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Equivalence of nonequilibrium ensembles in turbulence models
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Understanding under what conditions it is possible to construct equivalent ensembles is key to advancing our
ability to connect microscopic and macroscopic properties of nonequilibrium statistical mechanics. In the case of
fluid dynamical systems, one issue is to test whether different models for viscosity lead to the same macroscopic
properties of the fluid systems in different regimes. Such models include, besides the standard choice of constant
viscosity, cases where the time symmetry of the evolution equations is exactly preserved, as it must be in the
corresponding microscopic systems, when available. Here a time-reversible dynamics is obtained by imposing
the conservation of global observables. We test the equivalence of reversible and irreversible ensembles for the
case of a multiscale shell model of turbulence. We verify that the equivalence is obeyed for the mean values of
macroscopic observables, up to an error that vanishes as the system becomes more and more chaotic.
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I. INTRODUCTION

The macroscopic description of the dynamics of physi-
cal systems typically include forces that phenomenologically
model the effect of molecular disordered motions and are
controlled by appropriate transport coefficients (such as vis-
cosity, diffusivity, etc.). A prominent example is given by
the viscous term of the Navier-Stokes (NS) equations. Such
forces break the time reversibility, which is instead inherent
in the microscopic dynamics. They are also responsible for
the dissipation of energy, which allows for establishing a
(nonequilibrium) statistically steady state when the system is
externally driven.

In the context of molecular dynamics, a similar role is
played by thermostats. A body of numerical simulations have
shown that the nonequilibrium properties of systems composed
of a large number of molecules (particles) are basically inde-
pendent of the precise nature (reversible or not) of the model
used for the thermostats [1]. This suggests that something
similar may apply to the macroscopic description of physical
systems, as pioneered in simulations in [2] and conjectured,
on more theoretical grounds, about two decades ago in [3,4].
Specifically, the hypothesis is that the statistical properties
of the nonequilibrium steady state of a macroscopic system,
whose dynamics obeys a simple phenomenological law of the
kind described above, should be equivalently described by
different macroscopic equations, including some that preserve
time-reversal symmetry. In particular, with the example of fluid
dynamics in mind, this can be realized by allowing the viscosity
to depend on the fluid velocity in an appropriate way, thus
converting the (inherently irreversible) dynamical ensemble
of the Navier-Stokes equations with a fixed viscosity into

a (formally reversible) dynamical ensemble with fluctuating
viscosity. In systems at equilibrium, a conceptually similar
step is done when switching from the microcanonical to the
canonical ensemble.

The equivalence discussed above has already been scru-
tinized in a few simple systems such as a highly truncated
version of the two-dimensional (2D) Navier-Stokes equations
with periodic boundary conditions [5,6] and more recently in
the Lorenz-96 model [7]. Such tests dealt with systems not ex-
hibiting the timescale separation typical of many macroscopic
systems. In this paper we explore whether (and under what
conditions) it is possible to establish an equivalence between
different nonequilibrium ensembles in systems with multiple
spatial and temporal scales. In particular, we investigate the
shell model for turbulence introduced in [8] (see also [9,10]
for general surveys on shell models).

The study of multiscale systems is at the core of many
disciplines dealing with complex systems and the construction
of accurate methods for model reduction is of great relevance
for the theory and for the construction of efficient and robust
numerical models. For instance a substantial part of the effort
in weather and climate modeling is devoted to improving
the representation of small-scale processes. This requires
a difficult interplay between large-eddy simulations (LESs)
[11,12] and dedicated observational campaigns. Large-eddy
simulations themselves need to be tailored via parametrization,
which amounts to defining suitable subgrid models, the so-
called eddy viscosities, to be compatible with direct numerical
simulations (DNSs) of turbulent flows. The term to be modeled
in LESs is intrinsically time reversible, as derived from filtering
the nonlinear term of the Navier-Stokes equations. Indeed,
reversible eddy viscosity models have been studied in [13–15].
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However, reversible subgrid models are prone to dynamical
instabilities that are often cured by adding suitable dissipative
regularizations. As it will be clear later, one of the remarkable
properties of the reversible dynamical systems studied in this
paper is that it allows us to devise a viscous modeling that binds
the system to evolve in a finite region of the phase space.

A further motivation for studying reversible models for
the dissipation is the possibility of employing the universality
properties known for the fluctuations of the dissipation in re-
versible systems to infer, via the proposed equivalence and the
chaotic hypothesis in [16], the validity of the same properties
in the standard irreversible model (i.e., shell model or Navier-
Stokes equations). For instance, the fluctuation relation could
be tested even in the irreversible evolutions [17]. The observed
pairing (to a nonconstant line [4,7]) empirically observed in a
few simulations on the 2D Navier-Stokes equations, reversible
and irreversible [6], could lead to a precise determination
of the “slope” of the fluctuation relations, if confirmed by
dedicated simulations. Further, the equivalence conjecture
could in principle be used for prediction of local fluctuations
of dissipation in standard NS evolutions.

The paper is structured as follows. In Sec. II we provide a
concise, but self-contained, summary of the general framework
of nonequilibrium dynamical ensemble equivalence, where we
formalize a general theoretical approach to the problem in the
form of conjectures that can be subjected to tests. In Sec. III
we present the multiscale model analyzed in detail in this
study. We supplement the traditional irreversible model with
the reversible models obtained by replacing viscous terms with
forces imposing anholonomous constraints on suitably chosen
observables selected so that the resulting equations are time
reversible. Comparisons between properties of the irreversible
and reversible models are discussed in Sec. IV, where we
analyze a range of mathematical and physical properties of the
models and assess whether the equivalence discussed above
holds. In Sec. V we summarize and discuss the main findings
of our paper and present perspectives for future works in this
direction.

II. GENERAL FRAMEWORK: EQUIVALENCE
OF ENSEMBLES

A. Equivalence of equilibrium ensembles

One of the cornerstones of equilibrium statistical mechanics
is the possibility of establishing an equivalence between
different statistical ensembles [18,19]. This means that in
the thermodynamic limit, as the number of particles goes to
infinity, the expectation values of physical observables of the
system do not depend on the specific choice of the thermostat
defining the interaction between the system and the reservoir
it is in contact with, when suitable consistency is imposed.

Clearly, not all physical observables will have the same
value in the different ensembles. For instance, in a system
statistically described by the canonical ensemble the tem-
perature fluctuations vanish while energy fluctuates and the
opposite occurs in a system described by the microcanonical
ensemble. The equivalence of equilibrium ensembles allows us
to understand the emergence of macroscopic thermodynamical
properties that do not depend on the details of the microscopic

dynamics describing the coupling between a system and the
surrounding environment.

B. Equivalence of nonequilibrium ensembles

1. General discussion

Let us consider the simplest case of an out-of-equilibrium
system modeled by a differential equation with N variables that
can be thought of as a time-reversible equation perturbed with
an external force, which injects energy into the system, plus a
dissipative force, which absorbs energy, allowing the system
to reach a steady state. The parameter controlling dissipation
(e.g., viscosity ν in a fluid) can be replaced by a multiplier
defined in such a way that the new equation admits a suitably
selected observable as an exact constant of motion (e.g., the
fluid enstrophy). We will call it the balancing observable.

Furthermore, the multiplier can often be chosen so that the
new equations exhibit a time-reversal symmetry (see below for
typical examples). The multiplier will fluctuate in time and for
macroscopic observables an equivalence is expected between
the irreversible and reversible formulations. By macroscopic
we mean observables that depend on a few (much less than
N ) large-scale degrees of freedom (hence insensitive to the
details of the system when N is large). One expects the
equivalence to hold when the motion is sufficiently chaotic
and the fluctuating multiplier has an average equal to the value
of the phenomenological dissipation parameter.

For instance, in the case of a fluid described by the incom-
pressible Navier-Stokes equations in a homogeneous geometry
(e.g., periodic boundary conditions) or by a shell model
truncated at N modes we have a multiscale nonequilibrium
system characterized by a single dynamical parameter R, the
Reynolds number, and an ultraviolet cutoff N . At fixed forcing,
equivalence of the averages of a prefixed number of observ-
able is expected in the limit of very small dissipation, e.g.,
ν → 0 or, equivalently, Reynolds numberR → ∞. The relative
discrepancy between averages of the prefixed observables is
expected to become smaller than some δ > 0 for an R above a
threshold value Rδ . In applications to fluids it is also expected
that N should be taken large enough and correspondingly
the equivalence threshold will have to become R > Rδ,N ,
i.e., depending on N too. The order of the limit R → ∞
and N → ∞ is a delicate issue that will be discussed in the
following for the specific case of the shell model.

Then the analogy with the usual theory of ensemble equiva-
lence for equilibrium statistical mechanics would be complete
with ν, or the Reynolds number R ∝ ν−1, playing the role of
the inverse temperature and with N (necessary, perhaps, to
give mathematical well posedness to the equations in three
dimensions or certainly in numerical implementations in any
dimension) playing the role of the volume.

Of course, an important question is how we choose the bal-
ancing observable in order to successfully define an equivalent
ensemble. For instance, in the NS case, the balancing can be
constructed using the total enstrophy, or the total energy, or
other macroscopic observables. The choice might be critical
because the Fourier components of the velocity field have
nonlocal interactions [20], so the equivalence could be affected
by the same difficulties that occur in equilibrium statistical
mechanics in systems with long-range interactions [21]. There
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is no general prescription and, in the end, the choice might
be based on empirical grounds or motivated by or targeted to
specific applications.

2. Mathematical formulation

Mathematically speaking, we consider a dynamical system
with N degrees of freedom written as

ẋj = fj (x) + Fj − ν(Lx)j , j = 1, . . . ,N, (1)

where Fj is a constant forcing, ν > 0 is a dissipation coeffi-
cient, and L is a positive-definite dissipation matrix. In many
interesting cases one has (Lx)j = gjxj with gj > 0 (the matrix
is diagonal and all the elements on the diagonal are positive;
no summation is implied here).

A system is said to have a time-reversal symmetry I if the
map I acts on the variable x so that if t → Stx is a solution
then IStx = S−t Ix, i.e., if t → x(t) is a solution also Ix(−t)
is solution [with initial condition Ix(0)]. Therefore, Eq. (1) has
the map Ix = −x as a time-reversal symmetry if fj (x) is even
in x and ν = 0.

Let O(x) be an observable such that
∑N

j=1 ∂jO(x)(Lx)j =
M(x) is positive for x �= 0. For instance, in Eq. (1) if L = 11
and O(x) = x2/2 then M(x) = x2. Then the equation

ẋj = fj (x) + Fj − α(x)(Lx)j , (2)

with

α(x) ≡
∑N

j=1(fj + Fj )xj

M(x)
, (3)

admits O(x) as an exact constant of motion, i.e., Ȯ = 0. Fur-
thermore, if O(x) = O(−x), the equation is time reversible.
In Eq. (1) the viscosity ν is set constant and the observable
O fluctuates; correspondingly, in Eq. (2), the observable O is
constant and the “viscosity” α fluctuates.

Hereafter the notation X|y will denote that X is evaluated in
the model where the quantity y is kept constant. We say that the
stationary distributions of Eqs. (1) and (2) define ensembles of
statistical distributions that can be parametrized by the value of
ν for Eq. (1) or by the (constant) value Õ of the observable O

for Eq. (2). In this work, equivalence means that the reflexivity
property holds, i.e.,

〈O〉|ν = Õ ↔ 〈α〉|Õ = ν, (4)

and for a given set of macroscopic observables � the stationary
averages in the reversible and irreversible evolutions are related
by

〈�〉|ν = 〈�〉|Õ(1 + o), (5)

with o a �-dependent quantity, infinitesimal as ν−1 → ∞, for
fixed N . Equation (5) clarifies the thermodynamical aspect
of the equivalence: In a strongly chaotic regime, measuring a
macroscopic observable of the system, we are unable to say
whether we are observing the reversible or the irreversible
variant. The property of reflexivity is an essential element of
the proposed equivalence: Setting the value of the viscosity
coefficient ν in the irreversible system is conceptually equiv-
alent to setting the value of the physical quantity O in the
corresponding reversible system.

The above-mentioned formulation of the equivalence con-
jecture has been extended in other studies [4,6,16,22], includ-
ing the definition of a fluctuation relation for the reversible
ensemble, as well as conjectures about the equivalence of the
Lyapunov spectra in the two ensembles [7]. However, these
concepts are beyond the scope of this paper and will not be
discussed in the following. Finally, by repeating the procedure
described above with a different observable O, it is possible
to generate different time-reversible models so that a plurality
of (potentially equivalent) nonequilibrium ensembles can in
principle be constructed.

III. MODELS

A. The (irreversible) shell model

Shell models are finite-dimensional chaotic dynamical sys-
tems providing a test bed for fundamental studies of fully de-
veloped turbulence [9,10,23]. They can be thought of as drastic
simplifications of the Navier-Stokes equations and share with
them many nontrivial properties observed in experiments and
simulations, such as the energy cascade from large to small
scales, dissipative anomaly, and intermittency with anomalous
scaling for the velocity statistics.

Our analysis is based on the shell model introduced in
Ref. [8]. It describes the evolution of a set of complex variables
un, representing the velocity in a shell of wave numbers
|k| ∈ [kn,kn+1], with n = 0, . . . ,N − 1. The Fourier shells kn

are geometrically spaced, kn = k02n with k0 = 1, so that a large
range of scales, in the order of 2N , can be explored using few
degrees of freedom. The equations of motion take the form [8]

u̇n = N [{un}] − νk2
nun + Fn, n = 0, . . . ,N − 1, (6)

where

N [{un}] = ikn

(
2aun+2u

∗
n+1 + bun+1u

∗
n−1 + c

2
un−1un−2

)

(7)

accounts for the nonlinear coupling between neighboring wave
numbers, −νk2

n is the dissipative term, and Fn is an external
force typically acting at large scales (here Fn = Fδn,0, with
F constant). The boundary conditions u−1 = u−2 = uN =
uN+1 = 0 are imposed.

Rigorous results [24] have been derived for Eq. (6), proving
that it admits a unique global regular solution for all initial data
with finite enstrophy. Moreover, it has been shown that the
attractor is finite dimensional with dimension not exceeding
(log2 R) + 1

2 log2( 13
4 3) [see Eq. (62) in Ref. [24]], where

R ∼ 1/ν is the Reynolds number, and that the evolution of
the shells less than or equal to K determines the evolution of
the remaining modes if K is large enough, i.e., larger than the
Kolmogorov wave number (defined below).

When ν = F = 0, the model (6) has two quadratic invari-
ants depending on the values of the parameters a, b, and c.
The choice a = 1, b = −0.5, and c = 0.5 guarantees that the
nonlinear evolution (7) conserves the total energy (hereafter∑

n denotes the sum over all the shells)

E =
∑

n

|un|2 (8)

012202-3



LUCA BIFERALE et al. PHYSICAL REVIEW E 98, 012202 (2018)

and the total helicity H = ∑
n(−)nkn|un|2, as in the three-

dimensional Navier-Stokes equations.
After multiplying Eq. (6) times u∗

n, adding the complex
conjugate, and summing over all the shells from 0 to M ,
one obtains the equation for the time evolution for the energy
contained in the first M shells

ĖM = �E
M − 2ν

M∑
n=0

k2
n|un|2 + 2

M∑
n=0

Re(Fnu
∗
n), (9)

where

�E
M = −2kM [2a Im(uM+2u

∗
M+1u

∗
M )

+ (a + b)Im(uM+1u
∗
Mu∗

M−1)] (10)

is the (instantaneous) energy flux through the Mth shell. The
model given in Eq. (6) spontaneously develops an energy
cascade from the large (forced) scales to the small ones, with
a constant energy flux at steady state. The energetics of such a
system is given by Eq. (9) with M = N − 1 and reads

Ė = ε − 2ν	, (11)

where the rate of energy injection ε = 2
∑

n Re(Fnu
∗
n) is

bounded by 2|F |√E and 2ν	 is the rate of energy dissipation,
with

	 =
∑

n

k2
n|un|2 (12)

the total enstrophy. The energy flux in (11) is equal to zero
because the nonlinear term (7) conserves energy.

From Eq. (11) at a stationary state and the Schwarz in-
equality, it follows that the average of E is Ē � |f |2(k0ν)−2,
implying the boundedness of the phase space asymptotically
visited by the system. At a stationary state, realized when 〈ε〉 =
〈2ν	〉, the energy injected at large scales cascades towards the
small scales with a constant flux 〈�E

n 〉 = −〈ε〉 for all shells
between the forcing one and the Kolmogorov wave number
kη = 〈ε〉1/4ν−3/4, where dissipation becomes dominant over
nonlinear transfers (provided kη < kN−1) [9].

B. Class of reversible shell models

Following the procedure discussed in Sec. II (see also
Refs. [3,4]), we can define a class of time-reversible models
out of Eq. (6) as

u̇n = N [{un}] − αχ [{un}]k2
nun + Fn, (13)

where the fluctuating viscosity αχ is a function of the velocity
variables {un} chosen so as to conserve a generic quadratic
quantity of the form

Oχ ≡
∑

n

kχ
n |un|2 = const, (14)

where the continuous parameter χ weighs differently the wave
numbers. With this choice, the fluctuating viscosity takes the
form

αχ =
∑

n k
χ
n Re(unF

∗
n )∑

n k
χ+2
n |un|2

+
∑

n k
χ+1
n [2aC3,n+1 + bC3,n − (c/2)C3,n−1]∑

n k
χ+2
n |un|2

, (15)

FIG. 1. Side by side comparison between the time evolution of
several observables in the irreversible shell model SI (left column)
and the reversible SR	 model (right column). Shown, from top to
bottom are the energy E, viscosity ν (α2 for SR	), enstrophy 	,
and energy dissipation ε = 2ν	 (2α2	 for SR	). All quantities are
normalized by their average value. We used N = 15 shells and ν =
10−5, corresponding to the energy-cascade regime. Notice that α2 is
not positive definite: The occurrence of negative values, highlighted
with a thick red line, corresponds to instances in which the dissipative
terms inject energy into the system.

where C3,n ≡ −Im(un+1u
∗
nu

∗
n−1). Notice that the con-

straint (14) implies that also the reversible models evolve in
a bounded region of the phase space.

For simplicity, we will denote the irreversible shell model SI
and the reversible ones as SRχ , where χ is the same parameter
as in Eq. (14), representing the observable kept constant by the
time-dependent viscosity. Two limiting cases of interest are
χ = 0 and χ = 2, which we will also be indicated as SRE and
SR	, respectively.

The case χ = 0 corresponds to setting the total energy
Oχ=0 = E. Since the energy is conserved in the inviscid limit,
the second term on the right-hand side of (15) is zero. Notice
also that while the constraint χ = 0 is apparently applied
equally on all wave numbers, in the presence of an energy
cascade it weighs more the first shells (large scales).

The second case corresponds to setting the enstrophy (12)
Oχ=2 = 	, which, due to the factor proportional to the square
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of the wave number, puts most of the weight on the small
scales. The limit χ = 2 is particularly interesting as the energy
dissipation rate in the original model (6) ε(t) = 2ν	 fluctuates
by virtue of the fluctuations of 	, while in the reversible
model (13) ε(t) = 2α2	 fluctuates with the viscosity α2. This
phenomenology is clear from Fig. 1, where we present an
overview of the dynamics of the standard SI model and the
SR	 (χ = 2) model. The figure shows the time evolution of
some observables of interest such as E, 	, ν, and ε, in a
situation of energy cascade for both systems. These results
will be analyzed in more detail in the next section. We remark
that some preliminary study of the model with χ = 2 was
presented in Ref. [25], where the aim was not that of studying
the equivalence in the sense specified in Sec. II.

IV. NUMERICAL SIMULATIONS

A. Setup of the numerical simulations

We first integrate the irreversible (SI) model (6) for as
long as needed to achieve stationarity. The resulting average
energy spectrum En|ν ≡ 〈|un|2〉|ν is then used to set the initial
condition for the reversible model (13) as

un(t = 0)|χ ≡
√

En|ν eiξn , (16)

where ξn are random phases. The initial condition (16) guaran-
tees that the reversible dynamics starts with initial values for
the considered global quadratic observable Oχ [see Eq. (14)],
such as E or 	, equal to the expectation value obtained with
the irreversible model.

Simulations of SI are performed fixing by the number of
shells, holding constant the large scale forcing and varying
the viscosity ν, which here plays the role of the inverse of
the Reynolds number R = 1/ν. A change in the chosen value
of the viscosity ν is reflected in an initial configuration for
the reversible models with different values of the conserved
quantity Oχ . The corresponding reversible model is then
integrated with the same number of shells N and forcing Fn

as the irreversible case. As for the forcing, we have chosen
a constant (hence time reversible) forcing acting on the first
shell only, i.e., Fn = δn,0|F |eiγ with |F | = 1 and γ a randomly
chosen phase.

A statistical ensemble of ten dynamical evolutions was
obtained by varying the phases ξn of the initial condition.
All data presented hereafter are averages on this ensemble
and the errors are estimated as the standard error on the
mean. The characteristic time of the large scales is estimated
as TL ∼ E/〈ε〉, which is O(1) in our simulations. The total
integration time (cumulated over all the simulations in the
ensemble) ranges between ∼105TL for the smallest Reynolds
number and ∼104TL for the largest.

The integration scheme was a modified fourth-order Runge-
Kutta scheme with explicit integration of the linear part (see the
Appendix for details). For both the irreversible and reversible
models, the (fixed) integration time step was guaranteed to
be δt � τmin/50, with τmin = minn(〈|un|〉kn)−1 the fastest time
scale of the dynamics. The number of shells in the system was
N = 20, unless otherwise specified.

FIG. 2. Phenomenology of the irreversible shell model. The en-
ergy spectrum En = 〈|un|2〉 is shown for three values of the viscosity
ν with N = 20 shells. With ν = 10−6 the characteristic spectrum of
the energy cascade En ∼ k−0.72

n (see the dashed line) appears. For
ν = 10−12 the energy spectrum is roughly at equipartition, namely,
the regime of quasiequilibrium (see the text). For ν = 10−10 a mixed
behavior is observed.

B. Test of the equivalence in the reversible model conserving
the total enstrophy

We start by discussing the reversible model SR	 obtained
by imposing the conservation of enstrophy. Reversible models
conserving other quadratic quantities (in particular, SRE which
conserves energy) will be discussed in the next section.

1. Phenomenology of the irreversible model

First it is useful to illustrate briefly the phenomenology
of the irreversible model with a fixed number of shells with
increasing Reynolds number, viz., decreasing the viscosity
value ν. In Fig. 2 we show the energy spectrum obtained
for three values of ν. When the viscosity is small enough
but such that kη � kN−1 (i.e., when the dissipative scale is
well resolved), the irreversible shell model develops an energy
cascade, from large to small scales, with a characteristic
Kolmogorov-like scaling En = 〈|un|2〉 ∝ k

−2/3
n plus intermit-

tency corrections [9]. This energy-cascade regime is evident for
ν = 10−6 in Fig. 2. When the Reynolds number is very large,
viz., the viscosity is so small that kη � kN−1, a new stationary
regime sets in. In the following such a regime will be referred
to as quasiequilibrium as it is characterized by the energy
being essentially equipartitioned (though in nonequilibrium
conditions) among the shells (see the case ν = 10−12 in Fig. 2)
and by an average energy flux constant over the shells and
typically much smaller than its fluctuations (not shown). The
transition between the energy-cascade and quasiequilibrium
regimes is characterized by energy spectra with intermediate
characteristics (see the case ν = 10−10 in Fig. 2). Strictly
speaking, the dynamical equivalence discussed in Sec. II B 2
is expected to hold in the quasiequilibrium regimes, when the
Reynolds number R ∼ ν−1 is large enough and N is fixed. Note
that in [7] the validity of the equivalence has been confirmed
exactly in such quasiequilibrium conditions.

2. Test of the equivalence conjecture

As a preliminary test of the equivalence, we first verified
the validity of Eq. (4), i.e., we checked whether the average
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FIG. 3. Mean values of α2/ν for simulations of the SR	 model at
different Reynolds number R with N = 20 shells. The R dependence
of the SR	 model is intended in the sense that it is initialized with an
initial enstrophy 	̃ equal to 〈	〉 measured in a run of the SI model
with (fixed) viscosity ν = R−1. The large error bars reported for high
R can be ascribed to the limited statistics, due to the high cost of the
numerical integration in that range of parameters.

value 〈α2〉 measured in the SR	 model simulations converges
to the values of the viscosity ν of the corresponding irreversible
model. In Fig. 3 we show the ratio 〈α2〉/ν at varying R (R =
ν−1, where ν is the viscosity of the SI model). As one can see,
the ratio is approximately equal to 1 for R > 10−5 and unity
is approached more closely with increasing R, apart from the
highest R, where computational constraints on the integration
time lead to poorer convergence of the statistics and thus larger
statistical errors.

As discussed in Sec. II B 2, the validity of Eq. (4) is a
prerequisite for the equivalence conjecture. Then we tested the
conjecture (5) at varying values of R using as the observable �

the second and fourth moments of |un| for a small wave number
[shell n = 2; see Fig. 4(a)]. These moments are effectively
large-scale observables and the equivalence conjecture is ex-
pected to hold for them for high values of R. We also measured
the same moments at a larger wave number [shell n = 10; see
Fig. 4(b)] where, in principle, the validity of the equivalence
should not be taken for granted. At large scales [Fig. 4(a)] the
data points of the SR	 perfectly agree with the values of the SI
model at all the R considered. At smaller scales [Fig. 4(b)] we
observe good agreement with SI at high and relatively small R,
i.e., in both the quasiequilibrium and energy-cascade regime,
while deviations are present at intermediate values of R.

In order to understand better the above findings, in Fig. 5(a)
we compare the energy spectra of the SI and SR	 in the two
regimes of energy cascade and quasiequilibrium. Consistently
with Fig. 4, a very good equivalence between the reversible
and irreversible models is observed in both regimes, at least at
large enough scales. At small scales deviations can be seen in
both regimes.

In the cascade regime, the main differences appear for
kn > kη. It should be noticed that kη > k10, which explains
the agreement observed in Fig. 4(a). Clearly, choosing a wave
number kn > kη does lead in general to good agreement. It
is worth noticing that for kn > kη the energy spectrum has
a scaling law close to En ∼ k−2

n , which could be due to a
local equipartition of the enstrophy (which is mostly localized
around these scales).1

1Further simulations (not shown) performed at the best of our
computational possibilities (resolutions up to N = 45 and values of 	

FIG. 4. Test of the equivalence for the SR	 model. The second
moment (closed symbols) and fourth moment (open symbols) of a
velocity field component pertaining to the (a) large scales n = 2
and (b) small scale n = 10 are shown as functions of the Reynolds
number R for both the SI and SR	 models with N = 20 shells. The
R dependence of the SR	 model is intended in the sense that it is
initialized with an initial enstrophy 	̃ equal to 〈	〉 measured in a run
of the SI model with (fixed) viscosity ν = R−1. Errors are smaller
than or of the order of the symbol size.

In the quasiequilibrium regime, we can notice that the SR	

model shows a more regular spectrum at small scales (near
the boundary kN−1), with respect to the SI model. We should
remark that these oscillations in the SI model remain confined
to the last three or four shells, as confirmed by simulations
with a larger number of shells (not shown). Our interpretation
is that they are simply due to the constraint imposed by the
fixed ultraviolet cutoff, which becomes important when the
scales affected are not efficiently damped by viscosity. The
choice 	 = const imposes a constraint on the amount of
energy present at scales around k ∼ √

	/E, suppressing such
oscillations coming from the spectral truncation.

We also compared other quantities in the two models at
varying Reynolds number. In particular, we studied the average
energy flux (10) [Fig. 5(b)]; the skewness [Fig. 5(c)] defined
as

Sn =
〈
�E

n

〉
kn〈|un|〉〈|un+1|〉〈|un+2|〉 , (17)

where we use products |un||un+1||un+2| in place of |un|3 to
get rid of spurious oscillations due to the phase symmetry
between three adjacent shells (see [8] for details); and the
flatness [Fig. 5(d)]

Fn = 〈|un|4〉
〈|un|2〉2

. (18)

up to ∼1012) did not show a clear trend towards such an equipartition
and we consider the question still open.
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FIG. 5. Comparison of several spectral observables between the SI and the SR	 models in both situations of energy cascade [ν = 10−6 (•)
and 〈α2〉 � 106 (◦)] and quasiequilibrium [ν = 10−12 (�) and 〈α2〉 � 1012 (�)]: (a) energy spectra, (b) energy flux (10), (c) skewness Sn (17)
(the inset shows the same plot with the logarithmic y axis), and (d) flatness Fn (18). Errors are the order of or smaller than the symbol size.
The dashed line labeled k−0.72

n in (a) represents the scaling behavior in the manner of Kolmogorov plus intermittency correction. The dashed
line labeled k−1

n in the inset of (c) represents a dimensional prediction valid at quasiequilibrium; indeed, since 〈|un|〉 and 〈�E
n 〉 do not depend

on the wave number kn, at least in a certain range of scales, as shown in (a) and (b) respectively, one has that Sn ∼ k−1
n [Eq. (17)]. The dashed

line labeled k0.06
n in (d) shows a best fit of the curves in the cascade regime. Finally, the horizontal dashed line in (d) displays the value Fn = 2,

which is expected for complex Gaussian variables. In these figures, and in some of the following ones, to ease the identification of the various
curves and avoid the superposition of different symbols, not all data points have been marked by a symbol.

In the cascade regime, the equivalence holds only within
the inertial range of scales, which is slightly shorter in SR	

compared to SI; indeed, as clear from Fig. 5(b), the flux for
the SR	 model stops being constant at slightly smaller wave
numbers than in the SI model. We observe remarkable agree-
ment also for very delicate properties such as the intermittent
corrections to the scaling exponents as clear from both the
energy spectrum [Fig. 5(a)] and high-order quantities such as
Sn andFn [Figs. 5(c) and 5(d)]. A previous study confirmed this
equivalence also on higher-order structure functions 〈|un|q〉, up
to order q = 9 [25]. These results offer further confirmation
of the extreme robustness of the energy-cascade mechanism
with respect to the particular method used to remove energy
at small scales, thus reinforcing the validity of the dynamical
equivalence.

Also in the quasiequilibrium regime (i.e., for the simula-
tion corresponding to ν = 10−12) a very good equivalence
is observed for all the quantities. In particular, we notice
that in the quasiequilibrium regime the statistics tends to
become Gaussian with Sn → 0 and Fn ≈ 2 (which is the
result expected for Gaussian statistics, taking into account
the fact that un is complex). Between these two regimes, for
intermediate values of the viscosity, deviations are well evident
[as already clear from Fig. 4(b)].

Summarizing, the equivalence conjecture is well verified in
the quasiequilibrium regime, where it is expected to hold at
almost all scales excluding those very close to the ultraviolet
cutoff. Remarkably, the equivalence holds, even for very
delicate quantities, also in the energy-cascade regime at scales
kn � kη. We notice that the equivalence in the latter case may

have a different nature from that of the former. In particular,
when the energy cascade is at play, the matching of the statistics
of the various observables within the inertial range may be due
to the robustness of the inertial range physics with respect to
the energy removing mechanisms, i.e., due to the dissipative
anomaly.

C. Test of the equivalence in reversible models conserving
different quantities

Here we discuss the equivalence in the reversible models
(13) with varying the parameter χ in (14), i.e., with varying the
particular quadratic quantity conserved by the time-dependent
viscosity. We start from Fig. 6, which, analogously to Fig. 4,
shows the R dependence of the second and fourth moments of
|un| for n = 2 [Fig. 6(a)] and n = 10 [Fig. 6(b)] for the SRE

model, i.e., when the reversible model is obtained by imposing
the conservation of energy. Unlike the SR	 model shown in
Fig. 4, we can see that agreement between the moments of the
SI and SRE models is realized only in the quasiequilibrium
regime. This is further confirmed in Fig. 7, where we compare
the energy spectra of the SI and SRE models in this regime.
As clear from the figure, for the SRE model the agreement
of the spectra extends even close to the ultraviolet cutoff
[compare with Fig. 5(a)]. This is possibly due to the fact that the
constraint of constant energy is less stringent for the large wave
numbers compared with the constant enstrophy constraint.

In order to understand the large differences between the
SRE and SI models out of the quasiequilibrium regime, we
now fix ν such that the SI model is in the energy-cascade
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FIG. 6. Test of the equivalence for the SRE model. The second
moment (closed symbols) and fourth moment (open symbols) of a
velocity component at (a) large scales n = 2 and (b) small scales
n = 10 as functions of the effective Reynolds number R for the SI
and SRE models with N = 20 shells. The R dependence of the SRE

model is intended in the sense that it is initialized with an initial energy
Ẽ equal to 〈E〉 measured in a run of the SI model with (fixed) viscosity
ν = R−1. Errors are smaller than or of the order of the symbol size.

regime. In Fig. 8(a) we show the spectra obtained for different
reversible models, all initialized with the same initial condition,
conserving quadratic quantities Oχ indexed by different values
of χ as from Eq. (14) (we recall that SRE corresponds to the
case χ = 0). We see that there is a clear trend of increasingly
better equivalence with increasing χ , i.e., when the constraint
weights more and more the small scales. In particular, when
the reversible model conserves Oχ with low values of χ , it
suffers from the lack of a stable energy-cascade solution, with
the effective confinement of the dynamics on the shell n = 0.
When the value χ is large, on the contrary, Oχ is significantly
dependent on the small scales of the system, meaning that
the request Oχ = const actually imposes a constraint on the
amount of energy needed in the small scales, favoring the
presence of a stable energy-cascade mechanism. The threshold
between the two cases lies around χ = 2/3. Even if we did not
pursue a systematic test, here is a simple argument for why the

FIG. 7. Energy spectra En of the SI and SRE models in the regime
of quasiequilibrium (N = 20 and ν = 10−12). Error bars are smaller
than or of the order of the symbol size.

FIG. 8. Energy spectra En for several reversible models, com-
pared with the irreversible one (�) (with N = 20 and ν = 10−6).
All the reversible model simulations are initialized with the same
distribution of initial energy in the range 0 � n < 15, but the models
conserve different invariants Oχ [see Eq. (14)]. Error bars are smaller
than or of the order of the symbol size.

value χ = 2/3 should be a good candidate for the threshold:
For that value both the constant energy flux solution and
the Oχ equipartition solution have the same spectral scaling
En ∼ k

−2/3
n . For χ > 2/3 the constant energy flux solution

has a less steep energy spectrum and it is likely dominant
in the dynamics, and vice versa. Thus, given the same initial
conditions for the velocity field, the SR	 model and the other
SR models with χ > 2/3 are always able to reach a chaotic
stationary state with an energy cascade like the SI model.
Instead, in the same range of viscosities, the SRE model and
the other SR models with χ < 2/3 get locked in a fixed point
in phase space, where all the energy of the system is localized
in the n = 0 shell and α0 ∼ 1.

The presence of an attractive fixed point in a highly dimen-
sional phase space unavoidably makes the statistical properties
strongly sensitive to the extension in time of the dynamical
evolution and to the total number of degrees of freedom. For
example, we found that the results published in [26] were
affected by the limited extension of the time integration and
that by averaging more, as it is possible with the nowadays
computational power, the long-time asymptotic dynamics is
always dominated by the fixed point at small shell numbers.

Although we did not perform systematic tests, on the basis
of the previous observations and Fig. 7, it is reasonable to
expect that for any χ the equivalence should hold in the
quasiequilibrium regime. Specifically, for the SRE model, it
is worth remarking that imposing the conservation of energy
constrains the energy dissipation to be identical to the energy
input at any instant. This is at odds with the phenomenology of
the cascade where such a balance is obtained only on average.
On the other hand, setting 	 = const does not introduce
such stringent conditions on the instantaneous energy budget.
More importantly, while the energy input varies on the (slow)
timescale typical of the large scales, the energy dissipation
has a fast evolution. Thus, the SRE model imposes a very
severe dynamical constraint requiring the two quantities to
be identical at each time. This constraint is less stringent in
quasiequilibrium conditions, where energy is essentially in
equipartition among the shells. Indeed, in such a regime, also
the SRE model becomes equivalent to the SI model, as clear
from Fig. 7.
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FIG. 9. Probability density function of the time-dependent viscosity α2 for the SR	 model in three different cases: a situation of energy
cascade [N = 20 and 	 ∼ 104 (•)], a situation of quasiequilibrium [N = 10 and 	 ∼ 108 (�)], and a case in between [N = 15 and 	 ∼ 104

(�)]. The insets on the left show the corresponding typical time evolutions of α2. The insets on the right show the corresponding energy spectra.

D. Analysis of the time-dependent viscosity in the reversible
model with enstrophy conservation

In this section we study the statistics of the time-dependent
viscosity α2 in the SR	 model. We have already shown that
〈α2〉 ≈ ν (Fig. 3), as required for the validity of the equivalence.
However, the temporal fluctuations of α2 are nontrivial: As
shown in Fig. 1, α2 can become negative (i.e., the viscous forces
can inject energy instead of removing it), which is the signature
of the dynamical reversibility. In this section, though this is
not directly linked with testing the equivalence conjecture, we
explore how the statistics of this sign variation depends on the
Reynolds number.

In Fig. 9 we summarize the behavior of the time-dependent
viscosity α2 in different regimes: from quasiequilibrium to
energy cascade (as qualified by the behavior of the spectra
shown on the right panels). On the left panels we show the
time evolution of α2 in a typical run of the model, in the central
panel the measured probability density functions (PDFs) of the
values of α2, and on the right column the energy spectrum of
the corresponding simulation. All data refer to the SR	 model.

In the quasiequilibrium regime, the viscosity α2 tends to
have a PDF symmetric around the zero, becoming more and
more skewed towards positive values as the cascade regime
becomes dominant in the dynamics. A similar behavior of the
PDF of the time-dependent viscosity of the reversible model
as a function of the Reynolds number was found in [7]. In
the limit of an extremely well resolved system (N → ∞, with
finite Reynolds number, i.e., in the energy-cascade regime with
well resolved dissipative range), the probability to observe
negative values (α2 < 0) within the observation time becomes
extremely small. This observation shows once again the differ-
ent nature of the equivalence in the quasiequilibrium regime
(corresponding to taking the limit R → ∞ with N fixed,
eventually very large) and the cascade one (corresponding to
taking the limit N → ∞ with R fixed and very large).

V. CONCLUSION

Summarizing, in this paper we have scrutinized the validity
of the equivalence of ensembles for nonequilibrium statistical
mechanical systems conjectured for fluid flows in [3,4]. In
particular, we tested the conjecture within the framework of
the shell models for turbulence featuring a multiscale nonlinear
dynamics.

In these systems, the issue of nonequilibrium ensemble
equivalence translates into the quest for equivalence of the
macroscopic dynamics between systems with different mod-
elizations of the viscous forces. The standard choice is to use
a constant viscosity, which leads to the introduction, in the
evolution equations, of a term that is responsible for breaking
the time-reversal symmetry of the equations of motion. The
same happens if one introduces instead hyperdiffusive opera-
tors, such that the viscosity is effectively larger when smaller
spatial scales are considered. However, given the reversibility
of the microscopic dynamics, it is natural to speculate that
a macroscopic description preserving such a fundamental
symmetry should be possible.

Models exhibiting a time-reversal symmetry can be realized
by using a time-dependent viscosity designed to enforce the
conservation of some observable, quadratic in the velocity via,
for instance, Gauss’s principle for anholonomous constraints
[1,27]. The construction of the reversible models is not unique,
relying on the choice of the observable to keep constant in
the time-reversible dynamics. We found that the equivalence
between the two statistical ensembles holds, as expected, in
the quasiequilibrium regime, i.e., in the limit of very large
Reynolds number when keeping constant the number of shells
(i.e., the ultraviolet cutoff). Moreover, when the reversible
model is constructed by imposing a constraint impacting
preferentially the smallest and fastest scales of the system, e.g.,
when enforcing the conservation of enstrophy, equivalence is
obtained also in the energy-cascade regime, likely, owing to the
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robustness of the cascade mechanisms against the mechanism
of energy dissipation.

The results in this study, together with similar findings
for the 2D Navier-Stokes equations [6] and the Lorenz-96
system [7], strengthen the case for the nonequilibrium sta-
tistical equivalence to hold also for other physically relevant
nonequilibrium dynamical systems and in particular for the
3D Navier-Stokes equations, for which it was originally
conjectured [3].

Besides the theoretical interest, the results here presented
offer more freedom in modeling viscous forces in nonequilib-
rium systems, with particular reference to the ones of interest
in fluid dynamics. Specifically, the ideas discussed in this
paper could be relevant for small-scale parametrization in
atmosphere, ocean, and climate models [28–30], as well as

LES models [11,12], where eddy viscosity need to be carefully
tailored in order to have results compatible with DNSs. Indeed,
some form of reversible modeling of the small-scale dynamics
is already used in LES [13,14].
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APPENDIX: NUMERICAL INTEGRATION SCHEME

Equations (6)–(13), neglecting the forcing term, have the structure

d

dt
un(t) = gn[{un(t)}] − νk2

nun(t), (A1)

where gn[{un(t)}] stands for the nonlinear term at shell n, calculated on the velocity configuration {un(t)} at time t . When ν

is constant in time, we adopted the following modified fourth-order Runge-Kutta scheme, which exactly integrates the viscous
contribution:

un(t + δt) = en

{
en

[
un(t) + δt

6
gn[{un(t)}]

]
+ δt

6

(
gn

[{
u(1)

n (t)
}] + gn

[{
u(2)

n (t)
}]) + δt

6
gn

[{
u(3)

n (t)
}]}

,

u(1)
n (t) = en

[
un(t) + δt

2
gn[{un(t)}]

]
,

u(2)
n (t) = enun(t) + δt

2
gn

[{
u(1)

n (t)
}]

,

u(3)
n (t) = en

[
eνk2

nδt/2un(t) + δt

2
gn

[{
u(2)

n (t)
}]]

,

en = eνk2
nδt/2. (A2)

For the reversible models, where ν is not a constant, we introduced the following correction to the scheme:

un(t + δt) = en

{
en

[
un(t) + δt

6
ĝn[{un(t)}]

]
+ δt

6

(
ĝn

[{
u(1)

n (t)
}] + ĝn

[{
u(2)

n (t)
}]) + δt

6
ĝn

[{
u(3)

n (t)
}]}

,

u(1)
n (t) = en

[
un(t) + δt

2
ĝn[{un(t)}]

]
,

u(2)
n (t) = enun(t) + δt

2
ĝn

[{
u(1)

n (t)
}]

,

u(3)
n (t) = en

[
eνk2

nδt/2un(t) + δt

2
ĝn

[{
u(2)

n (t)
}]]

,

en = eν[{un(t)}]k2
nδt/2,

ĝn

[{
u(i)

n (t)
}] = gn

[{
u(i)

n (t)
}] − (

ν
[{

u(i)
n (t)

}] − ν[{un(t)}])k2
nun(t). (A3)
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