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We present an analytical and numerical study of the Ising model on a bilayer honeycomb lattice including
interlayer frustration and coupling with an external magnetic field. First, we discuss the exact T = 0 phase
diagram, where we find finite entropy phases for different magnetizations. Then, we study the magnetic properties
of the system at finite temperature using complementary analytical techniques (Bethe lattice) and two types
of Monte Carlo algorithms (Metropolis and Wang-Landau). We characterize the phase transitions and discuss
the phase diagrams. The system presents a rich phenomenology: There are first- and second-order transitions,
low-temperature phases with extensive degeneracy, and order-by-disorder state selection.
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I. INTRODUCTION

The continuous exploration of frustrated spin systems in
the past few years has been driven by the role of frustration
to induce unconventional magnetic orders or macroscopic
degeneracy in the ground state with no long-range ordering [1].
However, this macroscopic degeneracy will depend critically
of the coordination number and/or the spin representation. For
instance, on one hand, in the antiferromagnetic (AF) triangular
lattice the classical Heisenberg model has a unique ordered
ground state [2] while the classical Ising model shows a large
degeneracy in the ground state [3]. On the other hand, in the AF
kagome lattice, both models (Heisenberg and Ising) present
a disordered ground state with macroscopic degeneracy [4].
The interaction with a magnetic field lowers the symmetries
of these systems and may lead to a total or partial reduction of
the ground-state degeneracy.

In the case of the honeycomb lattice, since it is bipar-
tite, the AF model with nearest-neighbor interactions is not
frustrated. Additional interaction terms, for example, next-
nearest neighbors, are needed to introduce magnetic frustration
[5,6]. In the past few years, several works [7–13] have been
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published motivated by nontrivial phases found in the material
Bi3Mn4O12(NO3) [14]. Experimental evidence shows that
this material can be modeled as a weakly coupled bilayer
honeycomb lattice where magnetic frustration, suggested by
the large negative value of the Curie-Weiss temperature�CW =
−257 K, could play an important role in low-temperature
properties. For that reason, in a recent paper we studied the
antiferromagnetic bilayer honeycomb lattice in the highly
frustrated case for classical spins [15]. Frustration in this model
is given by a competition between intralayer nearest neighbors,
and two interlayer couplings (all antiferromagnetic). In that
work, we found that due to the the high level of frustration,
an external magnetic field induced the selection of nontrivial
low-temperature phases.

In this work, we study the Ising model in the honeycomb
bilayer lattice and explore the magnetic properties for the full
range of the antiferromagnetic couplings. In order to do this, we
resort to a combination of analytical and numerical techniques
(Bethe lattice approximation, Metropolis, and Wang-Landau
Monte Carlo simulations). Surprisingly, we find a very good
agreement between the numerical results and the mean-field
technique. As we will show in the following sections, the
interplay between these methods has proved essential for a
thorough study of the model.

The paper is structured as follows: First, we introduce the
model and present the T = 0 phase diagrams in Sec. II. In
Sec. III we present the methods and the order parameters
used to study the low-temperature behavior of the system,
discussing the characteristics, advantages, and limitations of
each technique. In Sec. IV we present the low-temperature
phase diagrams for different regimes of the model. We find
different types of phase transitions, highly degenerate phases,
and selection of states by thermal fluctuations. Concluding
remarks are presented in Sec. V.
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FIG. 1. Bilayer honeycomb lattice. The (antiferromagnetic) cou-
plings are indicated by different colors. A, B, C, D label spins in a
unit cell. The interlayer coupling Jp is indicated by (brown) vertical
lines (joining sites A-C and B-D), the intralayer coupling J1 by (blue)
horizontal ones (joining sitesA-B andC-D), and intralayer frustrating
coupling Jx is drawn as (violet) dashed lines (joining sites A-D and
B-C).

II. MODEL AND T = 0 PHASE DIAGRAM

Let us define the Ising model on the antiferromagnetic
bilayer honeycomb lattice as

H = Jp

∑
r

(
σA

r σC
r + σB

r σD
r

) − h
∑
r,i

σ i
r

+
∑
〈r,r′〉

J1
(
σA

r σB
r′ + σC

r σD
r′

) + Jx

(
σA

r σD
r′ + σB

r σC
r′

)
,

(1)

where r runs over unit cells, 〈r, r′〉 denotes interactions within
the cell and between nearest-neighbor cells, and i is the spin cell
index i = A,B,C,D (with sites A,B,C,D shown in Fig. 1).
The lattice structure and exchange antiferromagnetic couplings
J1, Jx , and Jp are shown in Fig. 1. Jp is the coupling joining the
honeycomb layers (above and below), and J1, Jx are the nearest
neighbors in-plane and intraplane couplings, respectively. Note
that the model in Eq. (1) can be mapped onto an identical
one replacing J1 ↔ Jx by exchange of opposite sites in each
plaquette: A ↔ C or B ↔ D. This Z2 symmetry will play an
important role in the characterization of the low-temperature
phases.

In the particular case of h = 0 and Jx = 0, the ground state
has long-range Néel order composed of two opposite Néel
states in each layer (for instance, σA = σD = −σB = −σC =
+1). A nonzero value of Jx > 0 introduces frustration, which
leads to interesting phenomena even at zero temperature. The
magnetic properties of this model are controlled then by two
factors: the level of frustration and the magnetic field.

We first study the zero temperature T = 0 phase diagram.
In order to do this, we need to describe the ground-state con-
figurations for an individual plaquette. There are 16 possible
states in each four-spin plaquette. We consider only those
with zero or positive magnetization, and we are left with five
types of plaquette arrangements. These are listed in Table I

TABLE I. Plaquette configurations, energies (E0), magnetization
(m0), and degree of degeneracy D.

Notation E0 m0 D

AF1 2(Jp/3 − J1 − Jx ) 0 2

AF2 2(−Jp/3 − J1 + Jx ) 0 2

U2 2(−Jp/3 + J1 − Jx ) 0 2

UAF −2h/3 1/2 4

U 2(Jp/3 + J1 + Jx − 2h/3) 1 1

[16] with their energy (E0), magnetization [m0 = 1
4 (σA + σB +

σC + σD )], and degree of degeneracy (D). We also introduce
the notation for each configuration that we will use throughout
this work: AF denotes antiferromagnetic ordering in each layer
and U uniform order in a layer.

Having constructed the different plaquette configurations,
listed in Table I, we now discuss the T = 0 phase diagram for
different cases.

1. h = 0 case

We show the Jx/Jp vs. J1/Jp T = 0 phase diagram of the
model for the case of zero magnetic field in the upper-left panel
of Fig. 2. Interesting features appear on the specific line Jx =
J1 < Jp/3 where the ground state is highly degenerate because
each plaquette can either be in a U2 or AF2 configuration.
The energy does not depend on Jp, and thus each Jp pair can
be flipped without energy cost. As a consequence the system
has macroscopic degeneracy, and therefore a nonzero entropy,
at T = 0. The determination of the value of this entropy can
be easily computed: It is the same as that of a random spin
configuration in one of the layers (the spins in the other layer
are simply opposite). Therefore, the entropy per spin s = S/N

in units of ln 2 (the value in the paramagnetic case) is s = 1/2.
In the highly frustrated point J1 = Jx = Jp/3, in addition to
the degenerate configurations we just described there are two
more possible states: all plaquettes with an AF1 configuration.

2. h > 0 case

The effect of an external field is summarized in Fig. 2
where we show the h/Jp vs. T/Jp phase diagrams for three
different regions of interest for the frustrating relation Jx/J1:
(b) Jx/J1 = 1 (top right), (c) Jx/J1 < 1 (bottom left), and (d)
Jx/J1 > 1 (bottom right) characterized by the total magneti-
zation m defined as

m = 1

N

∑
I,r

σ I
r , I = A,B,C,D. (2)

We found that there are three possible magnetization plateaux:
at m = 0 (with structure U2, AF1, or AF2), at m = 1/2 (UAF),
and at the saturation plateau m = 1 (U) for h > hsat. Explicit
expressions for the critical fields are given in Table II in
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FIG. 2. T = 0 phase diagrams. (a) Jx vs. J1 in units of Jp for
h = 0. h/Jp vs. J1/Jp phase diagrams for (b) J1 = Jx , (c) Jx < J1

(α = Jx/J1 = 1/2), and (d) Jx > J1 (α = Jx/J1 = 2).

Appendix A. As we just stated, the m = 1/2 is given by UAF
plaquettes. This configuration is highly degenerate: One Jp

pair of the spins of a plaquette has positive (+) spin, and the
other one has two opposite spins. This pair has no particular
orientation, so in each unit cell there is one degree of freedom.
Therefore, at this plateau there is finite entropy s = 1/4. For
J1 �= Jx , the m = 0 plateau is simply doubly degenerate and
therefore has s = 0 in the thermodynamic limit. The magnetic
field then takes the system from a s = 0 phase to a magnetized
highly degenerate one, where the entropy is finite at T = 0.

III. ANALYTICAL AND NUMERICAL APPROACHES

Having studied the zero-temperature phase diagram of the
model presented in Sec. II, in the next sections we look at the
effect of thermal fluctuations by means of three complementary
methods, namely the Bethe lattice approach and Monte Carlo
simulations (Metropolis and Wang-Landau), which we briefly
describe in the following subsections.

A. Bethe lattice

The Bethe lattice (BL) is a mean-field approach that, for
first-neighbor interactions, is equivalent to the Bethe approxi-
mation [17]. From the point of view of correlations, in a simple
mean-field calculation no correlations are taken into account,
while in Bethe lattice solutions short-range correlations are
considered. In particular, for the model studied here, the
correlations between spins in a plaquette are taken into account
in exact form.

sublattice A B C D

central plaquette

FIG. 3. The q = 3 bilayer Bethe lattice that reproduces the
ground-state configurations of the bilayer honeycomb lattice.

The Bethe lattice consists in the exact solution of a statistical
model in the core of a Cayley tree. In order to approximate
the bilayer honeycomb lattice, we define a bilayer Cayley
tree, similar to the one used previously for different Ising-like
models by Hu et al. [18] and Albayrak and coworkers [19] and
for self-avoiding walks by Serra and Stilck [20]. The simplest
treelike approximation for our model is a bilayer Cayley tree
with the same coordination q = 3 of the honeycomb lattice
and interlayer first and second interactions. It is important to
note that the model in this lattice reproduces the correct T = 0
phase diagram (ground state) of the two-dimensional model
described in Sec. II. In order to take statistical averages in the
central zone of the Cayley tree (the Bethe lattice approach),
we define it as a central plaquette, as shown in Fig. 3.

The honeycomb lattice is bipartite, then, in the notation of
Fig. 3, the points A and C belong to a sublattice a and the
points B and D to the other sublattice b. In order to describe
the different phases we need to define eight partial partition
functions (PPF) Za

σAσC
and Zb

σBσD
each one for the four possible

values of the spins corresponding to a sublattice bilayer,
(1, 1), (1,−1), (−1, 1), and (−1,−1). The treelike structure
of the lattice allows us to write down recursion relations (RR)
for the PPF. Once the RR are obtained, the thermodynamic
phases are given by their stable fixed points. Where the stability
line of two different fixed points are coincident, it represents
a second-order line. For first-order lines we have to calculate
the Bethe lattice free energy [21,22] and look for the line in
the coexistence zone where the free energies of both phases are
equal. The PPF, free energy, and other details of the calculations
are developed in Appendix B.

In general, the stability lines of the several thermodynamic
fixed points are given as solutions of sets of nonlinear coupled
equations. However, for the important case h = 0, J1 = Jx ,
the paramagnetic stability line takes the simple form

e
Jp

T =
(
1 + e4 Jx

T

)√
2
(
e8 Jx

T − 3
)

e2 Jx
T

(
e4 Jx

T + 3
) . (3)
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The other curves in the phase diagram were calculated solv-
ing numerically the set of exact algebraic coupled equations
(see Appendix B).

The order parameters and phase diagrams obtained within
the Bethe lattice approximation are displayed in the following
subsections, which describe the Monte Carlo (MC) techniques.

B. Monte Carlo simulations

We simulated lattices with periodic boundary conditions in
the two directions with the Metropolis update [23] (MC-M)
and Wang-Landau [24] (MC-WL) methods. In both cases we
used a single spin-flip algorithm. We exploited the strength of
each technique to fully understand the system, as commented
below.

1. Metropolis

We performed MC-M simulations on lattices of N =
4 × L2 sites (L = 24–60). To avoid the problem of low-
temperature “freezing” of the simulations, we used the the
annealing technique, lowering the temperature as Tn+1 =
0.9 × Tn, from Ti/Jp = 5 to Tf /Jp ≈ 0.1. We also averaged
results over 100 copies of the simulations, generated from
different random seeds. Data were taken in each copy averaging
4 × 105 Monte Carlo steps (mcs), after discarding 2 × 105

mcs for thermalization. We measured the energy per spin, the
magnetization per spin [Eq. (2)], the specific heat per spin,

C = 〈E〉2 − 〈E2〉
N T 2

, (4)

and three different order parameters φ to detect the three
possible zero magnetization arrangements of the plaquettes
(see Table I) defined as follows:

φAF1 = 1

N

∑
r

(
σA

r + σC
r − σB

r − σD
r

)
, (5)

φAF2 = 1

N

∑
r

(
σA

r + σD
r − σB

r − σC
r

)
, (6)

φU2 = 1

N

∑
r

(
σA

r + σB
r − σC

r − σD
r

)
, (7)

where r runs over unit cells. With the previous definitions, the
local order parameters take values −1 or 1 when the plaquette
is in the specific configuration (AF1, AF2, or U2) and zero if
they are in any of the other two. In each Monte Carlo step, the
order parameter is calculated for every unit cell. It should be
noted that when averaging these parameters for different copies
we will take the absolute value of the MC measurement, since
otherwise it will average to zero.

2. Wang-Landau

The MC-WL algorithm [24] has emerged as an efficient
Monte Carlo technique in statistical physics. In the past few
years, this technique has been applied to a variety of studies
of classical statistical models such as the Ising [25] and Potts
[26] spin model, Heisenberg ferromagnetic systems [27], and
antiferromagnetic frustrated models [28]. In this work, we
performed simulations on lattices of N = 4 × L2 sites (L =
2–10). To optimize the convergence of the algorithm we use

the modification proposed in Ref. [29]. This algorithm allows
the estimation of the energy density of states (DoS) g(E)
performing a random walk in energy space. Then, from the
DoS we can construct the partition function and obtain thermo-
dynamic quantities like entropy and free energy, which are not
easily accessible through conventional Monte Carlo methods
based on the Metropolis algorithm. To better characterize the
system, we often need to calculate a joint density of states
(JDoS) g(E, φ), where φ is an order parameter. This allows
us to explore the phases of the system and also to calculate
thermodynamic quantities like the Landau free energy [30].

Once obtained g(E, φ), the partition function can be com-
puted as

Z(β,μ) =
∑
E,φ

g(E, φ) e−β(E− μφ) (8)

with β = 1/kBT and μ some Lagrange multiplier (for exam-
ple, μ may be the magnetic field and thus φ would correspond
to the total magnetization) [31]. From the partition function,
we can obtain thermodynamic quantities in the canonical
ensemble for all values of β (temperature) and μ. For instance,
the mean value of the energy E and the order parameter φ may
be calculated as

〈E〉 = 1

Z(β,μ)

∑
E,φ

g(E, φ)E e−β(E− μ φ), (9)

〈φ〉 = 1

Z(β,μ)

∑
E,φ

g(E, φ)φ e−β(E− μφ). (10)

In addition to the standard averages, it is straightforward to
determine some important quantities like Helmholtz’s free
energy and entropy defined as

F (β,μ) = −β−1 ln[Z(β,μ)], (11)

S(β,μ) = β[〈E〉 − F (β,μ)]. (12)

Finally, to obtain more information on the global behavior
of the order parameter around the phase transition, in this work
we have calculated the Landau free energy as

e−β FL(β,φ) =
∑
E

g(E, φ)e−β E. (13)

The study of the Landau free energy will be further discussed
in the following section.

IV. RESULTS AND PHASE DIAGRAMS

In this section we explore the low-temperature behavior of
the model introduced in Eq. (1) combining the three approaches
described in the previous section. We first focus on the model
in the absence of a magnetic field, where a rich phenomenology
is found. Then we discuss the effect of an external field.

A. h = 0

In the absence of the magnetic field, the system presents
different phase transitions and selection mechanisms, which
we will discuss below.
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FIG. 4. (a) Jx/Jp vs. T/Jp phase diagram for J1 = Jp for Bethe
lattice calculations [full (blue) circles] and Metropolis simulations
[full (red) squares] for L = 48. The transition lines between the
paramagnetic and the ordered phases are of second order as it is
confirmed by the Binder cumulant (b) and scaled order parameter
susceptibility (c) for (Jx/Jp = 0.2, J1/Jp = 1).

1. J1 �= Jx: Second-order phase transitions for broken Z2

symmetry ground states

As a typical example, we focus on the J1 = Jp case, where
for Jx < Jp/3 the ground state is AF2 and for Jx > Jp/3, AF1.
We show the transition lines from a paramagnetic to an ordered
phase in a Jx/Jp vs. T/Jp phase diagram in Fig. 4 [32]. These
lines were obtained from the Bethe lattice analysis and from
MC-M simulations. According to the Bethe lattice technique,
these transitions are of second order. We check this with MC-M
following the standard procedure: locating the crossing point
of the corresponding susceptibility χφ and Binder cumulant
Uφ (measured for different system sizes) for the relevant order
parameters, defined as

χφ = N

T
〈φ2〉 Uφ = 〈φ4〉

(〈φ2〉)2
. (14)

These phase transitions are associated with the breaking of
Z2 symmetry. Therefore, the critical exponent for the sus-
ceptibility near the critical temperature is known, η = 1

4 [33].
In that region, χφ = L2−η[f (|1 − T

Tc
|L1/ν )]. Thus the scaled

susceptibility is size independent at the critical temperature Tc,
where different system sizes should show a crossing point. We
illustrate this method for the AF2 in Figs. 4(b) and 4(c) where
we show the Binder cumulant (b) and the scaled susceptibility
(c) for different system sizes as a function of T/Jp (Jx/Jp =
0.2, J1/Jp = 1). We can observe that indeed the curves for
different L plotted as functions of T/Jp for both the Binder
cumulant and the normalized susceptibility exhibit a crossing
point at the critical temperature, confirming that the transition
is of second order. Finally, we remark that the agreement
between the Bethe lattice results and the MC-M simulations
is both qualitative and quantitative, as can be seen in Fig. 4:
The difference in the values of the critical temperatures is 10%.

0

 0.2

 0.4

 0.6

 0.8
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J x
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AF1

paramagnet

1/3 MC-M

first order

second order
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FIG. 5. Phase diagram obtained by BL and MC-M methods for
h = 0 and J1 = Jx . The empty (blue) triangles joined by a finely
dashed line represent a second-order phase transition and the empty
(red) circles joined by a dashed line represent first-order transitions.
The + (green) symbol is a tricritical point and the × (green) symbol
corresponds to the exact T = 0 first-order point. The empty (black)
squares correspond to the maximum of the specific heat for L = 48
MC-M simulations.

This difference is probably due to both the finite-size effect in
the MC-M simulations and the fact that the BL analysis is a
mean-field calculation.

2. Strong frustrated line J1 = Jx: First- and second-order phase
transitions and cooperative paramagnet phase

We now focus on the J1 = Jx line, where the system
exhibits a range of interesting and different phenomena at low
temperatures. Our main results are summarized in the J1/Jp =
Jx/Jp vs. T/Jp phase diagram in Fig. 5. The transition lines
and the tricritical point were obtained with the Bethe lattice
technique. The points correspond to the maximum of the
specific heat in the MC-M simulations for L = 48. We can
identify three types of behavior: (i) a cooperative paramagnet
phase for J1 = Jx < Jp/3, (ii) a first-order phase transition
from the paramagnetic phase to the AF1 phase for Jp/3 < J1 =
Jx < J ∗ ≈ 0.45Jp, and (iii) a second-order phase transition
from a paramagnetic to a broken Z2 symmetry phase (AF1)
for J1 = Jx > J ∗. The highly frustrated point J1 = Jx = Jp/3
will be discussed in the next subsection.

To further characterize these three types of behaviors, we
study several variables. Besides theφAF1 parameter, the specific
heat, and the entropy, we introduce a variable that we call
the “Jp correlator” (CJp

), which defined in terms of the scalar
product of spins connected by Jp as

CJp
= 1

2

∑
r

〈
σA

r σC
r + σB

r σD
r

〉
. (15)

This variable is defined so that CJp
= −1 for both AF2 and

U2, and CJp
= +1 in AF1. This will be relevant to identify the

cooperative paramagnet phase, as we discuss below.
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FIG. 6. Curves of AF1 order parameter, CJp
correlator, specific heat, and entropy (in units of ln 2/N ) as a function of T/Jp for three values

of the couplings (indicated in bounded box over each set of curves) along the J1 = Jx line: Jx = 0.2 Jp < Jp/3, Jp/3 < Jx = 0.4 Jp < J ∗,
and J ∗ < Jx = 0.6 Jp obtained by comparison of Metropolis simulations (MC-M) (full triangles), Bethe lattice approximation (BL) (full line),
and Wang-Landau (MC-WL) (empty circles). In each region a different behavior is seen. For the larger values of Jx/Jp the system orders in
the AF1 phase through a second-order transition from the paramagnetic phase. For a smaller range of J1 = Jx > Jp/3, the system orders in
the AF1 at low temperatures through a first-order transition, clearly seen as a jump in the order parameter and an off-scale peak in the specific
heat. For J1 = Jx < Jp/3, the system does not order at low temperature remaining in a macroscopically degenerate state. In the latter case, the
specific heat shows a broad peak, as seen, for example, in spin ice systems. The entropy in this region does not vanish as the temperature is
lowered towards T = 0 but tends to the residual value s = 1/2.

We now comment specifically on the physics of each
regime of the couplings. To illustrate each case, we show for
a specific point in each range of the couplings (J1 = Jx =
0.2Jp, 0.4Jp, 0.6Jp) the φAF1 parameter, the specific heat, the
entropy, and CJp

as a function of temperature in Fig. 6.
(i) For J1 = Jx < Jp/3, at low temperatures, the system

is in a cooperative paramagnet phase. It is degenerate: The
plaquettes are in a mixture of AF2 and U2 states. A first
indicator of this phase is the behavior of the order parameters
and the CJp

correlator at low temperatures. φAF1 , φAF2 , φU2

average up to 0, but the CJp
correlator tends to −1. This

indicates that the pairs of spins joined by Jp are either +−
or −+, and thus that each plaquette is either in an AF2 or
a U2 state. Another important indicator of the cooperative
paramagnet phase is the shape of the specific heat. It can be seen
that in this case it shows a broad maximum, there is no sharp
feature. This kind of behavior is seen for example in spin ice
systems [1,34–39]: It is an indication that no long-range order
is developed through a thermodynamic phase transition. This
cooperative paramagnet phase has extensive entropy. We show
the entropy as a function of temperature, obtained from Bethe
lattice and MC-WL calculations (Fig. 6, third panel from the
left). All the curves have the same T → ∞ limit (1 in units
of N log 2) as is expected. However, at low temperatures, the
red curve shows that for J1 = Jx < Jp/3 the system remains
disordered as a consequence of plaquette degeneration and that
at low temperatures s = 1

2 .
(ii) For Jp/3 < J1 = Jx < J ∗, there is a sharp first-order

transition to the ordered phase (AF1) at T/Jp ∼ 0.55. This is
clearly seen as a characteristic jump in the parameters shown
in Fig. 6 (lines indicated with the sign “0.4,” corresponding
to J1 = Jx = 0.4Jp). The specific heat obtained from both the
MC-M and MC-WL simulations shows a clear discontinuity
(the peak in the simulations is off-scale and therefore not shown
in the figure).

(iii) For J1 = Jx > J ∗, the system is also ordered at low
temperatures: All the plaquettes are in the AF1 case. The
transition from the paramagnetic to the ordered phase is of
second order. We have confirmed this by computation of the
scaled susceptibility and the Binder cumulant for different
system sizes, as done in the previous subsection.

We now exploit the power of the MC-WL technique,
studying the Landau free energy [Eq. (13)] as a function
of the relevant order parameter. We will discuss how using
this variable it is possible to provide further evidence of the
different types of phase transitions for J1 = Jx > Jp/3. The
Landau free energy as a function of φAF1 , for two values of
the couplings characteristic of each region, is shown in Fig. 7.
On one hand, in Fig. 7(a) we see that for Jx/Jp = 0.4 the
behavior near the critical temperature Tc the position of the
global minimum changes abruptly from 〈φAF1〉min = 0, for
T > Tc, to 〈φAF1〉min = 1 (normalized) for T < Tc. At this
point it should be clarified that this shape of the Landau free
energy is characteristic of a finite system size (see for example
Ref. [40]), as can be seen in Fig. 7(c), where the Landau free
energy for different system sizes is shown. The curves are
flatter with increasing system size L.

In the thermodynamic limit, the curve at T = Tc is expected
to tend to the dotted curve which has a flat portion between the
two minima. On the other hand, typical second-order transition
behavior is observed for Jx/Jp = 0.6 [Fig. 7(c)] with a gradual
increase of 〈φAF1〉min from zero, for T > Tc to 〈φAF1〉min ≈ 0
for T � Tc. This analysis supports previous results obtained
with BL and MC-M and provides a different way to study the
nature of the phase transition.

3. Highly frustrated point J1 = Jx = Jp/3:
Partial order by disorder

Let us focus on the highly frustrated point, J1 = Jx = Jp/3.
At this point, the three m0 = 0 configurations (AF1, AF2, and
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FIG. 7. [(a)–(c)] MC-WL simulation results for free energy vs.
order parameter φAF1 around the critical temperature Tc. T > Tc is
indicated by circles and T < Tc by squares for different system sizes
L. (a) For J1 = Jx = 0.4Jp , where there is a first-order transition;
(b) J1 = Jx = 0.6Jp , where there is a second-order transition. (c)
Landau free energy at the critical temperature for different sizes for
a first-order phase transition. As the size of the system is increased,
the Landau free energy is flatter. The dotted flat line is the behavior
in the thermodynamic limit. (d) The difference of the free energy of
the AF1 and the U2 states as a function of the Jx parameter along the
degenerate line J1 = Jp/3; Jx > Jp/3 for two different temperatures
obtained from the Bethe lattice approximation.

U2) in each plaquette have the same energy. However, there is
a substantial difference between the possible configurations.
In the AF1 case, all plaquettes are in the same arrangement,
the degeneracy is only twofold. In the AF2 and U2 case, as was
discussed for J1 = Jx < Jp/3, the plaquettes can be in any of
the two arrangements, thus leading to extensively degenerate
ground states. In order to clarify if the system chooses one of
these ground states with temperature (and thus thermal order by
disorder [41,42] is at play), we study the three order parameters
[Eqs. (5), (6), (7)], the CJp

correlator [Eq. (15)], the specific
heat, and the entropy as a function of temperature at h = 0.
The results are analogous to those in Fig. 6 (dotted red line)
for the case Jx/Jp < 1/3. This indicates a phenomenon that is
not present in the previously discussed case: (partial) thermal
order by disorder. At low temperatures the system chooses the
cooperative paramagnet AF2-U2 phase over the AF1 one, since
the AF2-U2 phase has a lower contribution to the free energy.

4. Degenerate line J1(x) = Jp/3, Jx(1) > Jp/3: Order by disorder

Now, we center our study in the line J1(x) = Jp/3, Jx(1) >

Jp/3 (horizontal and vertical lines in Fig. 2), where the ground
state of the system is either in a AF1 state or a U2(AF2) state.
Since the two cases are equivalent, we direct our attention to the
J1 = Jp/3, Jx > Jp/3 case. Contrary to the highly frustrated

point, in this case both phases have entropy s = 0 in the
thermodynamic limit. However, MC-M simulations show that
for lower values of Jx the system choses the U2 phase, whereas
for higher values it can be in either state. This is evidence
of order-by-disorder state selection at low Jx . The origin of
this selection can be understood in the following way. In the
order-by-disorder phenomenon, in the T → 0 limit, the system
chooses states which have a lower contribution to the free
energy, even though they are degenerate at T = 0. In this case,
the U2 state has lower energy fluctuations, and thus it has a
lower free energy at T → 0. For both U2 and AF1 states, the
first excitation is simply to flip one spin, and in both cases the
energy change is 6Jx . To explore the next excitations to the
ground states, one can consider the energy difference of flip-
ping spins joined by the different couplings. For the AF1 state,
the next-lowest energy excitation is flipping along a Jx bond
with an energy cost of �E(Jx ) = 8Jx . For the U2 case for low
values of Jx flipping along a Jp bond has a lower energy cost
�E(Jp ) = 12(Jx − Jp/3). Therefore, when the temperature is
low enough to make these excitations available, the systems
chooses the U2 state. The Bethe lattice technique provides an
interesting way of checking this, since the free energy of each
state can be calculated. Figure 7(d) shows the difference in
the free energy between the AF1 state and the U2 state as a
function of Jx for different temperatures. It can be clearly seen
that the U2 state has a lower free energy, but that this difference
is smaller at lower temperatures with increasing Jx .

B. h > 0

In previous sections we have studied the effect of the
thermal fluctuations in the stability and transitions to the low-
temperature phases. The coupling with an external magnetic
field can tune the system into high-energy plaquette phases
inaccessible at h = 0. Here we will compare a typical case with
a well-defined m = 0 state, for example, J1 = 0.2Jp, Jx =
0.5Jp with the highly frustrated case J1 = Jx = Jp/3. The
magnetization and the entropy as a function of temperature and
magnetic field by MC-WL simulations are shown in Fig. 8. The
m = 0 phases follow the physics previously discussed for h =
0. The transition from the paramagnetic to the m = 1/2 phase
is predicted to be of second-order according to the Bethe lattice
calculations, which we confirmed with MC-M simulations us-
ing the susceptibility and Binder-cumulant analysis as before.
A remarkable feature is that the m = 1/2 plateau has finite ex-
tensive entropy for both the highly frustrated case and the more
typical case presented here, as commented in Sec. II. Finally,
high magnetic fields stabilize the saturation plateau m = 1.

V. CONCLUSIONS

In this work, we present a complete study of the Ising model
on a bilayer honeycomb lattice including interlayer frustration
and coupling with an external magnetic field. We first present
and discuss the exact T = 0 phase diagram and we highlight
specific points and lines where we expect interesting physics.
Then, we study the effect of temperature using a combination
of analytical mean-field-like considerations (Bethe lattice)
and Monte Carlo (Metropolis and Wang-Landau) simulations.
The interplay between these techniques has been essential to
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FIG. 8. Magnetization m and entropy per spin [in units of ln(2)] s

as a function of the magnetic field h/Jp obtained with Wang-Landau
simulations for the highly frustrated point J1 = Jx = Jp/3 (left)
and for an arbitrary value of the couplings J1 = 0.2Jp, Jx = 0.5Jp

(right). The top panel shows the magnetization curves at different
temperatures. The middle and bottom panels are the density plots
corresponding to h/Jp vs. T/Jp phase diagrams for m and s,
respectively.

obtain magnetic and thermodynamic properties of the system.
We have found a very rich phase diagram with nontrivial
regions characterized by broken symmetries and nonzero
entropy values.

In the case of zero magnetic field, along the highly frustrated
line where the intralayer (J1) and frustrating interlayer (Jx)
couplings are equal, for J1 = Jx < Jp/3 there is a crossover
from a paramagnetic phase to a cooperative paramagnet, where
there is finite entropy. At the highly frustrated point J1 =
Jx = Jp/3, order by disorder is at play, and this cooperative
paramagnet phase is the one selected at low temperatures. For
higher values of the couplings, the system is ordered at low
temperatures. The Bethe lattice technique shows that this tran-
sition is of first order for a certain range of parameters, and then
it is second order. We checked this studying thermodynamic
variables with both types of simulations. We also used the
Wang-Landau technique to study the Landau free energy with
the corresponding order parameter, to illustrate the difference
between first- and a second-order phase transitions. Through
Monte Carlo Metropolis simulations and the free energy
obtained from the Bethe lattice approximation we showed that

order by disorder is also at play in the coexistence lines between
two ordered phases [J1(x) = Jp/3, Jx(1) > Jp/3].

In the presence of a magnetic field, there are three plateaus:
at zero and 1/2 magnetization, and the saturation plateau.
The 1/2 plateau is highly degenerate for all antiferromagnetic
couplings. This implies that there is a nonzero entropy induced
by the field through a second-order phase transition, even for
sets of parameters where in the absence of the external field
the system is ordered.

In summary, we have shown that the analytical (Bethe
lattice) and numerical (Metropolis and Wang-Landau simula-
tions) techniques are complementary and provide a solid way
of exploring the different nontrivial phases of this system. We
expect to extend this sort of study to other highly degenerate
systems, like the highly frustrated honeycomb and kagome
lattices in the extended Heisenberg model, exploiting the
richness of these techniques to obtain the complete phase
diagrams.
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APPENDIX A: MATRIX ELEMENTS FOR SPHERICAL
APPROXIMATION

The explicit form of the the analytical expressions for the
boundaries for the plateaus at T = 0 (Fig. 2) are given in
Table II below, where α = Jx/J1.

APPENDIX B: BETHE LATTICE CALCULATIONS

The Bethe lattice allows us to write down RR for the eight
PPF,

Za′
++ = e−kp−2k1−2kx+2h(Zb

++)2 + ekp [(Zb
+−)2 + (Zb

−+)2]

+ e−kp+2k1+2kx−2h(Zb
−−)2, (B1a)

Za′
+− = e−kp+2h(Zb

++)2 + ekp−2k1+2kx (Zb
+−)2

+ ekp+2k1−2kx (Zb
−+)2 + e−kp−2h(Zb

−−)2, (B1b)

Za′
−+ = e−kp+2h(Zb

++)2 + ekp+2k1−2kx (Zb
+−)2

+ ekp−2k1+2kx (Zb
−+)2 + e−kp−2h(Zb

−−)2, (B1c)

TABLE II. (*) in this case the hc corresponds to the intersection
of U2/AF2-UAF phases.

Critical field hc

Case AF2-UAF AF1-UAF UAF-U

(b) Jx = J1 1* −1 + 6 J1
Jp

1 + 6 J1
Jp

(c) Jx < J1 −1 + 3(α + 1) J1
Jp

1 + 3(1 − α) J1
Jp

1 + 3(1 + α) J1
Jp

(d) Jx > J1 −1 + 3(α + 1) J1
Jp

1 + 3(α − 1) J1
Jp

1 + 3(1 + α) J1
Jp
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Za′
−− = e−kp+2k1+2kx+2h(Zb

++)2 + ekp [(Zb
+−)2 + (Zb

−+)2]

+ e−kp−2k1−2kx−2h(Zb
−−)2, (B1d)

Zb′
++ = e−kp−2k1−2kx+2h(Za

++)2 + ekp [(Za
+−)2 + (Za

−+)2]

+ e−kp+2k1+2kx−2h(Za
−−)2, (B1e)

Zb′
+− = e−kp+2h(Za

++)2 + ekp−2k1+2kx (Za
+−)2

+ ekp+2k1−2kx (Za
−+)2 + e−kp−2h(Za

−−)2, (B1f)

Zb′
−+ = e−kp+2h(Za

++)2 + ekp+2k1−2kx (Za
+−)2

+ ekp−2k1+2kx (Za
−+)2 + e−kp−2h(Za

−−)2, (B1g)

Zb′
−− = e−kp+2k1+2kx+2h(Za

++)2 + ekp [(Za
+−)2 + (Za

−+)2]

+ e−kp−2k1−2kx−2h(Za
−−)2. (B1h)

The RR Eqs. (B1) are divergent, and, as usual, we proceed
to define new recursion relations that converge in the thermo-
dynamic limit dividing by Za

−− or Zb
−−,

R1 = Za
++

Za−−
, R2 = Za

+−
Za−−

, R3 = Za
−+

Za−−
,

R4 = Zb
++

Zb−−
, R5 = Zb

+−
Zb−−

, R6 = Zb
−+

Zb−−
. (B2)

Equations (B1) and (B2) give the following RR:

R′
1 = 1

Db

(
e−kp−2k1−2kx+2hR2

4 + ekp
(
R2

5 + R2
6

)

+ e−kp+2k1+2kx−2h
)
, (B3a)

R′
2 = 1

Db

(
e−kp+2hR2

4 + ekp−2k1+2kx R2
5 + ekp+2k1−2kx R2

6

+ e−kp−2h
)
, (B3b)

R′
3 = 1

Db

(
e−kp+2hR2

4 + ekp+2k1−2kx R2
5

+ ekp−2k1+2kx R2
6 + e−kp−2h

)
, (B3c)

R′
4 = 1

Da

[
e−kp−2k1−2kx+2hR2

1 + ekp
(
R2

2 + R2
3

)

+ e−kp+2k1+2kx−2h
]
, (B3d)

R′
5 = 1

Da

(
e−kp+2hR2

1 + ekp−2k1+2kx R2
2 + ekp+2k1−2kx R2

3

+ e−kp−2h
)
, (B3e)

R′
6 = 1

Da

(
e−kp+2hR2

1 + ekp+2k1−2kx R2
2 + ekp−2k1+2kx R2

3

+ e−kp−2h
)
, (B3f)

where

Da = e−kp+2k1+2kx+2hR2
1 + ekp

(
R2

2 + R2
3

)
+ e−kp−2k1−2kx−2h, (B4a)

Db = e−kp+2k1+2kx+2hR2
4 + ekp

(
R2

5 + R2
6

)
+ e−kp−2k1−2kx−2h. (B4b)

1. Fixed points and the thermodynamic phases

The thermodynamic phases are given by the stable fixed
points �R∗ of Eqs. (B3). The continuous or second-order lines
are defined as coincident stability lines of different fixed points
(phases).

At zero magnetic field, the fixed points of the different
phases are given by the following conditions:

(i) Paramagnetic phase

R∗
1 = 1, R∗

3 = R∗
2 , R∗

4 = 1, R∗
5 = R∗

2 , R∗
6 = R∗

2 , (B5)

(ii) F2 phase

R∗
1 = 1, R∗

5 = R∗
2 , R∗

4 = 1, R∗
6 = R∗

3 , (B6)

(iii) AF1 phase

R∗
1 �= 1, R∗

3 = R∗
2 �= R∗

5 = R∗
6 , R∗

4 �= 1, R∗
4 �= R∗

1 , (B7)

(iv) AF2 phase

R∗
1 = 1, R∗

6 = R∗
2 , R∗

4 = 1, R∗
5 = R∗

3 . (B8)

For H �= 0 the symmetry is broken, and these relations
between the R∗

i are not valid.

2. The partition function, thermodynamic averages,
and the free energy

In order to classify the different thermodynamics phases,
we need the partition function and thermodynamics averages
as the magnetization per site. When the stability lines of two
(or more) fixed points are not coincident, the overlap region is
a coexistence zone, and we also need to calculate the first-order
line as the line where the free energies of the corresponding
phases take the same value.

As usual, the thermodynamics averages and the free energy
must be calculated on the central region. There is not a unique
manner to define the central zone, we define it as a central
plaquette where four subtrees are attached as it shown as shown
in (Fig. 3).

Putting a plaquette as a central zone, always a bond belongs
to the sublattice a (b), and we attach to them two subtrees
with the root belonging to the sublattice b (a); then, at any
generations, including the surface, a half of points belong to a
sublattice and the other half to the other sublattice. Then, we
obtain for the partition function for an M-generations tree,

ZM = (Za
++)2{e−2kp−2k1−2kx+4h(Zb

++)2 + e2h[(Zb
+−)2 + (Zb

−+)2] + e−2kp+2k1+2kx (Zb
−−)2}

+ (Za
+−)2[e2h(Zb

++)2 + e2kp−2k1+2kx (Zb
+−)2 + e2kp+2k1−2kx (Zb

−+)2 + e−2h(Zb
−−)2]

+ (Za
−+)2[e2h(Zb

++)2 + e2kp+2k1−2kx (Zb
+−)2 + e2kp−2k1+2kx (Zb

−+)2 + e−2h(Zb
−−)2]

+ (Za
−−)2{e−2kp+2k1+2kx (Zb

++)2 + e−2h[(Zb
+−)2 + (Zb

−+)2] + e−2kp−2k1−2kx−4h(Zb
−−)2, (B9)

where all the PPF corresponds to M-generations subtrees.
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The magnetizations in the four different sites mi = 〈σi〉, where i = A,B,C,D number the four sites of the central plaquette,
take now the expressions

mA = 1

Y
{
R∗2

1

[
e−2kp−2k1−2kx+4hR∗2

4 + e2h
(
R∗2

5 + R∗2
6

) + e−2kp+2k1+2kx
]

+R∗2
2

(
e2hR∗2

4 + e2kp−2k1+2kx R∗2
5 + e2kp+2k1−2kx R∗2

6 + e−2h
)

−R∗2
3

(
e2hR∗2

4 + e2kp+2k1−2kx R∗2
5 + e2kp−2k1+2kx R∗2

6 + e−2h
)

− [
e−2kp+2k1+2kx R∗2

4 + e−2h
(
R∗2

5 + R∗2
6

) + e−2kp−2k1−2kx−4h
]}

, (B10a)

mB = 1

Y
{
R∗2

1

[
e−2kp−2k1−2kx+4hR∗2

4 + e2h
(
R∗2

5 − R∗2
6

) − e−2kp+2k1+2kx
]

+R∗2
2

(
e2hR∗2

4 + e2kp−2k1+2kx R∗2
5 − e2kp+2k1−2kx R∗2

6 − e−2h
)

+R∗2
3

(
e2hR∗2

4 + e2kp+2k1−2kx R∗2
5 − e2kp−2k1+2kx R∗2

6 − e−2h
)

+ [
e−2kp+2k1+2kx R∗2

4 + e−2h
(
R∗2

5 − R∗2
6

) − e−2kp−2k1−2kx−4h
]}

, (B10b)

mC = 1

Y
{
R∗2

1

[
e−2kp−2k1−2kx+4hR∗2

4 + e2h
(
R∗2

5 + R∗2
6

) + e−2kp+2k1+2kx
]

−R∗2
2

(
e2hR∗2

4 + e2kp−2k1+2kx R∗2
5 + e2kp+2k1−2kx R∗2

6 + e−2h
)

+R∗2
3

(
e2hR∗2

4 + e2kp+2k1−2kx R∗2
5 + e2kp−2k1+2kx R∗2

6 + e−2h
)

− [
e−2kp+2k1+2kx R∗2

4 + e−2h
(
R∗2

5 + R∗2
6

) + e−2kp−2k1−2kx−4h
]}

, (B10c)

mD = 1

Y
{
R∗2

1

[
e−2kp−2k1−2kx+4hR∗2

4 + e2h
(−R∗2

5 + R∗2
6

) − e−2kp+2k1+2kx
]

+R∗2
2

(
e2hR∗2

4 − e2kp−2k1+2kx R∗2
5 + e2kp+2k1−2kx R∗2

6 − e−2h
)

+R∗2
3

(
e2hR∗2

4 − e2kp+2k1−2kx R∗2
5 + e2kp−2k1+2kx R∗2

6 − e−2h
)

+ [
e−2kp+2k1+2kx R∗2

4 − e−2h
(
R∗2

5 + R∗2
6

) − e−2kp−2k1−2kx−4h
]}

, (B10d)

where Y is the thermodynamic limit of the scaled partition function,

Y = lim
M→∞

ZM

(Za−−Zb−−)2

= R∗2
1

[
e−2kp−2k1−2kx+4hR∗2

4 + e2h
(
R∗2

5 + R∗2
6

) + e−2kp+2k1+2kx
] + R∗2

2

(
e2hR∗2

4 + e2kp−2k1+2kx R∗2
5 + e2kp+2k1−2kx R∗2

6 + e−2h
)

+R∗2
3

(
e2hR∗2

4 + e2kp+2k1−2kx R∗2
5 + e2kp−2k1+2kx R∗2

6 + e−2h
) + [

e−2kp+2k1+2kx R∗2
4 + e−2h

(
R∗2

5 + R∗2
6

) + e−2kp−2k1−2kx−4h
]
.

(B11)

In order to obtain the Bethe lattice free energy, we follow the Gujrati’s argument [21], as presented by Oliveira et al. [22],
obtaining

φ = lim
M→∞

−T

2
ln

ZM+1

Z2
M

= −T

2
ln

D2
aD

2
b

Y = −T

(
ln Da + ln Db − 1

2
lnY

)
, (B12)

and the first-order transition lines were calculated by equalizing the free energies of both phases.
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