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Insights into noise modulation in oligomerization systems of increasing complexity
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Understanding under which conditions the increase of systems complexity is evolutionarily advantageous, and
how this trend is related to the modulation of the intrinsic noise, are fascinating issues of utmost importance
for synthetic and systems biology. To get insights into these matters, we analyzed a series of chemical reaction
networks with different topologies and complexity, described by mass-action kinetics. We showed, analytically
and numerically, that the global level of fluctuations at the steady state, measured by the sum over all species of
the Fano factors of the number of molecules, is directly related to the network’s deficiency. For zero-deficiency
systems, this sum is constant and equal to the rank of the network. For higher deficiencies, additional terms appear
in the Fano factor sum, which are proportional to the net reaction fluxes between the molecular complexes. We
showed that the system’s global intrinsic noise is reduced when all fluxes flow from lower to higher degree
oligomers, or equivalently, towards the species of higher complexity, whereas it is amplified when the fluxes are
directed towards lower complexity species.
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I. INTRODUCTION

Fluctuations play a major role in the dynamics of a large
variety of complex biological processes. To properly describe
the stochastic and heterogeneous nature of systems such as the
transcriptional machinery [1] or cell differentiation processes
[2], stochastic modeling approaches are indispensable [3]. For
example, intensive efforts have been devoted in the last decade
to the characterization of stochasticity in chemical reaction
networks (CRNs) by studying the propagation of fluctuations
through the networks [4,5] or by analyzing the relation between
thermodynamic properties and noise levels [6,7]. However, the
full understanding of the stochastic properties of biomolecular
networks remains an intricate goal that is far from being met.

A challenging open question concerns the relationship be-
tween the complexity of biological systems and the modulation
of the intrinsic noise. At first glance, the evolutionary pressure,
which led from unicellular organisms to higher eukaryotes,
tends to favor both complexity increase and noise reduction;
however, for particular processes such cell differentiation the
converse seems to happen. These opposite behaviors are also
supported by modeling investigations, which showed that the
increase of system complexity is associated to a decrease of
the noise level for some systems [8], whereas other complex
processes are noise-driven [9]; for still other systems, the
intrinsic noise can be either increased or decreased according
to the parameter values of the model [10].

The lack of a general understanding is due to the fact
that CRNs describing biological systems are usually large and
complex and therefore complicated to model mathematically,
whether analytically due to the intricacy of equations or via
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stochastic simulations because the parameter space becomes
rapidly too large to be tractable. Hence, only toy models can
be realistically analyzed.

In view of deepening our knowledge about noise mod-
ulation in stochastic CRNs, we thoroughly analyzed model
systems with different degrees of complexity and explored
analytically and numerically their dynamical behavior using
the Itō stochastic differential equation formalism. We obtained
general relations between some characteristics of the CRNs
and the noise levels evaluated by the Fano factors of the
biochemical species involved. We conjectured the validity of
these relations for general classes of CRNs.

II. STOCHASTIC CRNS

Systems of interacting biological molecules are mathemat-
ically represented by chemical reaction networks [S, C,R]
consisting of sets of chemical species S , elementary reactions
R, and complexes C defined as the input or output of an
individual reaction [11]. For example, the CRN 2U1 ↔ U2 ↔
U3 + U1 has S = {U1, U2, U3}, C = {2U1, U2, U3 + U1}, and
R comprises the four reactions indicated by arrows.

Each complex is associated with a vector ∈ Rcard(S ) whose
entries are the stoichiometric coefficients of the species in
the complex. In the case of open systems, the environment
(denoted by ∅) is considered as a complex in which all species
have a vanishing stoichiometric coefficient. Each reaction j in
the network is associated with a vector kij ∈ Rcard(S ) obtained
by subtracting the vector of the reactant complex from that
of the product. The number of linearly independent reaction
vectors is by definition the rank X .

An important parameter that characterizes the CRN is the
deficiency [11,12], defined as δ = card(C) − L − X where L
is the number of linkage classes or, equivalently, the number
of connected network components. In the above example, we

2470-0045/2018/98(1)/012137(6) 012137-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.012137&domain=pdf&date_stamp=2018-07-26
https://doi.org/10.1103/PhysRevE.98.012137


FABRIZIO PUCCI AND MARIANNE ROOMAN PHYSICAL REVIEW E 98, 012137 (2018)

have card(C) = 3, L = 1, and X= 2, and thus the system has
zero deficiency.

The dynamical behavior of a CRN can be described by the
chemical Langevin equation in the Itō formalism [13]:

dUi (t )

dt
=

card(R)∑
j=1

kij aj (U(t ))

+
card(R)∑

j=1

kij

√
aj (U(t )) dWj (t ), (1)

where Ui (t ) is the number of molecules of species i at time
t, aj (U(t )) is the rate of reaction j , and Wj (t )’s are inde-
pendent Wiener processes. This system of equations describes
the temporal evolution of U(t ) and its conditioned probability
density function obeys the associated Fokker-Planck equation.
It has also been demonstrated to be equivalent to the master
equation formalism for sufficiently large numbers of molecules
[13–15].

CRNs are said to be complex balanced [11,12] if, for each
complex y and each steady state, the sum of the mean reaction
rates for the reactions r ⊂ R for which y is a reactant complex
is equal to the sum of the mean reaction rates for r ′ ⊂ R
for which y is a product complex. Detailed balanced CRNs
are a subclass of complex balanced systems for which this
relation holds separately for each pair of forward and inverse
reactions linking two complexes. Detailed balanced steady
states correspond to thermodynamic equilibrium states, while
the others are nonequilibrium steady states (NESS).

CRNs are also characterized by their reversibility proper-
ties. They are said to be reversible if the existence of a reaction
that transforms one complex into another implies the existence
of the reverse reaction. They are weakly reversible if the
existence of a reaction path from complex one to complex two
implies the existence of a path from complex two to complex
one.

An important result in CRN theory known as the zero defi-
ciency theorem [12] shows that CRNs are complex balanced if
and only if they are of deficiency zero and weakly reversible.
For higher deficiency CRNs, the value of δ corresponds to
the number of independent conditions on the rate constants
that have to be satisfied in order for the system to be complex
balanced. In a certain sense, δ measures the “distance” of the
network from complex balancing.

III. MODEL SYSTEMS

We studied three types of weakly reversible CRNs, depicted
in Fig. 1 and characterized by different deficiency values (see
figure legend). The simplest one [Fig. 1(a)] is defined by the
reaction chain:

n X � Y � ∅ � X. (2)

It represents, for example, the assembly of monomeric
molecules X into homo-oligomers Y, where n ∈ N>0 indicates
the number of monomers in each oligomer. When n = 1, this
CRN represents the interconversion between two states of
the same molecule (e.g., activated or not) or between two
localizations (e.g., intra- or extracellular). Both species are
linked to the environment.

FIG. 1. Schematic picture of the reaction networks analyzed in
this letter. (a) CRN of Eq. (2), with δ � 1 according to the parameter
values; (b) CRN of Eq. (3), with δ � 2; (c) CRN of Eq. (4), with
δ � 3.

We also studied more complex CRNs, which model, for
instance, biological systems in which a molecular species
undergoes a homo-oligomerization process through an inter-
mediate oligomerization step of lower degree [Fig. 1(b)]:

n X � Y, m Y � Z,
(3)

X � ∅, Y � ∅, Z � ∅,

with n,m ∈ N>0, or in which the homo-oligomerization pro-
cess occurs with or without an intermediate step [Fig. 1(c)]:

n X � Y, m Y � Z, nm X � Z,

X � ∅, Y � ∅, Z � ∅. (4)

IV. ITŌ STOCHASTIC MODELING

For describing the CRN of Eq. (2), the general system of
Itō stochastic differential equations (SDEs) given in Eq. (1)
reduces to

dX(t ) = dPx (t ) − dDx (t ) − n (dF (t ) − dG(t )),
(5)

dY (t ) = dPy (t ) − dDy (t ) + dF (t ) − dG(t ),

where X(t ) and Y (t ) are the numbers of molecules of species
X and Y, dPx (t ) and dPy (t ) the associated production terms,
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dDx (t ) and dDy (t ) the degradation terms, and dF (t ) and
dG(t ) the interconversion terms. These terms can be expressed
as

dPx (t ) = pxdt + √
px dWpx (t ),

dDx (t ) = dxX(t )dt +
√

dxX(t ) dWdx (t ),

dPy (t ) = pydt + √
py dWpy (t ),

(6)
dDy (t ) = dyY (t )dt + √

dyY (t ) dWdy (t ),

dF (t ) = f X(t )(n)dt +
√

f X(t )(n) dWf (t ),

dG(t ) = gY (t )dt +
√

gY (t ) dWg (t ),

where px, dx, py, dy, f, g ∈ R�0 are the parameters of the
model, and X(n) ≡ X(X − 1)...(X − n + 1) which reduces to
X(n) ≈ Xn for large numbers of molecules.

The production rates px and py are considered as constant,
the degradation rates dxX(t ) and dyY (t ) are proportional
to the number of molecules, while the interconversion rates
f X(t )(n) and gY (t ) follow a mass-action kinetic scheme
and are proportional to the product of the concentrations
of the reactants raised to powers that are equal to their
stoichiometric coefficients. The Wiener processes of the six
reactions, Wpx (t ), Wdx (t ), Wpy (t ), Wpx (t ), Wdx (t ), Wf (t ),
and Wg (t ), are all independent [16].

The next step consists of approximating these continuous-
time SDEs by discrete-time SDEs. Therefore, we divided
the time interval [0, T ] into � equal-length intervals 0 =
t0 < . . . < t� = T , with tτ = τ�t and �t = T/�. Using the
Euler-Maruyama discretization scheme [17], the discrete-time
SDEs read as

Xτ+1 = Xτ + (px − dxXτ )�t

+√
px �Wpx

τ −
√

dxXτ �Wdx

τ

− n
(
f X(n)

τ − gYτ

)
�t

− n
(√

f X
(n)
τ �Wf

τ −
√

gYτ �Wg
τ

)
,

Yτ+1 = Yτ + (py − dyYτ )�t

+√
py �W

py

τ − √
dyYτ �W

dy

τ

+ (
f X(n)

τ − gYτ

)
�t

+ (√
f X

(n)
τ �Wf

τ −
√

gYτ �Wg
τ

)
. (7)

The independent Wiener processes satisfy Wτ = W (tτ )
and �Wτ = Wτ+1 − Wτ , so that W0 = 0, E[�Wτ ] = 0 and
Var[�Wτ ] = �t . This system converges towards a steady
state in the long-time limit, obtained by first taking the limit
T = ��t → ∞ followed by �t → 0. In the following, we
represent the values of the variables at the steady state without
subscript, e.g., Xτ → X.

We computed and equated the mean of the left and right
sides of Eq. (7), as well as the mean of their squares and of
their product, and then take the steady-state limit. Requiring
that the leading �t contribution vanishes in each equation,
we obtained five independent algebraic equations that link
the moments E[X], E[Y ], Var[X], Var[Y ], and Cov[X, Y ]
to the model parameters and to some higher order moments

Cov[X,X(n)], Cov[Y,X(n)], and E[X(n)]

1

n
(px − dxE[X])

= f E[X(n)] − gE[Y ] = −py + dyE[Y ],

2 Cov[X, dxX + nf X(n) − ngY ]

= px + dxE[X] + n2f E[X(n)] + n2gE[Y ],

2 Cov[Y, dyY + gY − f X(n)]

= py + dyE[Y ] + f E[X(n)] + gE[Y ],

Cov[X, dyY + gY − f X(n)] + Cov[Y, dxX + nf X(n)

−ngY ] = −nf E[X(n)] − ngE[Y ]. (8)

When n > 1, the number of moments is larger than the
number of algebraic equations, so we cannot solve this system
completely. For this, we need to approximate the higher order
moments in terms of the lower order ones, i.e., in terms of the
mean, variance, and covariance of X and Y . We used for that
purpose the moment closure approximation (MCA), which has
been developed to achieve a closed form for sets of coupled
stochastic differential equations, which otherwise would be
intractable [18–20]. There are several MCA schemes, among
which the normal MCA that seems in general to perform better
than the others [19,21]. This MCA scheme yields the following
relations connecting higher to lower order moments:

Cov[X,Xn] ≈ n E[Xn]
Var[X]

E[X]
,

Cov[Y,Xn] ≈ n E[Xn]
Cov[X, Y ]

E[X]
. (9)

These approximations are valid if Var[X] � E[X]2 and
Var[Y ] � E[Y ]2. In what follows, we also made the approxi-
mation E[X(n)] ≈ E[Xn], which is valid for E[X] � 1.

Even though the Itō SDE formalism involves some approxi-
mations that the master equation formalism does not, it has also
substantial advantages. The first is that both the analytical and
numerical results can be obtained more efficiently [14,22], an
important point since our systems are complex and the stochas-
tic simulations suffer from poor convergence properties. The
second advantage is that Itō SDEs allow improved conceptual
understanding of the noise modulation since the drift and
random fluctuating contributions to each of the reactions can
be more easily identified [14].

V. INTRINSIC NOISE

A central parameter that quantifies the role of fluctuations
in biochemical systems is the Fano factor F(U (t )), defined as
the ratio between the variance of a stochastic variable U (t ) to
its mean:

F(U (t )) = Var[U (t )]/E[U (t )]. (10)

If the variable follows a Poisson distribution, its Fano factor F
is equal to one. When F is larger than one, the fluctuations affect
more strongly the variable concentration and the distribution
is called super-Poissonian. The distribution is sub-Poissonian
when F < 1.

012137-3



FABRIZIO PUCCI AND MARIANNE ROOMAN PHYSICAL REVIEW E 98, 012137 (2018)

To analyze the role of the fluctuations in the different types
of CRNs depicted in Fig. 1, we computed the sum of the Fano
factors of all species at the steady state as a function of the
system’s parameters. This sum represents the global noise level
of the system.

For the CRN of Fig. 1(a), the Fano factors are obtained
from the system of SDEs of Eq. (5), whose solution is given
by Eq. (8) with the MCA approximations of Eq. (9). For the
CRNs connecting three species, depicted in Figs. 1(b) and 1(c),
the SDEs are easily generalized and solved according to the
same procedure. The details of all the computations and the
analytical results are given in the Supplemental Material [23].

A. Deficiency zero

Several of the CRNs depicted in Fig. 1 have zero deficiency.
A first class consists of the CRNs of Figs. 1(a) and 1(b) for
which all production and degradation parameters vanish, or
for which they vanish for all species except one. These CRNs
are detailed balanced since they admit detailed balanced steady
states for all (other) parameter values. Another class of δ = 0
systems is characterized by n = 1 in Fig. 1(a) and n = 1 = m

in Figs. 1(b) and 1(c). These networks are complex balanced
but not detailed balanced.

For all these systems, we found analytically that the sum of
the Fano factors of all species is equal to the rank at the steady
state:

card(S )∑
i=1

Fi = X . (11)

It can be checked that all CRNs with deficiency zero satisfy this
simple relation. This result is directly related to the fact that,
for δ = 0 CRNs, the steady-state probability distribution of the
number of molecules is a product of Poisson distributions, or
a multinomial distribution in the case some conservation laws
hold and thus the state space is reduced, as, for example, in
closed systems where the number of molecules is conserved
[24,25].

B. Higher deficiency

For systems with deficiency larger than zero, the situation
becomes more complicated due to the nonzero correlations
between the chemical species in the steady state. We started
considering the δ = 1 homo-oligomerization CRN shown in
Fig. 1(a), with n > 1 and the two species X and Y linked to the
environment. Their dynamical behavior is modeled by Eqs. (5)
and (6) and the steady-state solutions are obtained from Eqs. (8)
and (9).

In this case, the mean internal flux � that flows between the
two species X and Y,

� = f E[Xn] − g E[Y ], (12)

is generally nonzero, and proportional to the mean fluxes that
involve exchanges with the environment. In terms of � and
the system’s rank X (here equal to two), we found analytically
that the sum of the Fano factors of all species at the steady state

FIG. 2. Sum of Fano factors of the two species X and Y of the
CRN of Fig. 1(a), as a function of the mean flux �, for different values
of the parameters n and f ; all other parameters are kept fixed: px =
py = 200, dx = dy = 0.001, and g = 0.002. The analytical solutions
are indicated with lines and the solutions from stochastic simulations
with dots, squares or triangles according to the value of n.

satisfies the relation,

card(S )∑
i=1

Fi = X − α (n − 1) �, (13)

where α is a positive function,

α = n

2E(Y )

A

B
, (14)

with

A = n2f 2E[Xn]2 + n2f dyE[Y ]E[Xn]

+ (g + dy )(g + dx + dy )E[X]E[Y ],

B = n4f 2dyE[Xn]2 + dx (g + dy )(g + dx + dy )E[X]2

+ n2f (dx (g + dy ) + dy (g + dx + dy ))E[X]E[Xn].

Note that E[Xn], E[X], and E[Y ] can be expressed in terms of
the system’s parameters (px, py, dx, dy, f, g) for each value
of n, using Eqs. (8) and (9).

Equation (13) reduces to Eq. (11) when n = 1 in which case
δ = 0, or when � = 0 in which case the steady state (but not
necessarily the system) is detailed balanced. The Fano factor
sum as a function of � is plotted in Fig. 2, for different values
of the parameters n and f .

According to Eq. (13), the global intrinsic noise level is
reduced when the mean flux � is positive, thus when it is
directed towards the oligomer Y. In contrast, it is amplified
when � is directed towards the monomer X. Interestingly,
the larger the degree—or complexity level—of the oligomer,
the larger the reduction or amplification effect. Indeed, the
proportionality coefficient between the Fano factor sum and
the flux increases in absolute value with n, as illustrated in
Fig. 2.

To estimate the intrinsic noise in higher deficiency systems,
we considered the δ = 2 CRN of Fig. 1(b). It has two fluxes
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FIG. 3. Sum of Fano factors of the three species X, Y, and Z
as a function of the two (independent) mean fluxes �1 and �2, for
different values of parameters f1 and f2, for the CRNs depicted in
Fig. 1(b) with n = m = 2; all other parameters are kept fixed: px =
py = pz = 100, dx = dy = dz = 0.001, g1 = g2 = 0.01. The dark-
color surface is

∑
i Fi = 3, while the light-color surface is obtained

by solving the SDE system. In quadrant I (III), where the fluxes are
both negative (positive), there is an increase (decrease) of the global
noise. In quadrants II and IV, both scenarios are possible according
to the models’ parameters.

that are in general nonzero and flow between pairs of species:

�1 = f1 E[Xn] − g1 E[Y ],

�2 = f2 E[Ym] − g2 E[Z]. (15)

The fluxes that link the species to the environment are linear
combinations of these two fluxes. We also considered the δ = 3
CRN of Fig. 1(c). This system has three internal fluxes, the two
given by Eq. (15) and

�3 = f3 E[Xnm] − g3 E[Z]. (16)

We showed analytically for all parameter values, and
checked numerically for some of them, that the global intrinsic
noise at the steady state satisfies the relation,

card(S )∑
i=1

Fi = X −
N�∑
�=1

α�K� ��, (17)

where all α�’s are positive functions of the parameters and the
sum is over the N� internal mean fluxes, i.e., N� = 2 and 3
for the systems of Figs. 1(b) and 1(c), respectively. The K�

coefficient is defined in terms of the reaction vectors, K� =
1
2

∑card(S )
i (ki�− − ki�+ ) where �+ and �− ∈ R represent the

forward and backward reactions associated with the flux ��.
Here K� is equal to (n − 1), (m − 1), and (nm − 1) for � =
1, 2, 3, and the rank is X = 3.

We conjecture that Eq. (17) remains valid for generic
homo-oligomerization CRNs, where the sum is over the N�

internal fluxes defined as functions of forward and backward
reaction rates as �� = E[a�+ − a�− ]. Note that the internal
fluxes for which the stoichiometries of the reactant and product

complexes are equal (which implies ki�− = 0 = ki�+) do not
contribute to this equation since K� is vanishing.

Equation (17) shows that when all the fluxes flow from
the species of lower complexity (defined in terms of the
oligomerization degree) to the species of higher complexity,
the global intrinsic noise level is reduced. In contrast, when
the fluxes are directed towards the lower complexity species,
it is amplified. When the fluxes do not all have the same sign,
there starts to be a competition between them and whether the
global intrinsic noise is amplified or reduced depends on the
relative weight of the α� � 0 coefficients. This is pictorially
shown in Fig. 3 for the model system of Fig. 1(b).

VI. CONCLUSION

In this article, we demonstrated that the sum of the Fano
factors of all chemical species involved in a CRN depend
crucially on the value of the deficiency. For all weakly
reversible CRNs with δ = 0, the Fano factor sum is always
constant and equal to the rank of the system independently
of the model’s parameters. From a physical point of view,
this can be related to the fact that, for δ = 0 CRNs, the
entropy production rate of the stochastic model equals that
of the corresponding deterministic system, where correlations
between chemical species vanish [6].

For higher deficiency systems, in which the different species
are correlated, additional terms appear which are proportional
to the fluxes between the complexes and the associated sto-
ichiometric coefficients. If all fluxes flow in the direction of
higher complexity, a global reduction of the fluctuations is
observed, while an amplification occurs when the fluxes are
directed towards lower complexity.

To get insights into the biological meaning of our results,
consider the system composed of monomeric proteins that
undergo a homo-oligomerization process. In this case [Fig. 1(a)
with py = 0] the mean flux is directed towards higher com-
plexity and thus the sum of Fano factors is always smaller
than or equal to the rank, which signals global noise reduction.
In contrast, for systems modeling the chemical hydrolysis of
cellulose into monomeric sugars, where instead px = 0 and
the flux is directed towards the lowest complexity species, we
always have global noise amplification.

Several points remain to be addressed to get a full picture
of noise modulation in biological systems. The analysis of the
Fano factors of each individual chemical species is left for
upcoming papers [26,27]. Our results also need to be extended
to more complex systems as well as to more general kinetic
schemes [28,29]. Last but not least, a clear interpretation of
our results in terms of entropy production rates will contribute
to deepen our physical understanding of these systems [6,7].
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