎥⎦,

α = 1, γ1 = 1, γ2 = k.

Parameter values: Coupling matrix: Coupling matrices:

I = 3.2, r = 0.006, s = 4, p = 1.6, C =
[

0 1 0
0 0 0
0 0 0

]
, B1 =

[
0 1
0 0
0 0

]
, B2 =

[
0 0 0
0 1 0

]
.

van der Pol equation [24]: Jacobian matrix: Jacobian matrix:

ẋ = y,

ẏ = −x + d(1 − x2)y + a sin ηt,
[DF(xm) − kC] =

[
0 1 − k

−1 − 2 dxy d(1 − x2)

]
, ˜DF(xm) =

⎡
⎣ 0 1 0 1

−1 − 2 dxy d(1 − x2) 0 0
0 0 −α 1
0 −k −γ1 −γ2

⎤
⎦,

α = 1, γ1 = 1, γ2 = 10k.

Parameter values: Coupling matrix: Coupling matrices:

η = 4.065, d = 3, a = 15, C =
[

0 1
0 0

]
, B1 =

[
0 1
0 0

]
, B2 =

[
0 0
0 1

]
.

Forced Duffing equation [25]: Jacobian matrix: Jacobian matrix:

ẋ = y,

ẏ = −δy − x3 + q sin ηt,
[DF(xm) − kC] =

[
0 1 − k

−3x2 −δ

]
, ˜DF(xm) =

⎡
⎣ 0 1 0 1

−3x2 −δ 0 0
0 0 −α 1
0 −k −γ1 −γ2

⎤
⎦,

α = 1, γ1 = 1, γ2 = k.
Parameter values: Coupling matrix: Coupling matrices:

η = 1, δ = 0.1, q = 5.6, C =
[

0 1
0 0

]
, B1 =

[
0 1
0 0

]
, B2 =

[
0 0
0 1

]
.

e2 = x2m − x2s and

Ap =
⎡
⎣ 0 1 0

−ω2 0 1
−k 0 −γ

⎤
⎦. (50)

This matrix is Hurwitz if and only if

−γω2 < k < 0. (51)

From this result, and the result obtained in Sec. III A, the
following is clear: If the dimension of the dynamic interconnec-
tion is one, synchronization is induced for a bounded interval
of negative coupling strengths as shown in Eq. (51). In contrast,
if the oscillators interact through a second order coupling,
then synchronization can be achieved for any positive coupling
strength, i.e., for k > 0, see below Eq. (21). Although in both
cases synchronization is achieved, the second order scheme
seems to have a better performance in the sense that, for a fixed
set of parameters, this scheme allows a larger interval of cou-
pling strength values for which synchronization is achieved.

Example 2 revisited

Now, consider again the pair of chaotic Rössler systems
as discussed in Example III B. The same assumptions used
for deriving the coupling matrices (24) yield to the following
coupling vectors:

b1 =
⎡
⎣1

0
0

⎤
⎦, b2 = [0 1 0]. (52)

Next, the local stability of the synchronous solution in the
coupled Rössler systems with first order dynamic coupling
is investigated by computing λ⊥

max as a function of k from
the variational equation (7) in which the vector h should be
replaced by the scalar η, the coupling matrices B1 and B2

should be replaced by the coupling vectors b1 and b2 as defined
above, and finally, matrix G is replaced by the scalar γ . The
parameter values are as used in Sec. III A and γ = 1.

The obtained results are depicted in Fig. 8. Clearly,λ⊥
max < 0

in the narrow interval of negative coupling strength values
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FIG. 7. Largest transverse Lyapunov exponent λ⊥
max for different dynamical systems computed as a function of the coupling strength k (on

the logarithmic scale). (a) Chua’s circuit. (b) The Hindmarsh-Rose neuronal model. (c) The forced van der Pol system. (d) The forced Duffing
equation. The details for each system are given in Table I. In all panels, the dashed lines show λ⊥

max for the traditional (static) configuration,
whereas the solid lines denote λ⊥

max for the proposed configuration. In all cases, the proposed configuration extends the onset of synchronization
beyond the narrow interval observed in the classical configuration.

−0.92 < k < −0.37. In contrast, for the second order case,
it has been found that λmax < 0 for k > 8.4, as shown in
Fig. 2 (solid line). Hence, the second order dynamic coupling
“facilitates” the onset of synchronization: There exists a larger
interval of coupling strengths, compared to the first order case,
for which synchronization is achieved.

Table II summarizes the obtained results. From this table, it
becomes evident that the order of the dynamic interconnection
has an influence on the onset of synchronization.

The results shown in Table II indicate that for a second order
dynamic coupling, the interval of coupling strength values, for
which synchronization is observed, is larger than the interval
obtained with a first order dynamic coupling. This difference
is explained as follows. For the first order scheme given in
Eqs. (43)–(45), the resulting matrix Ap of the synchronization
error dynamics, see Eq. (9), is Hurwitz only within a narrow

FIG. 8. λ⊥
max as a function of k for the first order dynamic

master-slave configuration (43)–(45). Synchronization can possibly
be achieved in the interval −0.92 < k < −0.37. Compare to Fig. 2
(solid line).

interval of coupling strength values k. In contrast, for the
second order scheme given in Eqs. (3)–(5), the obtained matrix
Ap can be converted into a Hurwitz matrix for arbitrarily large
values of coupling strength k by a suitable choice of the control
parameters α, γ1, and γ2, which ultimately results in the local
stability of the synchronous solution.

IV. DISCUSSION AND CONCLUSIONS

The research presented here provides a solution to the
problem of synchronizing dynamical systems that are nonsyn-
chronizable with a standard master-slave coupling. The key
element in the new scheme is the dynamic coupling, through
which the slave system interacts with the master.

Note, however, that we are not claiming that the proposed
synchronization scheme has a universal applicability. Instead,

TABLE II. Values of coupling strength k for which synchro-
nization is achieved. The static master-slave scheme fails to achieve
synchronization. On the other hand, the first order coupling induces
synchronization only for a bounded interval of negative coupling
strengths, whereas for a second order coupling synchronization is
achieved for any k satisfying k > kc, where kc � 0 is a threshold or
critical value.

Static Dynamic coupling Dynamic coupling
coupling first order second order

System Eqs. (1) and (2) Eqs. (43)–(45) Eqs. (3)–(5)

Harmonic None −αω2 < k < 0 k > 0
oscillator
Rössler None −0.92 < k < −0.37 k > 8.4
system
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we want to convey the message that a dynamic interconnection
may enhance the onset of synchronization in certain cases
where a static coupling fails. So far, we have realized that the
proposed scheme will work for the cases where a suitable value
for the parameters α, γ1, and γ2 in the dynamic coupling (5)
and (6) can be found such that matrix Ap in Eq. (9) is converted
into a Hurwitz matrix.

In other cases, the dynamic master-slave scheme presented
here allows for inducing synchronization for arbitrarily large
coupling strength values in systems for which the standard
coupling has an upper bound on the value of coupling strength.
At first sight, this improvement may seem artificial. However,
we want to stress the fact that there exist cases where a large
coupling strength value is indeed required. This is often
the case in, for example, physical implementations where

the unavoidable (small) mismatches between systems may
be compensated by a large coupling strength to enforce
synchronization [26].

In contrast to Ref. [7] where synchronization is achieved
by transiently uncoupling the slave from the master, in the
proposed configuration, the coupling is dynamic, it is always
active, and it vanishes once the systems are synchronized.

The reader should realize that further work is still needed.
For example, it is necessary to derive a systematic and rigorous
method for computing the “optimal” values of the constants
α, γ1, and γ2 in the dynamic coupling, see Eq. (6). Another
possible extension of this paper is to consider more than
one slave system dynamically connected to a master system
through a common coupling signal, i.e., a network of slave
systems with dynamic interconnections.
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